#### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC<sup>32</sup> logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # MCP3423 EVALUATION BOARD USER'S GUIDE ## **Table of Contents** | Preface | 1 | |-------------------------------------------------|----| | Introduction | | | Document Layout | 1 | | Conventions Used in this Guide | 2 | | Recommended Reading | 3 | | The Microchip Web Site | | | Customer Support | | | Document Revision History | | | Chapter 1. Quick Start Instructions | | | 1.1 Introduction | 5 | | 1.2 Description of the MCP3423 Evaluation Board | 5 | | 1.3 Getting Started with PICkit Serial Analyzer | 6 | | 1.4 Experiment for CH2 | | | Appendix A. Schematic and Layouts | | | A.1 Introduction | 23 | | A.2 Board – Schematic | 24 | | A.3 Board – Top Laer | | | A.4 Board – Top Metal Layer | | | A.5 Board – Bottom Layer | | | A.6 Board – Bottom Metal Layer | | | Appendix B. Bill of Materials (BOM) | | | Worldwide Sales and Service | 30 | | MCP3423 Evaluation Board User's Guide | | | | | | |---------------------------------------|--|--|--|--|--| | NOTES: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # MCP3423 EVALUATION BOARD USER'S GUIDE #### **Preface** #### **NOTICE TO CUSTOMERS** All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available. Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXX" is the document number and "A" is the revision level of the document. For the most up-to-date information on development tools, see the MPLAB<sup>®</sup> IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files. #### INTRODUCTION This chapter contains general information that will be useful to know before using the MCP3423 Evaluation Board. Items discussed in this chapter include: - Document Layout - · Conventions Used in this Guide - Recommended Reading - The Microchip Web Site - Customer Support - Document Revision History #### **DOCUMENT LAYOUT** This document describes how to use the MCP3423 Evaluation Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows: - Chapter 1. "Quick Start Instructions" this chapter provides an overview of the MCP3423 Evaluation Board and instructions on how to use the MCP3423 Evaluation Board with the PICkit Serial Analyzer. - Appendix A. "Schematic and Layouts" shows the schematic and layout diagrams for the MCP3423 Evaluation Board. - Appendix B. "Bill of Materials (BOM)" lists the parts used to build the MCP3423 Evaluation Board. #### **CONVENTIONS USED IN THIS GUIDE** This manual uses the following documentation conventions: #### **DOCUMENTATION CONVENTIONS** | Description | Represents | Examples | | |--------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------|--| | Arial font: | | | | | Italic characters | Referenced books | MPLAB <sup>®</sup> IDE User's Guide | | | | Emphasized text | is the only compiler | | | Initial caps | A window | the Output window | | | | A dialog | the Settings dialog | | | | A menu selection | select Enable Programmer | | | Quotes | A field name in a window or dialog | "Save project before build" | | | Underlined, italic text with right angle bracket | A menu path | <u>File&gt;Save</u> | | | Bold characters | A dialog button | Click <b>OK</b> | | | | A tab | Click the <b>Power</b> tab | | | N'Rnnnn | A number in verilog format, where N is the total number of digits, R is the radix and n is a digit. | 4'b0010, 2'hF1 | | | Text in angle brackets < > | A key on the keyboard | Press <enter>, <f1></f1></enter> | | | Courier New font: | | | | | Plain Courier New | Sample source code | #define START | | | | Filenames | autoexec.bat | | | | File paths | c:\mcc18\h | | | | Keywords | _asm, _endasm, static | | | | Command-line options | -0pa+, -0pa- | | | | Bit values | 0, 1 | | | | Constants | 0xff, 'A' | | | Italic Courier New | A variable argument | file.o, where file can be any valid filename | | | Square brackets [] | Optional arguments | mcc18 [options] file [options] | | | Curly brackets and pipe character: { } | Choice of mutually exclusive arguments; an OR selection | errorlevel {0 1} | | | Ellipses | Replaces repeated text | <pre>var_name [, var_name]</pre> | | | | Represents code supplied by user | <pre>void main (void) { }</pre> | | #### RECOMMENDED READING This user's guide describes how to use MCP3423 Evaluation