
 2002 Microchip Technology Inc. DS51290A

MPLAB® C17

C COMPILER

USER’S GUIDE

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.

• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.

The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.

• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical com-

ponents in life support systems is not authorized except with

express written approval by Microchip. No licenses are con-

veyed, implicitly or otherwise, under any intellectual property

rights.
DS51290A - page ii
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,

MPLAB, PIC, PICmicro, PICSTART and PRO MATE are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL

and The Embedded Control Solutions Company are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,

FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,

ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,

MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select

Mode and Total Endurance are trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2002, Microchip Technology Incorporated. Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2002 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

MPLAB® C17 C COMPILER

USER’S GUIDE
Table of Contents
Preface ..1

SECTION 1 – MPLAB C17 BASICS

Chapter 1. Compiler Overview and Installation
1.1 Introduction .. 9
1.2 Highlights ... 9
1.3 MPLAB C17 Description .. 9
1.4 Basic Functionality .. 10
1.5 Input/Output Files .. 12
1.6 Reserved Resources ... 12
1.7 Host Computer System Requirements .. 12
1.8 Compiler Versions ... 13
1.9 Install/Uninstall the Compiler ... 13

Chapter 2. Differences Between MPLAB C17 and ANSI C
2.1 Introduction .. 15
2.2 Highlights ... 15
2.3 MPLAB C17 vs. ANSI C .. 15
2.4 Components of a Basic MPLAB C17 Program 16
2.5 Keyword Differences ... 16
2.6 Statement Differences ... 17

Chapter 3. Using MPLAB C17 with MPLAB IDE
3.1 Introduction .. 23
3.2 Highlights ... 23
3.3 MPLAB Projects Overview .. 23
3.4 Using MPLAB C17 with MPLAB IDE ... 25
3.5 Code Development .. 36
3.6 Additional Options and Library Information 36

Chapter 4. Using MPLAB C17 on the Command Line
4.1 Introduction .. 37
4.2 Highlights ... 37
4.3 Command Line Overview .. 37
4.4 Using MPLAB C17 on the Command Line .. 39
4.5 Code Development .. 43
4.6 Library Information .. 43
 2002 Microchip Technology Inc. DS51290A-page iii

MPLAB® C17 C Compiler User’s Guide
SECTION 2 – MPLAB C17 ADVANCED USAGE

Chapter 5. Runtime Environment
5.1 Introduction ..47
5.2 Highlights ...47
5.3 Code and Data Sections ..47
5.4 Startup and Initialization ..49
5.5 Memory Models ...51
5.6 Locating Code ..51
5.7 Locating Data ...51
5.8 Software Stack ...52
5.9 Software Stack Call Conventions ..53
5.10 Function Call Conventions ...53
5.11 Interrupt Support Macros ...54

Chapter 6. Data Types
6.1 Introduction ..59
6.2 Highlights ...59
6.3 Data Representation ..59
6.4 Integer ..59
6.5 Floating Point ...60

Chapter 7. Device Support Files
7.1 Introduction ..61
7.2 Highlights ...61
7.3 Processor Header File ...61
7.4 Register Definitions File ...62
7.5 Using SFRs ..64

Chapter 8. Interrupts
8.1 Introduction ..65
8.2 Highlights ...65
8.3 Writing an Interrupt Service Routine ..66
8.4 Writing the Interrupt Vector ..67
8.5 Interrupt Service Routine Context Saving ..68
8.6 Latency ..68
8.7 Nesting Interrupts ..68
8.8 Enabling/Disabling Interrupts ...69

Chapter 9. Mixing Assembly Language and C Modules
9.1 Introduction ..71
9.2 Highlights ...71
9.3 Internal Assembler ...71
9.4 Calling Conventions ...72
DS51290A-page iv  2002 Microchip Technology Inc.

Table of Contents
9.5 Mixing Assembly Language and C Variables and Functions 72
9.6 Using Inline Assembly Language .. 73

Chapter 10. Writing Efficient Code
10.1 Introduction .. 75
10.2 Highlights ... 75
10.3 Static Locals And Parameters ... 75
10.4 Optimization Tips ... 75

SECTION 3 – REFERENCES

Chapter 11. Enabling/Disabling Interrupts
11.1 Introduction .. 79
11.2 Highlights ... 79
11.3 Enabling Interrupts .. 79
11.4 Disabling Interrupts ... 102

Chapter 12. Implementation-Defined Behavior
12.1 Introduction .. 113
12.2 Highlights ... 113
12.3 Identifiers ... 113
12.4 Characters ... 113
12.5 Integers ... 114
12.6 Floating Point .. 114
12.7 Arrays and Pointers ... 115
12.8 Registers ... 115
12.9 Structures and Unions ... 115
12.10 Bit-Fields ... 115
12.11 Enumerations .. 115
12.12 Switch Statement .. 116
12.13 Preprocessing Directives ... 116

Chapter 13. MPLAB C17 Diagnostics
13.1 Introduction .. 117
13.2 Highlights ... 117
13.3 Errors ... 117
13.4 Warnings ... 121
 2002 Microchip Technology Inc. DS51290A-page v

MPLAB® C17 C Compiler User’s Guide
SECTION 4 – APPENDICES

Appendix A. Reference Documents
A.1 Introduction ..125
A.2 Highlights ...125
A.3 C Standards Information ...125
A.4 General C Information ...125

Appendix B. Example Programs
B.1 Introduction ..127
B.2 Highlights ...127
B.3 Overview of Example Files ..127
B.4 Example Details ..127

Appendix C. ASCII Character Set .. 129

Glossary ... 131

Index ... 147

Worldwide Sales and Service ... 154
DS51290A-page vi  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Preface
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

INTRODUCTION

The purpose of this user’s guide is to help you get up and running with Microchip’s

MPLAB C17 C Compiler.

This manual is written with the intent that you are at least familiar with using the C

programming language. If not, check Appendix A for a list of reference books that cover

C programming.

HIGHLIGHTS

Items discussed in this chapter are:

• About this Guide

• Warranty Registration

• Recommended Reading

• Troubleshooting

• Microchip On-Line Support

• Customer Change Notification Service

• Customer Support

ABOUT THIS GUIDE

Document Layout

This document describes how to use MPLAB C17 to write C code for PICmicro®

microcontroller applications. For a detailed discussion about basic MPLAB IDE

functions, refer to the MPLAB IDE User’s Guide (DS51025).

This user’s guide layout is as follows:

Section 1 – MPLAB C17 Basics

• Chapter 1: Compiler Overview and Installation – provides an overview of the

MPLAB C17 C compiler, including compiler operation, input/output files and

resource requirements. Also gives instructions on how to install or uninstall the

compiler onto your system.

• Chapter 2: Differences Between MPLAB C17 and ANSI C – describes how

MPLAB C17 differs from standard ANSI C. Compares MPLAB C17 and ANSI C

and then highlights keyword, statement and standard function differences.

• Chapter 3: Using MPLAB C17 with MPLAB IDE – describes how to use MPLAB

C17 with the MPLAB IDE v5.xx or below. Code development and other hardware

tools are available when using MPLAB IDE.

• Chapter 4: Using MPLAB C17 on the Command Line – describes how to use

the MPLAB C17 compiler from the command line interface. More compiler options

are available on the command line.
 2002 Microchip Technology Inc. apRNOVM^-page 1

MPLAB® C17 C Compiler User’s Guide
Section 2 – MPLAB C17 Advanced Usage

• Chapter 5: Runtime Environment – describes the MPLAB C17 runtime

environment. Includes information on code and data sections, startup and

initialization, memory models and the software stack.

• Chapter 6: Data Types – describes MPLAB C17 data types.

• Chapter 7: Device Support Files – discusses the device support files used by

MPLAB C17, namely processor header files and register definitions files.

• Chapter 8: Interrupts – describes how to use interrupts. Detailed interrupt usage

may be found in the reference section.

• Chapter 9: Mixing Assembly Language and C Modules – provides guidelines

to using C with assembly language modules.

• Chapter 10: Writing Efficient Code – provides guidelines to writing efficient

MPLAB C17 code.

Section 3 – References

• Chapter 11: Enabling/Disabling Interrupts – detailed information on how to

enable and disable interrupts.

• Chapter 12: Implementation-Defined Behavior – details MPLAB C17 specific

parameters described as implementation-defined in the ANSI standard.

• Chapter 13: MPLAB C17 Diagnostics – lists errors and warnings generated by

MPLAB C17.

Section 4 – Appendices

• Appendix A: Reference Documents – gives references that may be helpful in

programming with MPLAB C17.

• Appendix B: Example Programs – discusses the MPLAB C17 examples

included in the examples directory.

• Appendix C: ASCII Character Set – contains the ASCII character set.

• Glossary – A glossary of terms used in this guide.

• Index – Cross-reference listing of terms, features and sections of this document.

• Worldwide Sales and Service – gives the address, telephone and fax numbers

for Microchip Technology Inc. sales and service locations throughout the world.
apRNOVM^-page 2  2002 Microchip Technology Inc.

Preface
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Conventions Used in this Guide

This manual uses the following documentation conventions:

Documentation Updates

All documentation becomes dated, and this user’s guide is no exception. Since MPLAB

IDE, MPLAB C17 and other Microchip tools are constantly evolving to meet customer

needs, some actual dialogs and/or tool descriptions may differ from those in this

document. Please refer to our web site to obtain the latest documentation available.

Documentation Numbering Conventions

Documents are numbered with a “DS” number. The number is located on the bottom of

each page, in front of the page number. The numbering convention for the DS Number

is: DSXXXXXA,

where:

Table: Documentation Conventions

Description Represents Examples

Code (Courier font):

Plain characters Sample code
Filenames and paths

#define START
c:\autoexec.bat

Angle brackets: < > Variables <label>, <exp>

Square brackets [] Optional arguments MPASMWIN [main.asm]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; An OR selection

errorlevel {0|1}

Lower case characters
in quotes

Type of data “filename”

Ellipses... Used to imply (but not show)
additional text that is not relevant to
the example

list
[“list_option...,
“list_option”]

0xnnn A hexadecimal number where n is a
hexadecimal digit

0xFFFF, 0x007A

Italic characters A variable argument; it can be either a
type of data (in lower case characters)
or a specific example (in uppercase
characters).

char isascii
(char, ch);

Interface (Arial font):

Underlined, italic text
with right arrow

A menu selection from the menu bar File > Save

Bold characters A window or dialog button to click OK, Cancel

Characters in angle
brackets < >

A key on the keyboard <Tab>, <Ctrl-C>

Documents (Arial font):

Italic characters Referenced books MPLAB IDE User’s Guide

XXXXX = The document number.

A = The revision level of the document.
 2002 Microchip Technology Inc. apRNOVM^-page 3

MPLAB® C17 C Compiler User’s Guide
WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.

Sending in your Warranty Registration Card entitles you to receive new product

updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user’s guide describes how to use MPLAB C17 C Compliler. For more information

on included libraries and precompiled object files for the compilers, the operation of

MPLAB IDE and the use of other tools, the following are recommended reading.

README.C17

For the latest information on using MPLAB C17 C Compiler, read the README.C17 file

(ASCII text) included with the software. This README file contains update information

that may not be included in this document.

README.XXX

For the latest information on other Microchip tools (MPLAB IDE, MPLINK™ linker, etc.),

read the associated README files (ASCII text file) included with the MPLAB IDE

software.

MPLAB C17 C Compiler Libraries (DS51296)

Reference guide for MPLAB C17 libraries and precompiled object files. Lists all library

functions with a detailed description of their use.

MPLAB IDE User’s Guide (DS51025)

Comprehensive guide that describes installation and features of Microchip’s MPLAB

Integrated Development Environment (IDE), as well as the editor and simulator

functions in the MPLAB IDE environment.

MPASM™ User’s Guide with MPLINK™ and MPLIB™ (DS33014)

This user’s guide describes how to use the Microchip PICmicro MCU MPASM

assembler, the MPLINK object linker and the MPLIB object librarian.

Technical Library CD-ROM (DS00161)

This CD-ROM contains comprehensive application notes, data sheets and technical

briefs for all Microchip products. To obtain this CD-ROM, contact the nearest Microchip

Sales and Service location (see back page).

Microchip Web Site

The Microchip web site (www.microchip.com) contains a wealth of documentation.

Individual data sheets, application notes, tutorials and user’s guides are all available

for easy download. All documentation is in Adobe™ Acrobat (pdf) format.

Microsoft® Windows® Manuals

This manual assumes that users are familiar with the Microsoft Windows operating

system. Many excellent references exist for this software program, and should be

consulted for general operation of Windows.

TROUBLESHOOTING

See the README files for information on common problems not addressed in this user’s

guide.
apRNOVM^-page 4  2002 Microchip Technology Inc.

Preface
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

MICROCHIP ON-LINE SUPPORT

Microchip provides on-line support on the Microchip web site at:

www.microchip.com

A file transfer site is also available by using an FTP service connecting to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may

download files for the latest development tools, data sheets, application notes, user's

guides, articles and sample programs. A variety of Microchip specific business

information is also available, including listings of Microchip sales offices and

distributors. Other information available on the web site includes:

• Latest Microchip press releases

• Technical support section with FAQs

• Design tips

• Device errata

• Job postings

• Microchip consultant program member listing

• Links to other useful web sites related to Microchip products

• Conferences for products, development systems, technical information and

more

• Listing of seminars and events

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip started the customer notification service to help customers stay current on

Microchip products with the least amount of effort. Once you subscribe, you will receive

email notification whenever we change, update, revise or have errata related to your

specified product family or development tool of interest.

Go to the Microchip web site (www.microchip.com) and click on Customer Change

Notification. Follow the instructions to register.