Board. Other useful documents are listed below. The following Microchip document is available and recommended as supplemental reference resources: #### PICkit™ Serial Analyzer User's Guide (DS51647) Consult this document for instructions on how to use the PICkit Serial Analyzer hardware and software. MCP3422/3/4 Data Sheet, "18-Bits, Multi-Channel Delta-Sigma Analog-to-Digital Converter with I<sup>2</sup>C Interface and On-Board Reference" (DS22088) This data sheet provides detailed information regarding the MCP3423 product family. #### THE MICROCHIP WEB SITE Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives #### **CUSTOMER SUPPORT** Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - · Technical Support Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com. #### **DOCUMENT REVISION HISTORY** #### **Revision A (November 2008)** · Initial Release of this Document. NOTES: # MCP3423 EVALUATION BOARD USER'S GUIDE ### **Chapter 1. Quick Start Instructions** #### 1.1 INTRODUCTION The following sections provide an overview of the MCP3423 Evaluation Board and demonstrate how to use it with the PICkit™ Serial Analyzer (P/N: DV164122). The following topics are covered: - Description of the MCP3423 Evaluation Board - How to use MCP3423 Evaluation Board with the PICkit Serial Analyzer #### 1.2 DESCRIPTION OF THE MCP3423 EVALUATION BOARD The MCP3423 Evaluation Board (P/N MCP3423EV) contains a MCP3423 18-Bit $\Delta\Sigma$ Analog-to-Digital Converter (ADC). The MCP3423 is a 2-channel 18 bit delta-sigma ADC device with various configuration options. The board has analog input connection pads and various test pads. The user can connect inputs and test the conversion results using the PICkit Serial Analyzer and its PC graphic user interface (GUI). The MCP3423 Evaluation Board has the following interfaces: • PICkit Serial Analyzer (P/N: DV164122) for writing configuration register bits and reading the conversion data. **Note:** The user can use this board without the PICkit Serial Analyzer as long as the V<sub>DD</sub>, SCL, and SDA are provided through J1 connector. This Evaluation Board does not include MCU. The board has test points for SDL, SDA, and analog inputs. By connecting an oscilloscope to these test points, the user can examine the data communications through the $I^2C^{\mathsf{TM}}$ bus line and observe the resulting conversion output. Refer to **Appendix A. "Schematic and Layouts"**. #### 1.2.1 I<sup>2</sup>C Address Bits and A0 Address Bit Selection The I<sup>2</sup>C device code and address bits of the MCP3423 device are: - Device Code: \1101' - A2, A1, A0 Address Bits: determined by the JP2 (Adr1 pin) and JP3 (Adr0 pin). - See Table 1-1 for the I<sup>2</sup>C Device Address bits and JP2 and JP3 connections. FIGURE 1-1: Front View of the MCP3423 Evaluation Board. #### 1.3 GETTING STARTED WITH PICKIT SERIAL ANALYZER Figure 1-1 shows the MCP3423 Evaluation Board, and Figure 1-2 shows the MCP3423 and PICkit Serial Analyzer. The following describes how to use them together: - 1. Connect the MCP3423 Evaluation Board's 6-pin socket to the PICkit Serial Analyzer as shown in Figure 1-2. - 2. Connect the oscilloscope probes to the SCL and SDA test pins (optional). - 3. V<sub>DD</sub> Selection: You can use the V<sub>DD</sub> from the PICkit Serial Analyzer or use your own external V<sub>DD</sub>. The JP1 connector selects the V<sub>DD</sub> path. - (a) Connect JP1, if using V<sub>DD</sub> from PICkit Serial Analyzer. - (b) Disconnect JP1 and apply $V_{DD}$ at $V_{DD}$ 1 pin, if you are using an external $V_{DD}$ . - 4. Address bit selection using JP2 and JP3 connectors. The I<sup>2</sup>C device code and address bits of the MCP3423 device are: - MCP3423 I<sup>2</sup>C device code: `1101' - A2, A1, A0 Address Bits: determined by the JP2 (Adr1 pin) and JP3 (Adr0 pin) - The JP2 and JP3 connectors are external address bit selections. Connect these pins to V<sub>SS</sub>, V<sub>DD</sub>, float, or connect any arbitrary voltage - See Table 1-1 for the I<sup>2</sup>C Device Address bits and JP2 and JP3 connections - Connecting V<sub>DD</sub>: LED D1 turns on when V<sub>DD</sub> is applied. The PICkit Serial Analyzer will provide V<sub>DD</sub> automatically, if it is connected to the PC. Make sure LED D1 turns on, when you execute the command using the PICkit Serial Analyzer. - 6. **Connecting the analog inputs:** If you need to measure a single-ended input, connect the unused pin (example, CHx-) to V<sub>SS</sub>. - Connecting the inputs: The MCP3423 Evaluation Board has input pads for two analog input channels. You can connect all inputs at the same time and multiplex the input channel using configuration register settings. You can also leave the unused channel inputs floating. - 7. Use the PICkit Serial Analyzer PC GUI to send I<sup>2</sup>C write and read commands. #### **CAUTION** Each analog input pin has an ESD diode. Certain input conditions can damage the device. Please use the following conditions: - (a) Do not apply an input greater than the input range specified by the MCP3423 Data Sheet. - (b)Apply the input signal after V<sub>DD</sub> is powered-up. TABLE 1-1: I<sup>2</sup>C ADDRESS BITS VS. JP2 AND JP3 CONNECTORS | I <sup>2</sup> C Device Address<br>Bits | JP2 (Adr1 Pin) | JP3 (Adr0 Pin) | | |-----------------------------------------|------------------------------|------------------------------|--| | 1101 <b>000 W/R</b> | Connected to V <sub>SS</sub> | Connected to V <sub>SS</sub> | | | 1101 <b>001 W/R</b> | Connected to V <sub>SS</sub> | Float | | | 1101 <b>010 W/R</b> | Connected to V <sub>SS</sub> | Connected to V <sub>DD</sub> | | | 1101 <b>100 W/R</b> | Connected to V <sub>DD</sub> | Connected to V <sub>SS</sub> | | | 1101 <b>101 W/R</b> | Connected to V <sub>DD</sub> | Float | | | 1101 <b>110 W/R</b> | Connected to V <sub>DD</sub> | Connected to V <sub>DD</sub> | | | 1101 <b>011 W/R</b> | Float | Connected to V <sub>SS</sub> | | | 1101 <b>111 W/R</b> | Float | Connected to V <sub>DD</sub> | | | 1101 <b>000 W/R</b> | Float | Float | | - **Note 1:** $\overline{W}/R$ bit = "0" for writing, "1" for reading. - **2:** Float: (a) Leave pin without connecting to anything, or (b) apply Addr\_Float voltage. See MCP3423 Data Sheet for more details. FIGURE 1-2: MCP3423 Evaluation Board with the PICkit Serial Analyzer. # 1.3.1 PICkit Serial Analyzer PC Software Setup for the MCP3423 Evaluation Board The following steps describe how to set up and use the PICkit Serial Analyzer PC Graphic User Interface (GUI). - 1. Install the PICkit Serial Analyzer software onto your personal computer (PC). - 2. Connect the USB cable between the PICkit Serial Analyzer and the PC. - 3. Run the PICkit Serial PC Software it will open to the following GUI: FIGURE 1-3: PICkit Serial Analyzer Configuration Window welcome window. Click the Next button and follow the instructions. 4. Select the Communication Mode type: I2C Master, and click the Next button. FIGURE 1-4: Step 1 - Communication Mode selection. 5. In the new window, select "100 kHz" or "400 kHz". Either one will be fine. Click the **Next** button. FIGURE 1-5: Step 2 - I<sup>2</sup>C Communication Speed window. **Note:** The MCP3423 device supports the I<sup>2</sup>C bus data rate up to 3.4 MHz, but the current version of the PICkit Serial Analyzer supports the I<sup>2</sup>C bus data rate up to 400 kHz only. 6. In the Device Pullups window, select **No** on "Enable Pull-ups" and click the **Next** button. **Note:** The MCP3423 Evaluation Board has its own pull-up resistors. FIGURE 1-6: Step 3 - Device Pullups window. 7. In this step, you have to select the V<sub>DD</sub> voltage of the MCP3423 Evaluation Board, then click the **Next** button. #### Case 1: When you use V<sub>DD</sub> from the PICkit Serial Analyzer: If you choose **PICkit Serial will power your device** and **5 Volts** as shown in Figure 1-7, the MCP3423 Evaluation Board is powered by the 5V DC from the PICkit Serial Analyzer through the JP1 jumper. In this case, make sure that the JP1 jumper on the MCP3423 Evaluation Board is connected. #### Case 2: When you use your own V<sub>DD</sub>: You can also provide your own $V_{DD}$ voltage by applying a $V_{DD}$ voltage at VD1 test point. In this case, make sure that the JP1 jumper is disconnected. FIGURE 1-7: Step 4 - Voltage Source selection window. 