The Development Systems product group categories are:

• Compilers

• Emulators

• In-Circuit Debuggers

• MPLAB IDE

• Programmers

Here is a description of these categories:

Compilers - The latest information on Microchip C compilers and other language tools.

These include the MPLAB C17, MPLAB C18 and MPLAB C30 C Compilers; MPASM

and MPLAB ASM30 assemblers; MPLINK and MPLAB LINK30 linkers; and MPLIB and

MPLAB LIB30 librarians.

Emulators - The latest information on Microchip in-circuit emulators. This includes the

MPLAB ICE 2000.

In-Circuit Debuggers - The latest information on Microchip in-circuit debuggers.

These include the MPLAB ICD and MPLAB ICD 2.
 2002 Microchip Technology Inc. apRNOVM^-page 5

MPLAB® C17 C Compiler User’s Guide
MPLAB - The latest information on Microchip MPLAB IDE, the Windows Integrated

Development Environment for development systems tools. This list is focused on the

MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager and general editing

and debugging features.

Programmers - The latest information on Microchip device programmers. These

include the PRO MATE II device programmer and PICSTART Plus development

programmer.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributors

• Local Sales Office

• Field Application Engineers (FAEs)

• Corporate Applications Engineers (CAEs)

• Systems Information and Upgrade Hot Line

Customers should call their distributor or field application engineer (FAE) for support.

Local sales offices are also available to help customers. See the last page of this

document for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at (480) 792-7627.

Systems Information and Upgrade Line

The Systems Information and Upgrade Information Line provides system users with a

listing of the latest versions of all of Microchip’s development systems software

products. Plus, this line provides information on how customers can receive the most

current upgrade kits. The Information Line Numbers are:

1-800-755-2345 for U.S. and most of Canada.

1-480-792-7302 for the rest of the world.
apRNOVM^-page 6  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE

Part

1
Section 1 – MPLAB C17 Basics
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Chapter 1. Compiler Overview and Installation9

Chapter 2. Differences Between MPLAB C17 and ANSI C....................15

Chapter 3. Using MPLAB C17 with MPLAB IDE.....................................23

Chapter 4. Using MPLAB C17 on the Command Line...........................37
 2002 Microchip Technology Inc. DS51290A-page 7

MPLAB® C17 C Compiler User’s Guide
apRNOVM^-page 8  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 1. Compiler Overview and Installation
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

1.1 INTRODUCTION

This chapter provides an overview of the MPLAB C17 C compiler and how to install

the compiler on your computer.

1.2 HIGHLIGHTS

This chapter covers the following topics:

• MPLAB C17 Description

• Basic Functionality

• Input/Output Files

• Reserved Resources

• Host Computer System Requirements

• Compiler Versions

• Install/Uninstall the Compiler

1.3 MPLAB C17 DESCRIPTION

The MPLAB C17 compiler is a full-featured ANSI C compiler for Microchip’s PIC17

PICmicro microcontrollers (MCU). The compiler is fully compatible with Microchip’s

MPLAB Integrated Development Environment (IDE) (Figure 1-1), allowing

source-level debugging with both the MPLAB ICE in-circuit emulator and the MPLAB

SIM simulator. MPLAB IDE provides a convenient, project-oriented development

environment that reduces development time.

MPLAB C17 has implemented extensions to the C language to provide specific

support for Microchip’s PICmicro MCU peripherals. The C libraries include: A/D

converter, Character Classification, External LCD, I2C™, Input Capture, Interrupt

Support Macros, I/O Port, Memory/String Manipulation, Number/Text Conversion,

Pulse Width Modulation, RESET, Relay, Software I2C, Software SPI™, Software

USART, SPI, Timers and USART.
 2002 Microchip Technology Inc. apRNOVM^-page 9

MPLAB® C17 C Compiler User’s Guide
FIGURE 1-1: DEVELOPMENT SYSTEM ARCHITECTURE

1.4 BASIC FUNCTIONALITY

MPLAB C17 generates object code from C source code. This object code is then input

into Microchip’s MPLINK linker to form the final executable code. A single C source file

may be compiled into a single executable as shown in Figure 1-2, or it can be linked

with other separately assembled or compiled modules as shown in Figure 1-3.

Related modules can also be grouped and stored together in a library using

Microchip’s MPLIB Librarian (Figure 1-4). Required libraries can be specified at link

time, and only the modules that are needed will be included in the final executable.

For more information on MPLINK linker and MPLIB librarian operation, please refer to

the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014).

FIGURE 1-2: GENERATING EXECUTABLE CODE FROM ONE OBJECT

MODULE

PROGRAMMERS

PICSTART® Plus

PROMATE® II

EMULATORS

MPLAB ICE 2000

ICEPIC™ Emulator

PROGRAM LANGUAGES

MPLAB C17/C18/C30

IN-CIRCUIT DEBUGGERS

MPLAB ICD

SIMULATORS

MPLAB SIM Simulator

LINKERS

MPLINK™ Linker

MPLAB® IDE

MPASM™ Assembler

MPLAB® ASM30 Assembler

MPLAB LINK30 LinkerdsPIC Simulator

MPLAB ICD 2

MPLINK Linker

MAIN.O

MAIN.HEX
Programmer MCU

MPLAB C17
MAIN.C
apRNOVM^-page 10  2002 Microchip Technology Inc.

Compiler Overview and Installation
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

FIGURE 1-3: GENERATING EXECUTABLE CODE FROM OBJECT

MODULES

FIGURE 1-4: CREATING A REUSABLE OBJECT LIBRARY

MPLINK Linker

MAIN.O

MORE.O

MAIN.HEX
Programmer MCU

UNITS.LIB

MPLAB C17

MPLAB C17

MAIN.C

MORE.C

UNITS.LIB

MPLAB C17
UNIT1.C MPLIB Librarian

UNIT1.O

MPLIB Librarian

UNIT2.O

MPLIB Librarian

UNIT3.O

MPLAB C17

MPLAB C17

UNIT2.C

UNIT3.C
 2002 Microchip Technology Inc. apRNOVM^-page 11

MPLAB® C17 C Compiler User’s Guide
1.5 INPUT/OUTPUT FILES

These are the default file extensions used by MPLAB C17.

TABLE 1-1: MPLAB C17 DEFAULT EXTENSIONS

1.5.1 Source Code Format (.c)

The source code file can be created using any ASCII text file editor. It should conform

to C language programming guidelines. For information on how to program using C,

please refer to Appendix A.

1.5.2 Error File Format (.err)

By default MPLAB C17 generates an error file. This file can be useful when debugging

your code. The MPLAB IDE automatically opens this file in the case of an error. The

format of the messages in the error file is:

<type>[<number>] <file> <line> <description>

For example:

Error[113] C:\prog.c 7 : Symbol not previously defined
 (start)

See the appendices for descriptions of error messages generated.

1.5.3 Object File Format (.o)

Object files are the relocatable code produced from source files.

1.6 RESERVED RESOURCES

The following are PICmicro MCU resource impacts from the compiler:

• FSR0: Can be used, but compiler may use also. Don’t expect value to stay the

same.

• FSR1: Reserved for compiler use.

• PRODH, PRODL: Can be used, but compiler may use also. Don’t expect value to

stay the same.

• TBLPTRH, TBLPTRL, TBLAT: Can be used, but compiler may use also. Don’t

expect value to stay the same.

1.7 HOST COMPUTER SYSTEM REQUIREMENTS

MPLAB C17 requires:

• PC-compatible 386 or better class system

• 16 MB memory (32 MB recommended)

• 5 MB hard disk space (10 MB recommended)

• MS-DOS® PC-DOS version 5.0 or greater, or Microsoft Windows® operating

system (version 3.x or greater).

Extension Purpose

.c Default source file extension input to MPLAB C17: <source_name>.c

.err Output extension from MPLAB C17 for error files: <source_name>.err

.o Output extension from MPLAB C17 for object files: <source_name>.o
apRNOVM^-page 12  2002 Microchip Technology Inc.

Compiler Overview and Installation
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

1.8 COMPILER VERSIONS

There are two versions of MPLAB C17:

• a DOS-extended or Windows 3.x version, mcc17d.exe

• a Windows 32-bit version (Windows 95 or greater), mcc17.exe

You can use both versions with MPLAB IDE; however, the Windows 32-bit version is

recommended.

1.9 INSTALL/UNINSTALL THE COMPILER

If you are going to use MPLAB C17 with the MPLAB IDE, install the MPLAB IDE first.

To install MPLAB C17, enter your Windows operating system, run the file SETUP.EXE

on the CD-ROM, and follow the prompts.

The install program will use or create the directory you chose in the setup program.

Then, it will install the MPLAB C17 components into seven subdirectories:

In addition, the MPLAB C17 install will create an environment variable, MCC_INCLUDE,

in your AUTOEXEC.BAT file. The MCC_INCLUDE environment variable specifies the

directories to search for included files. For more information, refer to the #include

directive. The install program will also add the compiler bin directory to your PATH so

you can run the compiler from any other directory.

To uninstall the compiler:

1. From the Start menu, select Settings > Control Panel to display the Control Panel

directory.

2. Double-click the Add/Remove Programs icon. Scroll down the list and locate the

program you want to remove. Click Remove.

• bin – executable versions

• doc – help files

• examples – source code examples, with example-specific header, linker and batch files

• h – general header files

• lib – library and pre-compiled object files

• lkr – linker script files

• src – source code for files found in lib directory
 2002 Microchip Technology Inc. apRNOVM^-page 13

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 14  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 2. Differences Between MPLAB C17 and ANSI C
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

2.1 INTRODUCTION

This chapter discusses the differences between MPLAB C17 and ANSI C.

2.2 HIGHLIGHTS

Items discussed in this chapter are:

• MPLAB C17 vs. ANSI C

• Components of a Basic MPLAB C17 Program

• Keyword Differences

• Statement Differences

• Oddities of Standard Functions

2.3 MPLAB C17 vs. ANSI C

Most C programmers have gained their experience programming C on computers

where there was an operating system to handle such things as memory management,

input/output, interdevice communications, etc. Microcontrollers, by their very nature,

do not have the memory overhead for an operating system. Therefore, the compiler

expects the user to implement memory allocation, I/O operation through a peripheral,

and other specialized tasks. Libraries and precompiled object files are available with

MPLAB C17 to aid the programmer in this endeavor.

An MPLAB C17 program is a collection of declarations, statements, comments and

preprocessor directives that typically do the following:

• Declare data structures

• Allocate data space

• Evaluate expressions

• Perform program control operations

• Control PICmicro MCU peripherals

Additionally, after source code is compiled, it must be programmed into a device. In

the device environment, RAM is in an undefined state on power-up. The program

must take care of initializing any variables that are set in the code. This is

accomplished by storing the variable values in program memory and then moving

them to RAM before the main() function executes. There are other main()

pre-execution items that may be necessary, such as setting up a software stack.

These specialized items may be written in C or assembly code. In either case, the

programmer must decide what is needed.
 2002 Microchip Technology Inc. apRNOVM^-page 15

MPLAB® C17 C Compiler User’s Guide
2.4 COMPONENTS OF A BASIC MPLAB C17 PROGRAM

The following is the shell for a basic MPLAB C17 source file, highlighting the elements

of the program:

The first line is a preprocessor directive that includes the processor definition file

(7.3 “Processor Header File”). This file defines processor-specific information such as

special function registers.

The next line is a declaration of a function (2.6.9 “Functions”) that will be used in the

main routine (function1). Placing the function declaration here is called prototyping.

The function itself may then be defined after the main routine. Another option is to

place the entire function definition in the prototype location.

Finally, the main routine is defined, with the appropriate source code between the

braces. Note that the main routine is itself a function.

2.5 KEYWORD DIFFERENCES

The ANSI C standard defines 32 keywords for use in the C language. Typically, C

compilers add keywords that take advantage of the processor's architecture. The

following table shows the ANSI C and the MPLAB C17 keywords, where MPLAB C17

keywords are shown in bold.

Note: p17CXX.h includes proper processor-specific header file based on the

processor selected on the command line.

#include <p17CXX.h>
void function1(void);
void main(void)
{
 /* User source code here */
}
void function1(void)
{
 /* User function code here */
}

preprocessor directive
prototyped function

main routine

function definition

TABLE 2-1: ANSI C AND MPLAB C17 KEYWORDS

_asm double long struct

_endasm else near switch

auto enum ram typedef

break extern register** union

case far return unsigned

char float rom void

const for short volatile

continue goto signed while

default if sizeof

do int static

** has no effect in MPLAB C17
apRNOVM^-page 16  2002 Microchip Technology Inc.

Differences Between MPLAB C17 and ANSI C
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

2.6 STATEMENT DIFFERENCES

There are differences between how MPLAB C17 uses some statements and how

these statements would be implemented under ANSI C. These specialized MPLAB

C17 statements are:

• #include filename

• #pragma Statements

• Constants

• Variables

• Storage Classes

• Functions

• Operators

• switch Statement

• Initializing Arrays

• Pointers

• Structures

• Bit-fields

2.6.1 #include filename

Include the file filename into the MPLAB C17 program. Usually at least the processor

header file is included, so that register and pin names may be used in code as

opposed to addresses.

When “filename” is used, MPLAB C17 looks for the file in the current directory and

then in the directories specified by the current include search path, which refers to the

environment variable MCC_INCLUDE and command-line option ‘-i’.

When <filename> is used, MPLAB C17 looks for the file in the directories specified

by the current include search path.

2.6.2 #pragma interrupt fname

2.6.2.1 DESCRIPTION

Declare a function to be an interrupt function. This pragma must come before the

function definition, but may come after a prototype. The compiler will generate a

separate temporary storage section dedicated to the function.

See Chapter 9 for more details on interrupt handling.