8. Click the **OK** button. You have made all of the PICkit Serial Analyzer Configuration Setups. You are now ready to program the MCP3423 Evaluation Board using the PICkit Serial Analyzer. FIGURE 1-8: Configuration Wizard - Finishing step. #### 1.3.2 Creating Script Files In order to make a communication connection between the PICkit Serial Analyzer and the MCP3423 Evaluation Board, a script file is needed. Figure 1-9 shows how to create script files and how to use them. • In the PICkit Serial Analyzer window, select from the menu <u>Communications></u> <u>Script>Script Builder</u>. FIGURE 1-9: Creating a script file with Script Builder. #### 1.3.2.1 CREATING SCRIPT FILE FOR CONFIGURATION BYTE WRITING Click on WriteBlockAddrA8 in "Example I<sup>2</sup>C Scripts" column. This will result in filling in the spaces under the "Script Detail" column. You can now modify the "Script Detail" column parameters by right-clicking the mouse. #### How to modify the parameters box in Script Details: - 1. Under the "Script Detail" box, select the item in the parameter box. - 2. Right click the mouse button and an option box appears to the right of your selection. These are the options available for the parameter selected. - 3. Select the desired option and delete or insert the parameter box. - 4. Keep the parameters in order as shown in Figure 1-10: FIGURE 1-10: Modifying parameters in Script Builder window. 4. Change the parameter value: **Note:** All six parameters above must be listed in order. The parameter above marked with \* character are not modifiable. Address bits (A2, A1, A0) = (1,1,0) if both JP2 and JP3 are tied to V<sub>DD</sub>. You can use different address bits by rearranging the connectors. See MCP3423 Data Sheet for more information on address bit sections. **FIGURE 1-11:** Script file example for $l^2C$ Write Command. # 1.3.2.2 SAVE THE SCRIPT FILE AND PROGRAMMING THE MCP3423 CONFIGURATION REGISTER - 1. Change the 2<sup>nd</sup> and 3<sup>rd</sup> data bytes you want in the Script Detail. - 2. Type in any script name (i.e., MCP3423\_Write) in the space below the "Script Name" menu. - 3. Click Save Script button. - 4. Click Execute Script button. **Note:** At this point, the PICkit Serial transmits the I<sup>2</sup>C Write Command to the MCP3423 device. The saved file name will appear in "Users I2C Scripts" column, and can be re-used any time by selecting the file name. 5. You can also see the SCL and SDA waveforms using the Oscilloscope. **Note:** When you click on the "Execute Script" menu, the "Busy" LED on the PICkit Serial Analyzer will momentarily turn on and then turn off. If the LED remains ON, a communications problem has occurred. Remove the PICkit Serial Analyzer from your computer and recheck the parameter values including the order of parameters under the "Script Detail" column, and try again until the "Busy" LED turns OFF immediately after sending the I<sup>2</sup>C command. **FIGURE 1-12:** $l^2C$ Write Command Waveforms for the MCP3423. # 1.3.3 Trouble Shooting: If the device does not acknowledge the commands If the device is powered up initially with unstable $V_{DD}$ from the PICKit Serial, there is a chance that the device can latch a wrong address bits from the external address pins, and therefore it may not acknowledge the command bytes correctly since the address bits are not matched. In this case, send a General Call Latch Command after the $V_{DD}$ is stabilized (after about 20 seconds the PICKit Serial is powered). See the example in Figure 1-13. Another method is power-up the PICKit Serial first by connecting to the PC, then insert the MCP3423 EV board to the PICKit Serial about 20 seconds later. **FIGURE 1-13:** Examples when the device is not acknowledging the write command. Send the General Call Latch Command when the $V_{DD}$ is stabilized. #### 1.3.4 Reading the Conversion Data using the PICkit Serial Analyzer You can read back the conversion data with the following steps. #### 1.3.4.1 CREATING SCRIPT FILE TO READ CONVERSION DATA 1. Click on ReadAddrA8 in "Example I2C Scripts" column. This will result in filling in the spaces under "Script Detail" column. Now you can modify the parameter boxes (delete or insert) in the "Script Detail" column with options. The list of options will appear if you right-click the mouse in the parameter box. You can delete the parameter box or add a new one. 2. Make sure you have the "Script Detail" parameters listed in order as follows: **Note:** All seven parameters above must be listed in