2.6.2.2 SYNTAX

interrupt-directive:
 #pragma interrupt function-name [section-name]
 new-line

2.6.3 #pragma list / #pragma nolist

2.6.3.1 DESCRIPTION

The #pragma list directive turns on list file generation for all code following the

directive. The #pragma nolist directive turns off list file generation for all code

following the directive.

2.6.3.2 SYNTAX

list-directive:
 #pragma list new-line
 #pragma nolist new-line
 2002 Microchip Technology Inc. apRNOVM^-page 17

MPLAB® C17 C Compiler User’s Guide
2.6.4 #pragma sectiontype

2.6.4.1 DESCRIPTION

The section declaration family of pragmas changes the section into which

MPLAB C17 will allocate data of the associated type. Optionally, the section may be

allocated at an absolute address.

A section declaration with no name resets the allocation of data of the associated type

to the default section for the current module.

A data section qualified as shared will be located in a SHAREBANK by the linker.

Similarly, a data section qualified as access will be located in an ACCESSBANK by the

linker.

Specifying a section name which has been previously declared causes MPLAB C17 to

resume allocating data of the associated type into the specified section. The section

qualifiers must match the previous declaration.

For udata and idata sections in MPLAB C17, the data section type, SFR or GPR,

and a bank number may be optionally specified instead of an absolute address. This

is functionally equivalent to specifying a varlocate pragma with the same information

for each symbol declared in the section. Like varlocate, this qualifier provides

information to the compiler only and is not enforced by the linker; therefore, care

should be exercised in its use.

2.6.4.2 SYNTAX

section-directive:
 #pragma udata [data-qualifier-list] [section-name
 [location]] new-line
 #pragma idata [data-qualifier-list] [section-name
 [location]] new-line
 #pragma romdata [overlay] [section-name] new-line
 #pragma code [overlay] [section-name] new-line
data-qualifier:
 shared
 overlay
location:
 = address
 gpr bank-number
 sfr bank-number

2.6.4.3 EXAMPLE

Declare a section for udata allocation at address 0x120. The linker will enforce that the

section will be located at address 0x120.

 #pragma udata myNewDataSection = 0x120

Resume allocation of romdata into the default section.

 #pragma romdata

Declare a new code section at address 0x8000.

 #pragma code myExternalCodeSection=0x8000

2.6.4.4 SEE ALSO

 #pragma varlocate

Note: Logical sections are used to specify which of the defined memory regions

should be used for a portion of source code. For more on sections, refer to

the MPLINK linker section of the MPASM™ User's Guide with MPLINK™

and MPLIB™ (DS33014).
apRNOVM^-page 18  2002 Microchip Technology Inc.

Differences Between MPLAB C17 and ANSI C
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

2.6.5 #pragma varlocate n name

#pragma varlocate {gpr | sfr} name

2.6.5.1 DESCRIPTION

The varlocate pragma tells the compiler where a variable will be located at link time,

enabling the compiler to perform more efficient bank switching. The bank may be

specified (n) or the GPR or SFR address range may be specified.

varlocate specifications are not enforced by the compiler or linker. The sections

which contain the variables should be assigned explicitly in the linker script, or via

absolute sections in the module(s) where they are defined, into the correct bank.

2.6.5.2 SYNTAX

variable-locate-directive:
 #pragma varlocate bank variable-name new-line
 #pragma varlocate [bank-reg] variable-name new-line
#pragma varlocate section-name variable-name new-line

2.6.6 Constants

The MPLAB C17 compiler supports the usual four different kinds of constants:

• Integers

• Floating-point numbers

• Characters

• Strings

See Chapter 6 for more on data types.

2.6.7 Variables

The MPLAB C17 compiler supports the standard integer and floating-point numeric

types. A plain char is signed by default. See Chapter 6 for more on data types.

The ranges of the standard integer types are documented in Table 2-2.

TABLE 2-2: STANDARD INTEGER TYPES

Name Value Meaning

CHAR_BIT 8 Width of char type, in bits

SCHAR_MIN -128 Minimum value of signed char

SCHAR_MAX 127 Maximum value of signed char

UCHAR_MAX 255 Maximum value of unsigned char

SHRT_MIN -32,768 Minimum value of short int

SHRT_MAX 32,767 Maximum value of short int

USHRT_MAX 65,535 Maximum value of unsigned short

INT_MIN -32,768 Minimum value of int

INT_MAX 32,767 Maximum value of int

UINT_MAX 65,535 Maximum value of unsigned int

LONG_MIN -2,147,483,648 Minimum value of long int

LONG_MAX 2,147,483,647 Maximum value of long int

ULONG_MAX 4,294,967,295 Maximum value of unsigned long

CHAR_MIN If type char is signed by default,
then SCHAR_MIN else 0.

Minimum value or char

CHAR_MAX If type char is signed by default
then SCHAR_MAX, else
UCHAR_MAX.

Maximum value of char
 2002 Microchip Technology Inc. apRNOVM^-page 19

MPLAB® C17 C Compiler User’s Guide
The MPLAB C17 compiler supports the float and double types, both of which are

32-bit floating-point types. The ranges of the floating-point type are documented in

Table 2-3.

The sizes of basic types are documented in Table 2-4.

2.6.8 Storage Classes

In addition to the standard storage classes (auto, extern, register, static and

typedef) the MPLAB C17 compilers include four new classes:

The compilers ignore the register storage class specifier.

2.6.9 Functions

Function operation in MPLAB C17 is discussed in the following sections. For

information on function call conventions, see 5.10 “Function Call Conventions”.

2.6.9.1 PASSING ARGUMENTS TO FUNCTIONS

Function parameters can have storage class auto or static. An auto parameter is

placed on the software stack, enabling reentrancy and a static parameter is

allocated globally, enabling direct access and, therefore, smaller code. See

10.3 “Static Locals And Parameters” for more information on static parameters.

If the first parameter to a function is static and is 8 bits wide, the argument will be

passed to the function in PRODL. If it is static and 16 bits wide, the argument will be

passed in PROD.

MPLAB C17 uses a software stack for passing variables into functions and for

returning values from functions. This makes it possible to support quite complex

functions and allows recursive functions, but there is some overhead in managing the

software stack. When compiling, the compiler will examine the function and only

include the appropriate level of stack support code.

TABLE 2-3: MPLAB C17 Float AND DOUBLE Types

Name Value Meaning

FLT_MIN
DBL_MIN

1.7549435E-38 Minimum normalized positive number

FLT_MAX
DBL_MAX

6.80564693E+38 Maximum representable finite number

TABLE 2-4: BASIC SIZES

Type Size in Bits

char, signed char, unsigned char 8

short, signed short, unsigned short 16

int, signed int, unsigned int 16

short long, signed short long, unsigned short long 24

long, signed long, unsigned long 32

float 32

double 32

• far Paging/banking of data required.

• near No paging/bank of data required.

• rom Locate the object in program memory.

• ram Locate the object in data memory.
apRNOVM^-page 20  2002 Microchip Technology Inc.

Differences Between MPLAB C17 and ANSI C
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

2.6.9.2 RETURNING VALUES FROM FUNCTIONS

If the value being returned is 8 bits wide, it is returned in WREG. If it is 16 bits wide, it is

returned in the WREG/FSR1 pair. Otherwise, it is returned on the software stack.

2.6.10 Operators

The MPLAB C17 compiler supports all of the standard C operators.

2.6.11 switch Statement

A switch statement is functionally equivalent to multiple if-else statements.

The switch statement has two limitations:

• The switch expression must be an 8-bit integer data type

• The case values must be constant values.

2.6.12 Initializing Arrays

EXAMPLE 2-1: INITIALIZING ARRAYS

Because the PICmicro MCU family of microcontrollers uses separate program

memory and data memory address busses in their design, MPLAB C17 requires ANSI

extensions to distinguish between data located in ROM and data located in RAM. The

ANSI/ISO C standard allows for code and data to be in separate address spaces, but

this is not sufficient to locate data in the code space as well. To this purpose, MPLAB

C17 introduces the rom and ram qualifiers. Syntactically, these qualifiers bind to

identifiers just as the const and volatile qualifiers do in strict ANSI C.

The primary use of ROM data is for static strings. In keeping with this, MPLAB C17

automatically places all string literals in ROM. This type of a string literal is “array of

char located in ROM.”

When using MPLAB C17, a string table in program memory can be declared as:

rom const char table[][20] = { “string 1”, “string 2”,
 “string 3”, “string 4” };
rom const char *rom table2[] = { “string 1”, “string 2”,
 “string 3”, “string 4” };

The declaration of table declares an array of four strings that are each 20 characters

long, and so takes 40 words of program memory. table2 is declared as an array of

pointers to ROM. The rom qualifier after the * places the array of pointers in ROM as

well. All of the strings in table2 are 3 words long, and the array is four elements long,

so table2 takes 3*4 = 12 words of program memory. Accesses to table2 may be less

efficient than accesses to table, however, because of the additional level of

indirection required by the pointer.

An important consequence of the separate ROM and RAM address spaces for

MPLAB C17 is that pointers to data in ROM and pointers to data in RAM are not

compatible. That is, two pointer types are not compatible unless they point to objects

of compatible types and the objects they point to are located in the same address

space. For example, a pointer to a string in ROM and a pointer to a string in RAM are

not compatible because they refer to different address spaces. To copy data from

ROM to RAM, an explicit copy is required. For simple types, this entails only a simple

assignment, but for arrays and other complex data-types it may require more.

Note: At this time, you should use manual pointer arithmetic. See the file

README.C17 for more information.
 2002 Microchip Technology Inc. apRNOVM^-page 21

MPLAB® C17 C Compiler User’s Guide
For example, a function to copy a string from ROM to RAM could be written as follows.

void str2ram(static char *dest, static char rom *src)
{
 while((*dest++ = *src++) != '\0')
 ;
} /* end str2ram */

As an example, the following code will send a ROM string to USART1 on a

PIC17C756 using the PICmicro MCU C libraries. The library function to send a string

to the USART, putsUSART1(const char *str), takes a pointer to a string as its

argument, but that string must be in RAM.

Modify the library routine to read from a ROM string.

/* The only changes required to the library routine is to change the
name so the new routine does not conflict with the original routine and
to add the rom qualifier to the parameter.
*/
void putrsUSART1_rom(static const rom char *data)
{
 do /* Send characters up to the null */
 { /* Write a byte to the UASRT */
 while(BusyUSART1());
 putcUSART1(*data);
 } while(*data++);
} /* end putrsUSART1_rom */

2.6.13 Pointers

RAM pointers are either 8 or 16-bit, depending on whether they point to banked (far)

or unbanked (near) RAM.

Pointer arithmetic is affected by the ROM paging and RAM banking of the PICmicro

MCU. Pointers are assumed to be RAM pointers unless declared as ROM.

rom int *p; /* ROM pointer */
char *q; /* RAM pointer (default) */
ram char *r; /* RAM pointer */
 /* (explicitly declared) */

2.6.14 Structures

User-defined data constructs are included in the symbolic information file from the

linker.

For MPLAB C17, structures located in program memory must have all elements word

aligned.

MPLAB C17 supports anonymous structures.

2.6.15 Bit-fields

Bit-fields allow the specification of integer-type members of a struction, which are the

specified number of bits in size. Bit-fields cannot cross byte boundaries and,

therefore, cannot be greater than 8 bits in size.
apRNOVM^-page 22  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 3. Using MPLAB C17 with MPLAB IDE
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

3.1 INTRODUCTION

This chapter discusses how to use MPLAB C17 with MPLAB IDE.

3.2 HIGHLIGHTS

This chapter includes:

• MPLAB Projects Overview

• Using MPLAB C17 with MPLAB IDE

• Code Development

• Additional Options and Library Information

3.3 MPLAB PROJECTS OVERVIEW

MPLAB C17 may be used with MPLAB IDE, running under Windows 3.x

(mcc17d.exe) or running under Windows 9x, Windows NT or Window 2000

(mcc17.exe).

MPLAB C17 is one of several tools that work with MPLAB IDE. These tools are used

as part of an MPLAB Project. A project in MPLAB IDE is the group of files needed to

build an application, along with their associations to various build tools. See the

MPLAB IDE User’s Guide (DS51025) for more information on MPLAB IDE and

MPLAB IDE Projects.

Figure 3-1 shows a generic MPLAB Project using the MPLAB C17 compiler tool.
 2002 Microchip Technology Inc. apRNOVM^-page 23

MPLAB® C17 C Compiler User’s Guide
FIGURE 3-1: AN MPLAB PROJECT WITH MPLAB C17 – FILES AND

ASSOCIATED TOOLS

In this MPLAB Project, the source file main.c is associated with the MPLAB C17

compiler. MPLAB IDE will use this information to generate an object file (main.o) for

input into the linker (MPLINK linker).

An assembly source file (prog.asm) is shown also with its associated assembler

(MPASM assembler). MPLAB IDE will use this information to generate the object file

prog.o for input into MPLINK linker. See the MPASM™ User's Guide with MPLINK™

and MPLIB™ (DS33014) for more information on using the assembler.

In addition, precompiled object files (precomp.o) may be included in a project, with no

associated tool required. Types of precompiled object files that are generally required

in a project are listed below:

• Start up code

• Initialization code

• Interrupt service routines

• Register definitions

MPLINK Linker

MPLAB C17 MPASM Assembler

Source

Files

Object

Files

Linker Script

Library &

Output

Files

main.c prog.asm

main.o prog.o

math.lib device.lkr

prog.hex prog.mapprog.lstprog.codprog.out

Files

MPLAB SIM MPLAB ICE

ASSEMBLER/

COMPILER

LINKER

SIMULATOR/

EMULATORS/

PROGRAMMERS

MPLAB Project

precomp.o

PRO MATE® II
PICSTART® Plus
apRNOVM^-page 24  2002 Microchip Technology Inc.

Using MPLAB C17 with MPLAB IDE
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Precompiled object files are often device and/or memory model dependent. For more

information on available precompiled object files, see the MPLAB C17 C Compiler

Libraries (DS51296).

Some library files are available with the compiler. Others may be built outside the

project using the librarian tool (MPLIB librarian). See the MPASM User’s Guide with

MPLINK and MPLIB (DS33014) for more information on using the librarian. For more

information on available libraries, see the MPLAB C17 C Compiler Libraries

(DS51296).

The object files, along with library files and a linker script file (device.lkr) are used to

generate the project output files via the linker (MPLINK linker). See the MPASM™

User's Guide with MPLINK™ and MPLIB™ (DS33014) for more information on linker

script files and using the linker.

The main output file generated by MPLINK linker is the HEX file (prog.hex), used by

simulators (MPLAB SIM), emulators (MPLAB ICE and PICMASTER emulator) and

programmers (PRO MATE II and PICSTART Plus). The other output files are:

• COFF file (.out). Intermediate file used by MPLINK linker to generate Code file,

HEX file, and Listing file.

• Code file (.cod). Debug file used by MPLAB IDE.

• Listing file (.lst). Original source code, side-by-side with final binary code.

• Map file (.map). Shows the memory layout after linking. Indicates used and

unused memory regions.

The tools shown here are all Microchip development tools. However, many third party

tools are available to work with MPLAB Projects. Please refer to the Third Party Guide

(DS00104) for more information.

3.4 USING MPLAB C17 WITH MPLAB IDE

This section will guide you, step by step, in using MPLAB IDE and MPLAB Projects

with MPLAB C17.

In this tutorial, you will learn how to:

• Create the source file

• Set the MPLAB IDE development mode

• Create a new project with Project > New Project

• Set project Node Properties to MPLINK linker

• Add the source file, setting the language tool to MPLAB C17

• Add precompiled nodes (object files)

• Add a linker script node

• Build the project

3.4.1 Overview

Figure 3-2 gives a graphical overview of the MPLAB Project using MPLAB C17. The

source file ex1.c is associated with the compiler (MPLAB C17) to produce the object

file ex1.o. This file and other precompiled object files are linked via MPLINK linker

according to directions in the linker script file (p17c756s.lkr) to produce the main

output file, ex1.hex.
 2002 Microchip Technology Inc. apRNOVM^-page 25

MPLAB® C17 C Compiler User’s Guide
FIGURE 3-2: AN MPLAB PROJECT WITH MPLAB C17

3.4.2 Create Source File

Select File > New to open a blank editor window. Type the following into the window

and save it as ex1.c in a directory called, for example, c:\proj0. This is a very

simple program that adds two numbers.

#include <p17c756a.h>
void main(void);
unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;4
 y = 5;
 z = Add(x,y);
}
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

MPLINK Linker

MPLAB C17

p17c756s.lkr

p17c756a.oc0s17.o

ex1.c

ex1.o

ex1.hex

Source

File

Object

Files

Linker Script

File

COMPILER

Main Output

File

LINKER

Precompiled Object Files
apRNOVM^-page 26  2002 Microchip Technology Inc.

Using MPLAB C17 with MPLAB IDE
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

3.4.3 Set Development Mode

Set Options > Development Mode to MPLAB SIM simulator and select the

PIC17C756A PICmicro MCU for this example. Click OK.

FIGURE 3-3: DEVELOPMENT MODE – PIC17C756A

3.4.4 New Project

In Project > New Project select the directory c:\proj0. Enter ex1.pjt as the File

Name for the new project.

FIGURE 3-4: NEW PROJECT – ex1.pjt

After setting the project name, click OK and the Edit Project dialog will be shown.
 2002 Microchip Technology Inc. apRNOVM^-page 27

MPLAB® C17 C Compiler User’s Guide
3.4.5 Edit Project

In the Project section of the Edit Project window, enter c:\mcc\h under Include Path.

Click on ex1 [.hex] in the Project Files section of the Edit Project dialog to highlight

the HEX file name and activate the Node Properties button. Then click on Node

Properties.

FIGURE 3-5: EDIT PROJECT – ex1.pjt
apRNOVM^-page 28  2002 Microchip Technology Inc.

Using MPLAB C17 with MPLAB IDE
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

3.4.6 Set Node Properties

In the Node Properties dialog, set the Language Tool to MPLINK linker.

FIGURE 3-6: NODE PROPERTIES – ex1.hex

The Node Properties dialog shows the command line switches for the tool, in this case

MPLINK linker. When you first open this dialog, the checked boxes represent the

default values for the tool. For this tutorial, these do not need to be changed. Refer to

the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information on these command line switches.

Click OK to set these default values to ex1.hex.
 2002 Microchip Technology Inc. apRNOVM^-page 29

MPLAB® C17 C Compiler User’s Guide
3.4.7 Add Files to the Project

Several files (nodes) will need to be added to this project. Begin by adding ex1.c, the

main source file, to the project. Click on Add Node on the Edit Project dialog.

FIGURE 3-7: EDIT PROJECT – ADD NODE ex1.c

3.4.8 Add Source File

In the Add Node dialog, click on the source file, ex1.c, from the c:\proj0 directory.

Make sure “List files of type:” specifies ‘Source files (*.c;*.asm)’. Click OK.

FIGURE 3-8: ADD NODE – ex1.c
apRNOVM^-page 30  2002 Microchip Technology Inc.

Using MPLAB C17 with MPLAB IDE
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

The Edit Project dialog should now look like Figure 3-9. Click on ex1 [.c] in the

Project Files section of the dialog and then click on Node Properties.

FIGURE 3-9: EDIT PROJECT – ex1.c ADDED

In the Node Properties dialog, verify that the language tool is set to MPLAB C17.

The default for Memory Model is Small, for optimization reasons. The default selection

will be used for the example. However, while learning how to use the compiler, it is

generally suggested that the large memory model be used, to ensure proper page and

bank selection.

FIGURE 3-10: NODE PROPERTIES – ex1.o
 2002 Microchip Technology Inc. apRNOVM^-page 31

MPLAB® C17 C Compiler User’s Guide
The “Object filename” is set to ex1.o automatically. Nothing else needs to be changed

in this dialog.

Click OK to apply these values to ex1.o.

3.4.9 Add Precompiled Object Files

In general, several precompiled object files are required for compiling a project. These

files are in c:\mcc\lib, where c:\mcc is the compiler install directory.

• c0l17.o – Start Up Code

(source in c:\mcc\src\startup)

• idata17.o – Code to Initialize Data

(source in c:\mcc\src\startup)

• int756al.o – Interrupt Service Routines

(source in c:\mcc\src\startup)

• p17c756a.o – PIC17C756A Register Definitions

(source in c:\mcc\src\proc)

Examination of the source code for each file is recommended to help determine if that

file should be included for a specific project.

For a simple program like ex1.c, the small memory model startup file is used

(c0s17.o) with no initialized data (idata17.o). There are no interrupts, so no interrupt

service routines are needed (int756al.o). But processor-specific register definitions

are included (p17c756a.o).

Use the Add Node button from the Edit Project dialog to add the necessary

precompiled object files. Make sure “List files of type:” specifies ‘Object files (*.o)’.

• c0s17.o

• p17c756a.o

To select more than one file at a time, hold down the Ctrl key on your keyboard while

selecting the files with your mouse. Click OK when done.

FIGURE 3-11: ADD NODE – OBJECT FILES

Node Properties can not be set on precompiled object files, as they are already

compiled.

Although there are no library files used in this tutorial project, a library file (.lib) may

be added by following the same procedure as shown above.

For more information on libraries and precompiled object files, please refer to the

MPLAB C17 C Compiler Libraries (DS51296).
apRNOVM^-page 32  2002 Microchip Technology Inc.

Using MPLAB C17 with MPLAB IDE
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

3.4.10 Select Linker Script

Use the Add Node button from the Edit Project dialog to add the linker script file

p17c756s.lkr from the c:\mcc\lkr directory. Make sure “List files of type:” specifies

‘Linker Scripts (*.lkr)’.

Click OK when done. Node Properties can not be set on a linker script.

FIGURE 3-12: ADD NODE – p17c756s.lkr

3.4.11 Finish Project Edit

The Edit Project window should now look like this:

FIGURE 3-13: EDIT PROJECT – ex1.hex

Press OK on the Edit Project dialog to finish editing the project.
 2002 Microchip Technology Inc. apRNOVM^-page 33

MPLAB® C17 C Compiler User’s Guide
3.4.12 Make Project

Select Project > Make Project from the menu to compile the application using

MPLAB C17 and MPLINK linker. A Build Results window is created that shows the

command lines sent to each tool. It should look like this:

FIGURE 3-14: BUILD RESULTS – ex1.hex
apRNOVM^-page 34  2002 Microchip Technology Inc.

Using MPLAB C17 with MPLAB IDE
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

3.4.13 Troubleshooting

If the build did not complete successfully, check these items:

1. Select Project > Install Language Tool... and check that MPLAB C17 references

the mcc17.exe executable (Figure 3-15). Your executable path may be different

from the figure.

When using MPLAB IDE in the Windows 3.x environment, the mcc17d.exe

executable should be used instead.

The Command-line option should be selected.

FIGURE 3-15: INSTALL LANGUAGE TOOL – MPLAB C17

2. Select Project > Install Language Tool... and check that MPLINK linker is pointing

to the mplink.exe executable (Figure 3-16). Your executable path may be

different from the figure.

The Command-line option should be selected.

FIGURE 3-16: INSTALL LANGUAGE TOOL – MPLINK LINKER

3. Check the Node Properties for the Project Files ex1.hex and ex1.c. They should

be mapped to the Language Tools MPLINK linker and MPLAB C17 respectively.

4. Check the names of the files added to the project against the ones listed in

Figure 3-13. If any are different, click on them individually, click Delete Node,

and then follow the procedure in the relevant previous section for adding the

correct node.

5. Check each step of this tutorial to see if you completed it correctly.

6. Compile the project in a DOS window. Cut-and-paste command-line information

into a DOS window to run. Check the autoexec.bat file to ensure that PATH

includes the executable directory (c:\mcc\bin) and that MCC_INCLUDE is present

and represents the include directory (c:\mcc\h).
 2002 Microchip Technology Inc. apRNOVM^-page 35

MPLAB® C17 C Compiler User’s Guide
3.4.14 Project Window

Open the Window > Project window. It should look like this:

FIGURE 3-17: PROJECT WINDOW – ex1.pjt

The project window contains a good deal of useful information about the project. For

more information on its contents, see the MPLAB IDE User’s Guide (DS51025).

3.5 CODE DEVELOPMENT

Once a project has been built successfully, you can go on to simulating, emulating or

programming the resulting code into the target device. If you make changes to any

source code, you must rebuild the project before debugging or programming again.

For more information on simulating, or using MPLAB IDE to debug your code, please

refer to the MPLAB IDE User’s Guide (DS51025).

3.6 ADDITIONAL OPTIONS AND LIBRARY INFORMATION

Not all MPLAB C17 options are available through MPLAB IDE. For additional compiler

options, please see Chapter 4 “Using MPLAB C17 on the Command Line.”

For a description of libraries and library functions, as well as precompiled object files,

available for inclusion in your project, please refer to the MPLAB C17 Libraries

(DS51296).
apRNOVM^-page 36  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 4. Using MPLAB C17 on the Command Line
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

4.1 INTRODUCTION

This chapter shows examples of how to use MPLAB C17 from the command line.

4.2 HIGHLIGHTS

This chapter includes:

• Command Line Overview

• Using MPLAB C17 on the Command Line

• Code Development

• Library Information

4.3 COMMAND LINE OVERVIEW

MPLAB C17 can be invoked directly on the command line in DOS or a DOS shell

window of Windows 3.x (mcc17d.exe), or console mode in Windows 95/98 or higher

(mcc17.exe).

MPLAB C17 may be used alone to compile individual C source files into object files.

Or, it may be used in conjunction with MPLINK linker to create HEX files.

Figure 4-1 shows a generic use of the MPLAB C17 compiler tool.
 2002 Microchip Technology Inc. apRNOVM^-page 37

MPLAB® C17 C Compiler User’s Guide
FIGURE 4-1: MPLAB C17 – USED ALONE AND WITH MPLINK LINKER

In this diagram, MPLAB C17 is used alone to compile the source file main.c into the

object file (main.o). However, this object file may be used for input into the linker

(MPLINK linker) with other object files to produce a HEX file (prog.hex) for use with

programmers.

An assembly source file (prog.asm) is shown also with its associated assembler

(MPASM assembler), producing the object file prog.o for input into MPLINK linker.

See the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information on using the assembler.

In addition, precompiled object files (precomp.o) may be included. Types of

precompiled object files that are generally required for the successful build of a HEX

file are listed below.

• Start up code

• Initialization code

• Interrupt service routines

• Register definitions

MPLINK Linker

MPLAB C17 MPASM Assembler

Source

Files

Object

Files

Linker Script

Library &

Output

Files

main.c prog.asm

main.o prog.o

math.lib device.lkr

prog.hex prog.mapprog.lstprog.codprog.out

Files

PRO MATE® II
PICSTART® Plus

ASSEMBLER/

COMPILER

LINKER

PROGRAMMERS

MPLAB C17 Used with MPLINK Linker

precomp.o

MPLAB C17 Alone
apRNOVM^-page 38  2002 Microchip Technology Inc.

Using MPLAB C17 on the Command Line
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Precompiled object files are often device and/or memory model dependent. For more

information on available precompiled object files, see the MPLAB C17 C Compiler

Libraries (DS51296).