order. The parameters above marked with \* character are not modifiable. Address bits (A2, A1, A0) = (1,1,0) if both JP2 and JP3 are tied to $V_{DD}$ . You can use different address bits by rearranging the JP1 and JP2 connectors. See MCP3423 Data Sheet for more information on address bit selections. FIGURE 1-14: Script File sample to read conversion data. - 3. Type in any script name (i.e., MCP3423\_Read) in the space below the "Script Name" menu. - 4. Click Save Script button. - 5. Click **Execute Script** button. **Note:** At this point, the PICkit Serial transmits the I<sup>2</sup>C Read Command to the MCP3423 device. The saved file name will appear in "Users I2C Scripts" column, and can be re-used any time by selecting the file name. 6. You can also see the SCL and SDA waveforms using the Oscilloscope. **Note:** When you click on the "Execute Script" menu, the "Busy" LED on the PICkit Serial Analyzer will momentarily turn on and then turn off. If the LED remains ON, a communications problem has occurred. Remove the PICkit Serial Analyzer from your computer and recheck the parameter values including the order of parameters under the "Script Detail" column, and try again until the "Busy" LED turns OFF immediately after sending the I<sup>2</sup>C command. **FIGURE 1-15:** Reading Conversion Results: Note that the Input = 0.996V is applied to CH1. The reading indicates the measured value is 0.996 Volts. **FIGURE 1-16:** Read Command and Data on $l^2$ C bus. Note the $\overline{RDY}$ bit in 4th byte is "0". This means the conversion data just read is the latest conversion data. The $\overline{RDY}$ bit becomes "1" in the 5th byte (repeated byte). This means the device is now in the process of new conversion and the new result is not ready yet. #### 1.4 EXPERIMENT FOR CH2 Repeat the instructions from Section 1.3.2 "Creating Script Files" to Section 1.3.4 "Reading the Conversion Data using the PICkit Serial Analyzer" for the input channel 2. # MCP3423 EVALUATION BOARD USER'S GUIDE # Appendix A. Schematic and Layouts #### A.1 INTRODUCTION This appendix contains the following schematics and layouts for the MCP3424 Evaluation Board: - Board Schematic - Board Top Layer - Board Top Metal Layer - · Board Bottom Layer - Board Bottom Metal Layer #### A.2 BOARD - SCHEMATIC #### A.3 BOARD - TOP LAYER #### A.4 BOARD - TOP METAL LAYER #### A.5 BOARD - BOTTOM LAYER #### A.6 BOARD – BOTTOM METAL LAYER # MCP3423 EVALUATION BOARD USER'S GUIDE # Appendix B. Bill of Materials (BOM) TABLE B-1: BILL OF MATERIALS (BOM) | Qty | Reference | Description | Manufacturer | Part Number | |-----|-----------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|---------------| | 1 | C1 | CAP .1UF 25V CERAMIC X7R 0805 | Panasonic® - ECG | ECJ-2VB1E104K | | 1 | C2 | CAP CERAMIC 10UF 6.3V X5R 0805 | Panasonic - ECG | ECJ-2FB0J106K | | 1 | D1 | LED RED ORANGE CLEAR 0805 SMD | LITE-ON INC | LTST-C170EKT | | 2 | R1,R3 | RES 4.99K OHM 1/8W 1% 0805 SMD | Panasonic - ECG | ERJ-6ENF4991V | | 1 | R5 | RES 470 OHM 1/8W 5% 0805 SMD | Panasonic - ECG | ERJ-6GEYJ471V | | 1 | J1 | CONN HEADER 6POS .100 R/A TIN | Molex <sup>®</sup> / Waldom <sup>®</sup><br>Electronics | 22-05-2061 | | 1 | JP1 | CONN HEADER 2POS .100 VERT TIN | Molex/Waldom<br>Electronics | 22-03-2021 | | 2 | JP2,JP3 | CONN HEADER 3POS .100" STR TIN | Molex/Waldom<br>Electronics | 90120-0123 | | 1 | PCB | RoHS Compliant Bare PCB, MCP3423<br>Evaluation Board for PICkit Serial | Microchip Technology Inc. | 104-00230 | | 3 | Shunts for JP1, JP2, JP3 | 100" Shorting Block with Handle | JAMECO Value-Pro | 2012JH-R | | 2 | R2,R4 | DO NOT POPULATE | _ | _ | | 1 | U1 | 2 Channel 18 Bit Data Sigma ADC | Microchip Technology Inc. | MCP3423-E/ST | | 14 | VDD1,<br>CH1+, CH1-,<br>CH2+, CH2-,<br>A0, A1, SCL,<br>SDA, GND | TEST POINT PC COMPACT SMT | Keystone Electronics® | 5016 | **Note 1:** The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components. #### WORLDWIDE SALES AND SERVICE #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca. IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 **Toronto** Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 **Australia - Sydney** Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC **India - Bangalore** Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820