Some library files are available with the compiler. Others may be built outside the

project using the librarian tool (MPLIB librarian). See the MPASM™ User's Guide with

MPLINK™ and MPLIB™ (DS33014) for more information on using the librarian. For

more information on available libraries, see the MPLAB C17 C Compiler Libraries

(DS51296).

The object files, along with library files and a linker script file (device.lkr) are used

by MPLINK linker to generate output files. See the MPASM™ User's Guide with

MPLINK™ and MPLIB™ (DS33014) for more information on linker script files and

using the linker.

The main output file generated by MPLINK linker is the HEX file (prog.hex). The

other output files are:

• COFF file (.out). Intermediate file used by MPLINK linker to generate Code file,

HEX file and Listing file.

• Code file (.cod). Debug file used by MPLAB IDE.

• Listing file (.lst). Original source code, side-by-side with final binary code.

• Map file (.map). Shows the memory layout after linking. Indicates used and

unused memory regions.

The tools shown here are all Microchip development tools. However, many third party

tools are available. Please refer to the Third Party Guide (DS00104) for more

information.

4.4 USING MPLAB C17 ON THE COMMAND LINE

In this section, the following is discussed:

• Command Line Interface

• How to Compile a Single File on the Command Line

• How to Compile Multiple Files on the Command Line

4.4.1 Command Line Interface

The command line interface of MPLAB C17 is as follows:

mcc17 [options] filename

where:

filename is the name of the file being compiled, and

options is zero or more command line options.

For example, if the file test.c exists in the current directory, it can be compiled with

the following command:

mcc17 -p=17c756a test.c

When no command line parameters are specified, or with ‘-?’ or ‘-h’, a help screen is

displayed describing the command line usage and options.

Options to MPLAB C17 can be specified with either ‘/’ or ‘-’, though the ‘-’ is shown in

the table.
 2002 Microchip Technology Inc. apRNOVM^-page 39

MPLAB® C17 C Compiler User’s Guide
TABLE 4-1: COMMAND LINE OPTION DESCRIPTIONS

Option Default Description

-?,-h – Help screen.

-dmacro[=text] – Define a macro. Equivalent to placing the following at
the head of the file:
#define macro text

-fe=filename – Use filename as the name of the output error file.

-fo=filename – Use filename as the name of the output object file.

-ipath – Add the semicolon delimited path, path, to the search
path for include files.

-m{s|m|c|l} s Select the memory model (see 5.5 “Memory Models”).
s:small model (near ram, near rom)
m:medium model (near ram, far rom)
c:compact model (far ram, near rom)
l: large model (far ram, far rom)

-nw# – Suppress message number #. Error messages cannot
be suppressed.

-O – Optimize for smallest code. Equivalent to:
-Or -Oc -Op

-Oc[+|-] Enabled With this optimization on, the compiler will intelligently
determine the level of stack support to include for each
function.

-Ol[+|-] Enabled When this optimization is on, the default storage class
for local variables and function parameters
is ‘static’.

-Op[+|-] Disable When this optimization in on, far pointers to RAM are
assumed to not point to SFRs. This simplifies setting
the bank for access.

-Or[+|-] Enabled With this optimization on, the compiler will run an
optimization pass to remove extraneous bank select
and MOVLW instructions.

-p=processor 17C44 Select to compile for the designated processor.

-q – Suppress the sign-on banner (Quiet mode).

-w{1|2|3} 2 Set compiler message level.
1 display errors only
2 display errors and warnings
3 display errors, warnings and messages

Note: Example Files – There are a number of examples in the folder

c:\mcc\examples. Execution of the batch file should compile each

example after MPLAB C17 is set up. You can use these files as “cookbooks”

to begin development of your application.
apRNOVM^-page 40  2002 Microchip Technology Inc.

Using MPLAB C17 on the Command Line
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

4.4.2 Compiling a Single File on the Command Line

This section demonstrates how to compile and link a single file. For the purpose of this

discussion it is assumed the compiler is installed on your c: drive in a directory called

mcc. Therefore the following will apply:

Include directory: c:\mcc\h

The include directory is where the compiler stores all its system header files. The

MCC_INCLUDE environment variable should point to that directory (From the DOS

command prompt, type “set” to check this.)

Library directory: c:\mcc\lib

The library directory is where the libraries and precompiled object files reside.

Linker directory: c:\mcc\lkr

The linker directory is where device-specific linker script files may be found.

Executable directory: c:\mcc\bin

The executable directory is where the compiler programs are located. Your PATH

variable should include this directory.

The following is a very simple program that adds two numbers.

1. Create the following program with any text editor and save it as ex1.c in a

directory called, for example, c:\proj0.

#include <p17c756a.h>

void main(void);

unsigned char Add(unsigned char a, unsigned char b);

unsigned char x, y, z;

void main()

{

 x = 2;

 y = 5;

 z = Add(x,y);

}

unsigned char Add(unsigned char a, unsigned char b)

{ return a+b; }

The first line of the program includes the header file p17c756a.h which provides

definitions for all special function registers on that part. For more information on

header files see Chapter 8.

2. Compile the program by typing the following at a DOS prompt:

mcc17 ex1.c -p=17c756a

This tells the compiler to compile the program ex1.c for the PIC17C756A. The

compiler will generate one of two files by default. The first file is ex1.o, which is the

object file that the linker will use to generate (among other files) the executable

(.hex) file to program your PICmicro MCU. The second file is ex1.err, which is the

error file containing any error messages and/or warnings that the compiler

generates during compilation. This file is only created when there are errors. These

messages are also displayed on the screen.
 2002 Microchip Technology Inc. apRNOVM^-page 41

MPLAB® C17 C Compiler User’s Guide
3. The C object file now must be linked with other object files and a linker script to

create the final executable file, ex1.hex.

In general, several precompiled object files will be necessary. These files are the

start-up code file, c0l17.o, the data initialization file, idata17.o, an interrupt

handler file, int756al.o, and the processor definition file, p17c756a.o, to

reference any special function registers. See the MPLAB CXX Reference Guide

(DS51224) for more information on these precompiled object files.

For a simple program like ex1.c, the small memory model startup file is used

(c0s17.o) with no initialized data. There are no interrupts, so no interrupt service

routines are needed. But processor-specific register definitions are included.

Here is the linker command to produce the executable (Although shown on multiple

lines here, this should be on one line when executed.):

mplink ex1.o -l c:\mcc\lib c0s17.o p17c756a.o -k c:\mcc\lkr
p17c756s.lkr -m exl.map -o exl.out

The file ex1.o is linked with the precompiled object files c0s17.o and p17c756a.o,

found in the c:\mcc\lib directory specified by the -l directive. Specific linker

information is provided by the linker script file, p17c756s.lkr, found in the

c:\mcc\lkr directory, specified by the -k directive. A map file called ex1.map is

generated with the -m directive. The -o directive tells the linker to generate a COFF

file called ex1.out, used to generate other output files.

The linker produces the file ex1.hex, as well as several other files used for

debugging. The HEX file is used by device programmers such as PRO MATE II

and PICSTART Plus to program a PICmicro MCU device. For more information on

the other debugging files produced by the linker, see the MPASM™ User's Guide

with MPLINK™ and MPLIB™ (DS33014).

Summary:

• Create the source code program, ex1.c.

• Compile ex1.c:

mcc17 ex1.c -p=17c756a

• Link to generate ex1.hex:

mplink ex1.o -l c:\mcc\lib c0s17.o p17c756a.o -k c:\mcc\lkr

p17c756s.lkr -m exl.map -o exl.out

4.4.3 Compiling Multiple Files on the Command Line

Move the Add() function into a file called add.c to demonstrate the use of multiple

files in a project. That is:

1. File 1

/* ex1.c */
#include <p17c756a.h>

void main(void);

unsigned char Add(unsigned char a, unsigned char b);
unsigned char x, y, z;
void main()
{
 x = 2;
 y = 5;
 z = Add(x,y);
}

apRNOVM^-page 42  2002 Microchip Technology Inc.

Using MPLAB C17 on the Command Line
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

File 2

/* add.c */
#include <p17c756a.h>
unsigned char Add(unsigned char a, unsigned char b)
{ return a+b; }

2. To compile these two files, the command lines would be:

mcc17 ex1.c -p=17c756a
mcc17 add.c -p=17c756a

3. Then link the resulting object files with the precompiled object files as follows

(This should be entered on one line):

mplink ex1.o add.o -l c:\mcc\lib c0s17.o p17c756a.o -k c:\mcc\lkr
p17c756s.lkr -m exl.map -o exl.out

This will produce a HEX file and other output files described in the previous section.

4.5 CODE DEVELOPMENT

Once you have created an executable (HEX) file, you can go on to programming the

resulting code into the target device. If you make changes to any source code, you

must recompile and relink to create a new executable.

4.6 LIBRARY INFORMATION

For a description of libraries and precompiled object functions, as well as library files,

available for inclusion in your project, please refer to the MPLAB C17 C Compiler

Libraries (DS51296).
 2002 Microchip Technology Inc. apRNOVM^-page 43

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 44  2002 Microchip Technology Inc.

Part

1

MPLAB® C17 C COMPILER

USER’S GUIDE
Section 2 – MPLAB C17 Advanced Usage
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Chapter 5. Runtime Environment..47

Chapter 6. Data Types..59

Chapter 7. Device Support Files ...61

Chapter 8. Interrupts ..65

Chapter 9. Mixing Assembly Language and C Modules71

Chapter 10. Writing Efficient Code ...75
 2002 Microchip Technology Inc. DS51290A-page 45

MPLAB® C17 C Compiler User’s Guide
apRNOVM^-page 46  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 5. Runtime Environment
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

5.1 INTRODUCTION

This section discusses the MPLAB C17 runtime environment, which is the set of

assumptions under which the compiler operates.

5.2 HIGHLIGHTS

Items discussed in this chapter are:

• Code and Data Sections

• Startup and Initialization

• Memory Models

• Locating Code

• Locating Data

• Software Stack

• Software Stack Call Conventions

• Function Call Conventions

• Interrupt Support Macros

5.3 CODE AND DATA SECTIONS

PIC17 microcontroller (MCU) devices have two distinct memory regions: program

memory and data memory. A section is a portion of an application located at a specific

address of PIC17 memory, either program or data memory.

There are two types of sections for each type of memory.

• program memory

- code: Contains executable instructions.

- romdata: Contains variables and constants.

• data memory

- udata: Contains statically allocated uninitialized user variables.

- idata: Contains statically allocated initialized user variables.

Sections are located through the use of #pragma sectiontype directives, where

sectiontype is either code, romdata, udata or idata. Pragma statements are

described in 2.6 “Statement Differences” and the directives are described in

5.3.2 “Section Contents”.

Sections are absolute, assigned or unassigned. See the MPLINK linker portion of the

MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more on section

allocation.
 2002 Microchip Technology Inc. apRNOVM^-page 47

MPLAB® C17 C Compiler User’s Guide
5.3.1 Section Attributes

Two section attributes may optionally be included in a #pragma sectiontype

directive:

• shared: Locate this section in a shared (unbanked) region of data memory. See

PIC17 device data sheets for more on shared data memory.

• overlay: Permit other sections to be located at the same physical address. This

attribute can conserve memory by locating local variables from two different

functions to the same location (as long as both are not active at the same time.)

The overlay attribute can also be used in conjunction with the shared attribute.

See 5.6 “Locating Code” and 5.7 “Locating Data” for more on section attributes.

5.3.2 Section Contents

The type of code or data that will go into each section type is described in the following

sections.

5.3.2.1 code

A code section contains executable content located in program memory.

5.3.2.2 romdata

A romdata section contains data allocated into program memory. For example:

rom int l;
rom char c = 'A';

Constant strings are also found in program memory. The .stringtable section is a

romdata section that contains all constant strings. For example:

strcmpram2pgm (Foo, “hello”);

For more information on romdata usage (e.g., for memory-mapped peripherals) see

the MPLINK User’s Guide portion of DS33014.

5.3.2.3 udata

A udata section contains uninitialized data statically allocated into data memory. For

example, global variables are allocated as:

int i;
char c;

Compiler temporary variables are placed in a udata section named _tmpstore. For

an interrupt, compiler temporary variables are created in a udata section named

_tmpsection_function_name.

For example:

void foo(void);
...
#pragma interrupt foo
void foo(void)
{
 /* perform interrupt function here */
}

The compiler temporary variables for interrupt function foo will be placed in the udata

section _tmpsection_foo.
apRNOVM^-page 48  2002 Microchip Technology Inc.

Runtime Environment
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

5.3.2.4 idata

A idata section contains initialized data statically allocated into data memory. For

example, global variables are allocated as:

int i = 0;
char c = 'A';
const j = 5;

5.3.3 Default Sections and Names

A default section exists for each section type in MPLAB C17.

5.4 STARTUP AND INITIALIZATION

The Startup file for PIC17 devices is an assembly file that is assembled and linked

with the C program files. This file performs these main tasks:

1. Optionally calls the function _ _STARTUP() upon RESET.

2. Optionally calls the code which copies initialized data from program memory to

data memory (idata).

3. Sets up the software stack used by the compiler.

4. Transfers control to the C function main() which is the entry point for C

programs.

There are two startup files for the PIC17 family. The first is c0s17.asm which uses

short GOTOs and CALLs. c0s17.asm should be assembled and linked with the small

model (code less than 8K). The other startup file is c0l17.asm which uses long jumps

and LCALLs. c0l17.asm should be used with projects targeting memory larger than

8K. A data initialization file, idata.asm, may be associated with either startup file.

5.4.1 _ _STARTUP()

To execute some code immediately after a device RESET but before any other code

generated by the compiler is executed, optionally create a function by the name

_ _STARTUP(). This will be the first code executed upon a RESET. To use a

_ _STARTUP() function in a program:

1. Define a _ _STARTUP() function in a C program as follows:

void _ _STARTUP(void)
{
 // Initialize some registers to 0
 TRISB = 0;
 TRISC = 0;
}

Table 5.1: DEFAULT VALUES FOR SECTIONS

Section Type Default Name

code .code_filename

romdata .romdata_filename

udata .udata_filename

idata .idata_filename

filename is the name of the object file being generated.

Note: The space shown between the two underlines preceding STARTUP() is for

illustration and should not be used in actual code (i.e., there should be no space).
 2002 Microchip Technology Inc. apRNOVM^-page 49

MPLAB® C17 C Compiler User’s Guide
2. In c0l17.asm or c0s17.asm, uncomment the line:

#DEFINE USE_STARTUP

3. Compile the source file, assemble c0l17.asm or c0s17.asm and link.

5.4.2 Initialized Data Support

When declaring initialized data (such as: int x = 5;), the variable is allocated in data

memory but the value is stored in program memory. Before the data is usable in any

program, the values must be copied from program memory into the variable in data

memory.

The size of the MPLAB C17 initialization code is approximately 50 words. Therefore,

to only initialize a few variables, do not use that feature and initialize the variables

manually in the code. If initializing many variables (10 or more integers or 20 or more

characters) as they are declared, then the initialization code is the better option in

terms of code size.

To use initialized data with c0s17.asm in a MPLAB C17 program:

1. Uncomment the following line in c0s17.asm:

#DEFINE USE_INITDATA

2. Assemble c0s17.asm to produce c0s17.o.

3. Assemble idata17.asm to produce idata17.o, or use idata17.o directly.

4. Link the above files with the C object code.

To use initialized data with c0l17.asm in a MPLAB C17 program:

1. Assemble c0s17.asm to produce c0s17.o, or use c0s17.o directly.

2. Assemble idata17.asm to produce idata17.o, or use idata17.o directly.

3. Link the above files with the C object code.

5.4.3 Stack Initialization

The stack initialization simply points the compiler stack pointer to the right location in

data memory.

5.4.4 Branching to main()

After the startup code optionally calls _ _STARTUP() and/or copies initialized data, and

sets up the stack, it calls the main() function of the C program. There are no

arguments passed to main().

MPLAB C17 transfers control to main() via a goto, i.e.;

goto main

Note: Since _ _STARTUP() is executed before the stack is initialized, auto

variables may not be used.

Note: c0s17.asm is assembled with USE_INITDATA undefined by default.

c0l17.asm is assembled with USE_INITDATA defined by default.
apRNOVM^-page 50  2002 Microchip Technology Inc.

Runtime Environment
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

5.5 MEMORY MODELS

Different devices access memory differently. Depending on your selected device, you

will need to use different memory model versions of libraries and/or precompiled

object files. See the MPLAB C17 C Compiler Libraries (DS51296) for a list of libraries

and precompiled object files available for different memory models.

For PIC17 devices with program memory (ROM) over 8K, the memory is broken up in

to pages. For PIC17 devices with data memory (RAM) over 256, the memory is

broken up into banks. Table 5.1 spells out the memory models available for these

devices via MPLAB C17.

The usage of the keywords near, far, ram and rom is discussed in Chapter 6.

5.6 LOCATING CODE

5.6.1 Section Types Used to Place Code

Following a #pragma code, all generated code will be assigned to the specified section

until another #pragma code is encountered. An absolute code section allows the

location of code to a specific address.

For example:

#pragma code myCode=0x2000

5.6.2 Attributes – Overlay

Code sections that have the overlay attribute can be located at an address that

overlaps other overlay code sections. This feature is generally not needed, but could

be useful with multiple external memory sources.

For example:

#pragma code overlay myScnName=0x1000

5.7 LOCATING DATA

5.7.1 Section Types Used to Place Data

The different types of data sections are:

• udata: Statically allocated uninitialized global data is placed here. Used for data

memory allocation.

• idata: Statically allocated initialized global data goes here. Used for data memory

allocation.

• romdata: Variables declared with the rom attribute are placed here. Used for

program memory allocation.

Table 5.1: Memory Model Usage – MPLAB C17

Memory Model Device Description

s small near rom – program memory ≤ 8K,
near ram – data memory ≤ 256

m medium far rom – program memory > 8K,
near ram – data memory ≤ 256

c compact near rom – program memory ≤ 8K,
far ram – data memory > 256

l large far rom – program memory > 8K,
far ram – data memory > 256
 2002 Microchip Technology Inc. apRNOVM^-page 51

MPLAB® C17 C Compiler User’s Guide
5.7.2 Attributes – Overlay

Data sections that have the overlay attribute can be located at an address that

overlaps other overlay data sections. This feature can be useful for allowing a single

data range to be used for multiple variables that are never active simultaneously.

For example:

#pragma udata overlay myOverlayData1=0x1fc
int intVar1, intVar2; // 4 bytes will be located at
 // 0x1fc and 0x1fe

#pragma udata overlay myOverlayData2=0x1fc
long longVar; // 4 bytes will be located at 0x1fc

5.7.3 Attributes – Shared

Data sections declared with the shared attribute will be placed into memory regions

that are defined as SHAREBANK in the linker script file. These regions are those that can

be accessed without banking. Variables declared with the near keyword will be

accessed without banking.

For example:

#pragma udata shared unbankedRAM
near unsigned char cv1, cv2; // all accesses to these
 // will be unbanked

5.7.4 Locating Data in Program Memory

Variables can be placed in either data or program memory with the MPLAB C17

compilers. Variables that are placed in on-chip program memory can be read but not

written without additional user-supplied code. Variables placed in external program

memory can be either read or written without additional user-supplied code.

For information on writing to on-chip program memory, see individual device data

sheets. For detailed examples of variable placement, see the MPLINK User’s Guide

portion of DS33014.

To specify to the compiler that a variable should be placed in program memory, use

the rom keyword. The compiler will then allocate this variable into the current romdata

type section.

For example:

#pragma romdata constTable
const rom char myConstArray[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

5.8 SOFTWARE STACK

The compiler uses a software stack for storing local variables and for passing

arguments to and returning values from functions. The software stack should not be

confused with the hardware stack that the PICmicro MCU uses for storing return

addresses during function calls and interrupts.

5.8.1 Changing Stack Size and Location

The stack is sized and placed in the linker script via the STACK directive. The STACK

directive has two arguments: SIZE and RAM to control the allocated stack size and its

location respectively.

For example, to allocate a 128 byte stack and place that stack in the memory region

gpr3:

STACK SIZE=0x80 RAM=gpr3
apRNOVM^-page 52  2002 Microchip Technology Inc.

Runtime Environment
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

The size of the software stack required by a program varies with the complexity of the

program. The following should be kept in mind:

• One RAM location will be reserved by the compiler for use as the Stack Pointer.

• When nesting function calls, all arguments and local variables (auto variables

included) of the calling function will remain on the stack. Therefore, the stack must

be large enough to accommodate the requirements by all functions in a tree.

5.8.2 Controlling What Goes on the Stack

MPLAB C17 supports parameters and local variables allocated either on the software

stack or directly from global memory. The static keyword places a local variable or a

function parameter in global memory instead of on the software stack. Stack-based

local variables and arguments require more code to access than static local variables

and supporting arguments. See 10.3 “Static Locals And Parameters” for more

information on static parameters and locals. Functions that use stack-based variables

are more flexible in that they are reentrant and recursive.

5.9 SOFTWARE STACK CALL CONVENTIONS

The MPLAB C17 software stack is an upwards growing stack data structure on which

the compiler places function arguments and local variables. The software stack is

distinct from the hardware stack upon which the PICmicro MCU places function call

return addresses.

The stack pointer always points to the next available stack location. MPLAB C17

allocates the first location of the stack for use as the stack pointer, leaving both FSR0

and FSR1 available for other use by the compiler.

When a function is invoked, its stack based arguments are pushed onto the stack in

right-to-left order and the function is called. The leftmost function argument is on the

top of the software stack upon entry into the function.

MPLAB C17 immediately adds the total size of the stack based local variables for the

function to the stack pointer, allocating space for instances of those variables.

References to stack based argument values and stack based local variables are

resolved according to offsets from the stack pointer.

5.10 FUNCTION CALL CONVENTIONS

A function is reentrant if it may be safely called from multiple threads of control at the

same time. For instance, if a function is called by an interrupt service routine, it must

be reentrant because if an interrupt occurs while the function is executing, the function

will be called again by the interrupt routine.

In general, a function which only manipulates stack-based local variables and

stack-based parameters is reentrant. References to global variables or the use of

static parameters or static local variables may cause a function be non-reentrant.

Note: Stack Overflow Avoidance – For MPLAB SIM or MPLAB ICE 2000, use a

break statement at the last location on the stack. If the program breaks,

then a stack overflow would have occurred in the next byte
 2002 Microchip Technology Inc. apRNOVM^-page 53

MPLAB® C17 C Compiler User’s Guide
5.11 INTERRUPT SUPPORT MACROS

MPLAB C17 provides interrupt support macros and code for saving and restoring

context during interrupt handling. The use of such macros and code are optional. It is

recommended that interrupt handling be done in the assembler to reduce latency and

minimize overhead.

Each PICmicro MCU processor has two interrupt support assembly files. One is for

the small model and the other for the large model as before. These files contain code

fragments that save critical special function registers, call the interrupt handling

function and returns from the interrupt. The registers are saved as follows:

• First ALUSTA is saved primarily to preserve the Z bit. The saved ALUSTA can go

in any bank (since BSR isn't known at that time) but always at location 0xFF. The

interrupt support code reserves location 0xFF in all banks for save_ALUSTA.

• Second, PCLATH is saved at location 0xFE or the equivalent location in the same

manner as with ALUSTA. The interrupt support code reserves location 0xFE in all

banks for save_PCLATH.

• Finally BSR and WREG are saved in bank 0 at locations 0xFD and 0xFC,

respectively. The interrupt support code reserves locations 0xFD and 0xFC in

bank 0 for save_BSR and save_WREG.

Here is how the highest addresses in data memory would look if an interrupt occurred

while BSR was pointing to bank 2 on the PIC17C756. (For the PIC17C44 only banks 0

and 1 are used.)

Note: Startup code supplied with MPLAB C17 does not support nested

interrupts.

Table 5.2: Interrupt Example

Bank 0 Bank 1 Bank 2 Bank 3

0xFB <Available> <Available> <Available> <Available>

0xFC save_WREG <Available> <Available> <Available>

0xFD save_BSR <Available> <Available> <Available>

0xFE <Reserved> <Reserved> save_PCLATH <Reserved>

0xFF <Reserved> <Reserved> save_ALUSTA <Reserved>
apRNOVM^-page 54  2002 Microchip Technology Inc.

Runtime Environment
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

The ALUSTA, PCLATH, BSR and WREG are the registers that absolutely need to be

saved before we branch to the interrupt service function. However, there are other

registers used by the compiler that are worth saving under certain circumstances. The

following is an example that uses the Timer 0 Overflow Interrupt.

#include <p17c44.h>
unsigned char x;
void _ _TMR0()
{
 x++;
 PORTB = x;
}
void main()
{
 x = 1;
// Install interrupt handler for timer 0 interrupt
 Install_TMR0(_ _TMR0);
// Set prescale value for TMR0
 T0STA = 0b11100110;
// Unmask TMR0 overflow interrupt
 INTSTA = 0b00000010;
// Enable all unmasked interrupts
 CPUSTA = 0;
// Set Port B in o/p mode
 TRISB = 0;
 while(1)
 {
 // Loop and wait for an interrupt to take place!
 }
}

Install _TMR0 (_ _TMR0) sets the function _ _TMR0() as the interrupt handler for

Timer 0 overflow interrupts. Then the appropriate prescale value, interrupt flag and

global interrupt enable flag are set. The program enters into an infinite loop when it

reaches the while(1) statement. When Timer 0 overflows, program control goes to

the _ _TMR0() function where the value of ‘x’ is sent to PORT B and possibly

displayed on LEDs.
 2002 Microchip Technology Inc. apRNOVM^-page 55

MPLAB® C17 C Compiler User’s Guide
In this simple program the PICmicro MCU wasn't doing much at the time the interrupt

occurred. Therefore do not save any more registers in addition to what the compiler

interrupt code saved. However, in a more complex application, the interrupt may occur

at any point in the program. Therefore other registers may need to be saved. The best

way to find out is to look at the generated code for the interrupt handling function. Find

out which registers are used by the compiler inside the function and make sure to

save them at the beginning and restore them at the end of the function. Looking at the

following example's generated code, determine that registers PRODL and PRODH

are used both inside and outside the interrupt function.

#include <p17c44.h>
#pragma udata intSave = 0xFa
 unsigned char save_PRODL; // 0xF9
 unsigned char save_1F; // 0xFA
 unsigned char save_1E; // 0xFB
#pragma udata anywhere
 unsigned char x, y;
void _ _TMR0()
{
_asm
 movpf PRODL, save_PRODL
 movpf PRODH, save_1E
 movpf PRODL, save_1F
_endasm
 x++;
 PORTB = x;
 y = y * x;
_asm
 movlr 0 // Switch to bank 0
 movfp save_PRODL, PRODL
 movfp save_1E, PRODH
 movfp save_1F, PRODL
_endasm
}
void main()
{
 x = y = 1;
 Install_TMR0(_ _TMR0);
// Set prescale value for TMR0
 T0STA = 0b11100110;
// Unmask TMR0 overflow interrupt
 INTSTA = 0b00000010;
// Enable all unmasked interrupts
 CPUSTA = 0;
// Set Port B in o/p mode
 TRISB = 0;
 while(1)
 {
 x = x * 5;
 }
}

The registers PRODH and PRODL are saved in save_1F, save_1E and save_PRODL,

respectively. These variables are declared globally and allocated at locations 0xFa to

0xFB in bank 0 using the #pragma udata directive. This places them at the end of the

bank just before save_B and guarantees they are in bank 0. Since BSR is cleared in

the interrupt support code, don't do any bank switching to save those three registers.

However, clear the BSR (using MOVLR 00) before restoring them as the interrupt

function code could have switched banks.
apRNOVM^-page 56  2002 Microchip Technology Inc.

Runtime Environment
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

The following are merely guidelines as to what the compiler might be using for certain

tasks. However, the best guarantee that the context is saved and restored correctly is

by looking at generated code.

1. WREG: This is necessary if the program is doing anything other than looping

when an interrupt occurs. It is best to save WREG at all times.

2. FSR0, FSR1: Save FSR0 if the interrupt handling function uses arrays or

pointers.

3. PRODL, PRODH: Save these registers if performing multiplication in the

interrupt function. The compiler potentially uses PRODL and PRODH if it is

evaluating a complex expression.

4. TBLPTRL, TBLPTRH: These two registers are used for table read and write

operations. However, the compiler rarely uses them for temporary storage. In

general, it is not recommended to do table reads or writes in the interrupt

functions if done elsewhere in the program. Table reads and writes use the 16-bit

TBLAT register for latching data transferred from and to program memory. Since

TBLAT is not an addressable register it cannot be saved or restored during

interrupts.
 2002 Microchip Technology Inc. apRNOVM^-page 57

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 58  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 6. Data Types
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

6.1 INTRODUCTION

This section discusses the MPLAB C17 data types. For information on how MPLAB

C17 data types differ from ANSI C data types, see 2.6 “Statement Differences”.

6.2 HIGHLIGHTS

Items discussed in this chapter are:

• Data Representation

• Integer

• Floating Point

6.3 DATA REPRESENTATION

Multibyte quantities are stored in “little endian” format, which means:

• The least significant byte is stored at the lowest address

• The least significant bit is stored at the lowest-numbered bit position

As an example, the long value of 0x12345678 is stored at address 0x100 as follows:

As another example, the long value of 0x12345678 is stored in registers m and m+1:

6.4 INTEGER

Table 6-1 shows integer data types are supported in MPLAB C17.

For information on implementation-defined behavior of integers, see 12.5 “Integers”.

0x100 0x78 0x56 0x101

0x102 0x34 0x12 0x103

m m+1

0x5678 0x1234

TABLE 6-1: INTEGER DATA TYPES

type bits min max

char, signed char 8 -128 127

unsigned char 8 0 255

short, signed short 16 -32768 32767

unsigned short 16 0 65535

int, signed int 16 -32768 32767

unsigned int 16 0 65535

long, signed long 32 -231 231 - 1

unsigned long 32 0 232 - 1

** ANSI-89 extension
 2002 Microchip Technology Inc. apRNOVM^-page 59

MPLAB® C17 C Compiler User’s Guide
6.5 FLOATING POINT

The floating point representation used for the MPLAB C17 compiler is a variant of the

IEEE 754 standard, see 12.6 “Floating Point” for more information. The following table

compares the two.

TABLE 6-2: MPLAB C17 FLOATING POINT FORMAT VS IEEE 754

Standard Exponent Byte Byte 0 Byte 1 Byte 2 Byte 3

IEEE754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

C17 xxxx xxxx sxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
apRNOVM^-page 60  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 7. Device Support Files
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

7.1 INTRODUCTION

This section discusses device support files used in support of MPLAB C17

compilation.

7.2 HIGHLIGHTS

Items discussed in this chapter are:

• Processor Header File

• Register Definitions File

• Using SFRs

7.3 PROCESSOR HEADER FILE

The processor header file is a C file that contains external declarations for the special

function registers. Register definitions are found in the Register Definitions File

(7.4 “Register Definitions File”).

In addition to register declarations, the header file defines in-line assembly macros

(Table 7-1) and interrupt install macros.

There are certain instructions on PICmicro MCUs that may need to execute from the

C code. They can be included as in-line assembler instructions but for convenience

they are also available as macros in C. They are listed in the following table:

TABLE 7-1: INSTRUCTION MACRO ACTIONS

Instruction Macro Action

Nop() Executes a no operation (NOP).

ClrWdt() Clears the watchdog timer (CLRWDT).

Sleep() Executes a SLEEP instruction.

Reset() Executes a device reset (RESET).

Rlcf(var,dest,access) Rotates ‘var’ to the left through the carry bit.

Rlncf(var,dest,access) Rotates ‘var’ to the left without going through the
carry bit.

Rrcf(var,dest,access) Rotates ‘var’ to the right through the carry bit.

Rlncf(var,dest,access) Rotates ‘var’ to the right without going through the
carry bit.

Swapf(var,dest,access) Swaps the upper and lower nibble of ‘var’.

Note: ‘var’ must be an 8-bit quantity (e.g., char) and not located on the stack.
 2002 Microchip Technology Inc. apRNOVM^-page 61

MPLAB® C17 C Compiler User’s Guide
Header files are device (processor) specific, (i.e., choose the header file p17c756.h

when coding for the PIC17C756). These files are contained in the c:\mcc\h directory,

where c:\mcc is the compiler install directory.

Processor header files for PIC17 devices contain external declarations for the special

function registers, in-line assembly macros and interrupt install macros.

PIC17 header files have four macros for installing interrupt service routines to the four

interrupt vectors available. Call these macros as part of setting up the interrupt

handler functions. Specify which C function should act as the interrupt handling

function for a particular interrupt vector. For more information on how interrupts are

handled by MPLAB C17, please refer to Chapter 9. Interrupt support macros are listed

in the following table:

7.4 REGISTER DEFINITIONS FILE

The register definitions file is an assembly file that contains declarations for all the

special function registers on the device. Every register definitions file is associated

with a C header file (7.3 “Processor Header File”) that contains, among other things,

external declarations for the special function registers.

The register definitions file, when compiled, will become an object file that will need to

be linked to the source file. As an example, p17c756.asm compiles to p17c756.o,

added to the tutorial project in Chapter 5. These files are device (processor) specific.

Register definitions file source code is found in the c:\mcc\src\proc directory and

compiled object code is found in the c:\mcc\lib directory, where c:\mcc is the

compiler install directory.

An example of a use for a register definitions file in MPLAB C17 is as follows.

EXAMPLE 7-1: PIC17C44 PORT A DEFINITION

Here Port A is defined in the register definitions file p17c44.asm as:

BANK0_SFR_SEC DATA H'010'
PORTAbits
PORTA RES 1 ; 010h
TRISB RES 1 ; 011h
.
.

and so on.

TABLE 7-2: MACRO ACTIONS

Macro Action

Install_INT(func) Sets ‘func' as the handler for the INT interrupt.

Install_TMR0(func) Sets ‘func' as the handler for the TMR0 interrupt.

Install_T0CKI(func) Sets ‘func' as the handler for the T0CKI interrupt.

Install_PIV(func) Sets ‘func' as the handler for the PIV interrupt.
apRNOVM^-page 62  2002 Microchip Technology Inc.

Device Support Files
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

The first line specifies the file register bank where Port A is located and the starting

address for that bank. Port A has two labels, PORTAbits and PORTA, both referring to

the same location (in this case 010h in bank 0). So the above definition reserves 1

byte for PORTA and PORTAbits at location 010h.

In p17c44.h, Port A is declared as:

volatile extern far unsigned char PORTA;

and as:

extern far volatile union
{
 struct
 {
 unsigned RA0:1; /* Bit 0 */
 unsigned RA1:1;
 unsigned RA2:1;
 unsigned RA3:1;
 unsigned RA4:1;
 unsigned RA5:1;
 unsigned :1;
 unsigned NOT_RBPU:1;
 };
 struct
 {
 unsigned INT:1; /* Alternate name for bit 0 */
 unsigned T0CKI:1; /* Alternate name for bit 1 */
 unsigned :6; /* pad next 6 locatons */
 };
} PORTAbits;

The first declaration specifies that PORTA is a byte (unsigned char), whereas the

second one declares PORTAbits as a union of bit-addressable structures. Since

individual bits in a special function register may have more than one function (and

hence more than one name), there are multiple structure definitions inside the union

all referring to the same register. Respective bits in all structure definitions refer to the

same bit in the register. Where a bit has only one function for its position, it is simply

padded in other structure definitions. For example, bits 2 through 7 on Port A are

simply padded in the second structure definition using the statement unsigned :6.

When using a special function register such as Port A, write the following statements:

PORTA = 0x34; /* Assigns the value 0x34 to the */
 /* whole port */
PORTAbits.INT = 1; /* Sets the INT pin high */
PORTAbits.RA0 = 1; /* Sets the RA0 pin high, same as */
 /* above statement */

The extern modifier is needed since the variables are declared in the register

definitions file. The volatile modifier tells the compiler that it cannot assume that

Port A retains values assigned to it. The far modifier specifies that the port needs a

bank switching instruction prior to access.
 2002 Microchip Technology Inc. apRNOVM^-page 63

MPLAB® C17 C Compiler User’s Guide
7.5 USING SFRS

There are three steps to follow when using SFR's in an application.

1. Include the processor header file for the appropriate device. This provides the

source code with the SFR's that are available for that device. For instance, the

following statement includes the header files for the PIC17C756A part:

#include <p17c756a.h>

2. Access SFR's like any other C variables. The source code can write to and/or

read from the SFR's.

For example, the following statement clears all the bits to zero in the special

function register for Timer1.

TMR1 = 0;

This next statement represents the 0 bit in the TCON2 register which is the ‘Timer

1 on' bit. It sets the bit named TMR1ON to 1 which starts the timer.

TCON2bits.TMR1ON = 1;

3. Link with the register definition file or linker script for the appropriate device. The

linker provides the addresses of the SFR's. (Remember the bit structure will have

the same address as the SFR at link time.) Example 7.1 would use:

p17c756a.lkr

See MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information on using linker scripts.
apRNOVM^-page 64  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 8. Mixing Assembly Language and C Modules
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

8.1 INTRODUCTION

This section describes how to use assembly language and C modules together. It

gives examples of using C variables and functions in assembly code and examples of

using assembly language variables and functions in C.

8.2 HIGHLIGHTS

This chapter covers the following topics:

• Internal Assembler

• Calling Conventions

• Mixing Assembly Language and C Variables and Functions

• Using In-Lline Assembly Langauge

8.3 INTERNAL ASSEMBLER

MPLAB C17 has an internal assembler using a syntax similar to MPASM assembler.

The block of assembly code must begin with _asm and end with _endasm. The syntax

within the block is:

 <instruction> [arg1][, arg2][, arg3]

Comments must be C or C++ type notation.

EXAMPLE 8-1: IN-LINE ASSEMBLY CODE

_asm
/* User assembly code */
movlw 7 // Load 7 into WREG
movwf PORTB // and send it to PORTB
_endasm

It is generally recommended to limit the use of in-line assembly to a minimum. To write

large fragments of assembly code, use the stand-alone assembler and link the

modules to the C modules using the MPLINK linker.

The in-line assembler differs from the stand-alone assembler as follows:

• No directive support.

• Full text mnemonics must be used for table reads/writes (i.e., TABLWT).

• No defaults for instruction parameters. All parameters must be fully specified.
 2002 Microchip Technology Inc. apRNOVM^-page 65

MPLAB® C17 C Compiler User’s Guide
8.4 CALLING CONVENTIONS

The following general calling conventions should be used.

Calling Assembly Routines from C:

• Function declared as extern in C module.

• Label declared as global in ASM module.

• Function declaration may return a value and/or contain parameters.

• Functions are called using standard C function notation.

Calling C Routines from Assembly:

• C functions are inherently global.

• Function name must be declared as extern symbol in assembly file.

• call must be used to make function call; RETURN 0x00 implemented at end of C

function.

8.5 MIXING ASSEMBLY LANGUAGE AND C VARIABLES AND FUNCTIONS

The following example shows how to use variables and functions in both assembly

language and C regardless of where they were originally defined. These example files

may be found in c:\mcc\examples\example2, where c:\mcc is the compiler install

directory.

The file ex_c.c defines main and c_variable to be used in the assembly language

file. The C file also shows how to call an assembly function, asm_function, and how

to access the assembly defined variable, asm_variable.

The file ex_asm.asm defines asm_function and asm_variable as required to use

them in a linked C file. The assembly file also shows how to call a C function, main,

and how to access a C defined variable, c_variable.

ex_c.c
// file: ex_c.c
extern unsigned asm_variable;
extern near void asm_function(void);
extern void main(void);
unsigned c_variable;
void main(void)
{
 asm_function(); // will modify 'c_variable'
 asm_variable = 0x1234;
}

ex_asm.asm
; file: ex_asm.asm
LIST P=17C44
 EXTERN main ; defined in C module
 EXTERN c_variable ; also defined in C module
MYCODE CODE
asm_function
 movlw 0xff
 movwf c_variable ; put 0xffff in the C declared
 ; variable
 movwf c_variable+1
 return
 GLOBAL asm_function ; export so linker can see it
MYDATA UDATA
asm_variable RES 2 ; 2 byte variable
 GLOBAL asm_variable ; export so linker can see it
 END
apRNOVM^-page 66  2002 Microchip Technology Inc.

Mixing Assembly Language and C Modules
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

8.6 USING IN-LINE ASSEMBLY LANGUAGE

The following example shows how to call an assembly function with a parameter.

These example files may be found in c:\mcc\examples\example3, where c:\mcc is

the compiler install directory.

Most of the work is done in the file call_asm.asm where the parameter is taken off of

the software stack. call_c.c calls the asm_function with a parameter.

call_c.c
// File call_c.c
unsigned char asm_function(auto unsigned char a);
unsigned char x;
void main(void)
{
 x = asm_function(0xff);
}

call_asm.asm
; File call_asm.asm
 LIST P=17C756
 EXTERN _stack
 GLOBAL asm_function
MYCODE CODE
asm_function
 banksel _stack ; Get the stack pointer into 0x00
 movfp _stack, 0x01
 decf 0x01, f ; Point FSR1 at the argument
 movfp 0x00, 0x0a ; Get the argument
 decf 0x0a, f
 ; The convention is that we return
 ; with FSR0 pointing at the return value.
 ; We'll just reuse the space
 ; allocated for the argument since we're already
 ; pointed there.

 movwf 0x00 ; Store the return value
 return
 END
 2002 Microchip Technology Inc. apRNOVM^-page 67

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 68  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 9. Interrupts
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

9.1 INTRODUCTION

Interrupt processing is an important aspect of most microcontroller applications.

Interrupts may be used to synchronize software operations with events that occur in

real time. When interrupts occur, the normal flow of software execution is suspended

and special functions are invoked to process the event. At the completion of interrupt

processing, previous context information is restored and normal execution resumes.

PIC17 devices support multiple interrupts from both internal and external sources. The

MPLAB C17 compiler provides full support for interrupt processing in C or in-line

assembly code. This chapter presents an overview of interrupt processing which is

applicable to both device families.

9.2 HIGHLIGHTS

This chapter describes the basic steps you should take for implementing interrupt

processing in your C program. The following subsections give an overview of the

interrupt processing procedure.

• Writing an Interrupt Service Routine – You can designate one or more C

functions as interrupt service routines (ISR’s) to service the occurrence of an

interrupt. For best performance in general, place lengthy calculations or

operations that require library calls in the main application. This strategy optimizes

performance and minimizes the possibility of losing information when interrupt

events occur rapidly.

MPLAB C17 provides interrupt support macros for saving and restoring context

during interrupt handling.

• Writing the Interrupt Vector – PIC17 devices use interrupt vectors to transfer

application control when an interrupt occurs. An interrupt vector is a dedicated

location in program memory that specifies the address of an ISR. Applications

must contain valid function addresses in these locations to use interrupts.

• Interrupt Service Routine Context Saving – To handle returning from an

interrupt to code in the same conditional state as before the interrupt, context

information from specific registers must be saved. Certain registers are managed

by the compiler and may not be saved. See 1.6 “Reserved Resources” for a list of

compiler-managed resources.

• Latency – The time between when an interrupt is called and when the first ISR

instruction is executed is the latency of the interrupt.

• Nesting Interrupts – MPLAB C17 does not support nested interrupts.

• Enabling/Disabling Interrupts – Enabling and disabling interrupt sources occurs

at two levels: globally and individually. These concepts are discussed in

9.8 “Enabling/Disabling Interrupts” and covered in more detail in Chapter 11.
 2002 Microchip Technology Inc. apRNOVM^-page 69

MPLAB® C17 C Compiler User’s Guide
9.3 WRITING AN INTERRUPT SERVICE ROUTINE

Following the guidelines in this section, you can write all of your application code,

including your interrupt service routines (ISR’s), using only C language constructs.

9.3.1 Guidelines for Writing ISR’s

The guidelines for writing ISR’s are:

• Declare ISR’s with no parameters and a void return type

• Do not let ISR’s call other functions

• Do not let ISR’s be called by main line code

An MPLAB C17 ISR is like any other C function in that it can have local variables and

access global variables. However, an ISR needs to be declared with no parameters

and no return value. This is necessary because the ISR, in response to a hardware

interrupt, is invoked asynchronously to the mainline C program. (i.e., it is not called in

the normal way, so parameters and return values don’t apply).

ISR’s should only be invoked through a hardware interrupt and not from other C

functions. There are two reasons for this. First, an interrupt service routine uses the

return from interrupt (RETFIE) instruction to exit from the function rather than the

normal RETURN instruction. Using a RETFIE instruction out of context can corrupt

processor resources, such as WREG. Second, ISR’s use a temporary data area that is

distinct from that used by normal C functions. If an ISR were called by an ordinary

function during the occurrence of an interrupt, then the temporary data area may

become corrupted. For a similar reason, a MPLAB C17 ISR should not call any other

functions; otherwise the temporary data area used by ordinary functions may become

corrupted.

9.3.2 Syntax for Writing ISR’s

Use the interrupt pragma to declare C functions as ISR’s. The syntax for the

MPLAB C17 interrupt pragma is as follows.

#pragma interrupt function-name [section-name]

The function-name parameter of the pragma names the C function serving as an ISR.

The optional section-name parameter names the section which allocates the

temporary data of the ISR. Any temporary data required during the evaluation of

expressions in the function is allocated in a private memory section and is not overlaid

with the temporary locations of any other functions, including other interrupt functions.

The default temporary data settings for section-name is as follows:

isr_tmp (single interrupt priority level)

9.3.3 Coding ISR’s

Place the interrupt pragma before the C function that is serving as the ISR. Then,

code the function prototype immediately after the pragma.
apRNOVM^-page 70  2002 Microchip Technology Inc.

Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

9.4 WRITING THE INTERRUPT VECTOR

When using interrupts, you must generate the appropriate interrupt vector. This is

code that is located in special program memory locations and is used to branch to

your ISR.

PIC17 devices accomplish this by calling an install function with a function pointer to

the function that performs the interrupt service.

EXAMPLE 9-1:PIC17 INTERRUPT VECTOR

#include <p17CXX.h>

// --
// Interrupt service routines’ function prototypes.
// --
void INT_interrupt_service_routine(void);
void TMR0_interrupt_service_routine(void);
void T0CKI_interrupt_service_routine(void);
void PIV_interrupt_service_routine(void); // peripheral ISR

void Int_interrupts(void) {
// --
// Install the interrupt service routine for an external interrupt on
// the INT pin.
// --
Install_INT(INT_interrupt_service_routine);

// --
// Install the interrupt service routine for TMR0 Overflow interrupt.
// --
Install_TMR0(TMR0_interrupt_service_routine);

// --
// Install the interrupt service routine for an external interrupt on
// the T0CKI pin.
// --
Install_T0CKI(T0CKI_interrupt_service_routine);

// --
// Install the interrupt service routine for all peripheral interrupts.
// --
Install_PIV(PIV_interrupt_service_routine);
}

 2002 Microchip Technology Inc. apRNOVM^-page 71

MPLAB® C17 C Compiler User’s Guide
9.5 INTERRUPT SERVICE ROUTINE CONTEXT SAVING

Interrupts, by their very nature, can occur at unpredictable times. Therefore, the

interrupted code must be able to resume with the same machine state that was

present when the interrupt occurred.

To properly handle a return from interrupt, the setup (prolog) code for an ISR function

automatically saves the compiler-managed special function registers to a temporary

location for later restoration at the end of the ISR.

If the ISR uses file registers other than those mentioned in 9.3 “Writing an Interrupt

Service Routine”, they must be saved/restored. To determine which registers need to

be saved, you must examine the generated code and note which file registers are

used. However, unless normal functions are called from the interrupt, it is not

necessary to save data stored in compiler-generated temporaries, because interrupt

routines get their own set of temporaries.

It is recommended that interrupt handling be done in the assembler to reduce latency

and minimize overhead. However, there are several interrupt support macros

available (see 5.11 “Interrupt Support Macros”).

9.6 LATENCY

There are four elements that affect the number of cycles between the time the

interrupt source occurs and the execution of the first instruction of your ISR code.

These are:

Processor Servicing of Interrupt – The amount of time it takes the processor to

recognize the interrupt and branch to the first address of the interrupt vector.

Interrupt Vector Execution – The code at the interrupt vector that branches to the

ISR prolog code and saves off the ALUSTA and PCLATH values.

ISR Library Wrapper Code – MPLAB C17 implements interrupt handling using a

library wrapper routine that saves STATUS and BSR and branches to your ISR.

ISR Code – MPLAB C17 does not add any additional overhead to your ISR code.)

9.7 NESTING INTERRUPTS

MPLAB C17 does not support nested interrupts because of the mechanism used for

saving off the currently active registers (ALUSTA, PCLATH, BSR and WREG).

By default, PIC17 devices will prevent nested interrupts from occurring. Before the

ISR routine is invoked, the GLINTD bit of the CPUSTA register is automatically set to

disable further interrupts. Upon completion, the GLINTD bit is automatically cleared to

reenable interrupts. The programmer should not attempt to modify the GLINTD bit

within the ISR routine.

9.8 ENABLING/DISABLING INTERRUPTS

The PIC17 devices contain 18 sources of interrupts. All interrupts are initially disabled.

TABLE 9-1: ISR LATENCY TIMES (CYCLES)

Small Memory Model Large Memory Model

Processor servicing of interrupt * *

Interrupt vector execution 4 7

ISR prolog code 11 11

ISR code 0 0

* Refer to the device data sheet and interrupt source being used
apRNOVM^-page 72  2002 Microchip Technology Inc.

Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

For PIC17CXX devices, the CPUSTA register contains the Global Interrupt Disable

(GLINTD) bit. Setting this bit (value on RESET) disables all interrupts. You have the

capability to:

• Enable/disable global interrupts

• Enable/disable individual interrupt(s)

The details of how to enable and disable interrupts is discussed in Chapter 11.
 2002 Microchip Technology Inc. apRNOVM^-page 73

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 74  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 10. Writing Efficient Code
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

10.1 INTRODUCTION

This section discusses how to write efficient C code for MPLAB C17.

10.2 HIGHLIGHTS

Items discussed in this chapter are:

• Static Locals And Parameters

• Optimization Tips

10.3 STATIC LOCALS AND PARAMETERS

Normally, function parameters and local variables have a storage class of auto, are

allocated on the stack, and any initializers are executed whenever the function is

invoked. However, it is possible to declare both parameters and local variables to

have static storage class, meaning that they will be allocated globally. This allows for

more efficient code when accessing the variable. When parameters and locals are

declared static, the following implications arise:

• Initializers are only executed once, at application startup.

Therefore, if the function is depending on the variable being freshly initialized at each

function invocation, the initialization must be moved into the function body.

• Initializers must involve values that are known at startup.

For example, a static local variable cannot be assigned a value that involves a

parameter to the function or a function call. The compiler will enforce this restriction.

10.4 OPTIMIZATION TIPS

Because of the limited memory on microcontrollers, optimization becomes an issue as

code complexity increases.

1. Choose the correct memory model for your libraries and precompiled object files.

Don’t just pick the large memory model versions for inclusion in your project.

Consult 5.5 “Memory Models” for more information.

2. Use the linker script to group variables that are used together into the same data

memory bank to minimize bank switching. Intelligent use of the varlocate

pragma and the section directive can yield excellent results.

To minimizing bank switching, place the following in the linker script:

SECTION NAME=coeffs RAM=temperature

and the following in the program:

#pragma varlocate coeff

Use of section pragma’s to effectively manage RAM and ROM. Refer to

7.3 “Processor Header File” for information on the pragma directive. For examples of

use, see the MPLINK linker examples found in the MPASM™ User's Guide with

MPLINK™ and MPLIB™ (DS33014).
 2002 Microchip Technology Inc. apRNOVM^-page 75

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 76  2002 Microchip Technology Inc.

Part

1

MPLAB® C17 C COMPILER

USER’S GUIDE
Section 3 – References
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Chapter 11. Enabling/Disabling Interrupts...79

Chapter 12. Implementation-Defined Behavior....................................113

Chapter 13. MPLAB C17 Diagnostics ...117
 2002 Microchip Technology Inc. DS51290A-page 77

MPLAB® C17 C Compiler User’s Guide
apRNOVM^-page 78  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 11. Enabling/Disabling Interrupts
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

11.1 INTRODUCTION

This chapter discusses how to enable and disable interrupts for PIC17 devices.

11.2 HIGHLIGHTS

This chapter covers the following topics:

• Enabling Interrupts

• Disabling Interrupts

11.3 ENABLING INTERRUPTS

The PIC17 devices contain 18 sources of interrupts:

All Interrupts on the PIC17 devices are initially disabled. The CPUSTA register

contains the Global Interrupt Disable (GLINTD) bit. Setting this bit (value on RESET)

disables all interrupts. Enabling interrupts requires:

• Enabling global interrupts

• Enabling individual interrupt(s)

Non-Peripheral Peripheral

External Interrupt on T0CKI Pin
External Interrupt on INT Pin
TMR0 Overflow Interrupt

TMR1 Overflow Interrupt
TMR2 Overflow Interrupt
TMR3 Overflow Interrupt
PORTB Interrupt on Change
Capture1 Interrupt
Capture2 Interrupt
Capture3 Interrupt*
Capture4 Interrupt*
USART1 Transmit Interrupt
USART1 Receive Interrupt
USART2 Transmit Interrupt*
USART2 Receive Interrupt*
Synchronous Serial Port Interrupt*
Bus Collision Interrupt*
A/D Module Interrupt

* PIC17C7XX devices only.
 2002 Microchip Technology Inc. apRNOVM^-page 79

MPLAB® C17 C Compiler User’s Guide
11.3.1 Enabling Global Interrupts

To use interrupts on the PIC17 devices, you must enable global interrupts, which will

enable all unmasked interrupts. There are two ways to enable global interrupts.

Library Call

To enable global interrupts, you must include the int16.h header file and call the

Enable function.

#include <int16.h>

Enable();

Modifying Register Bits

To enable global interrupts, you must clear the GLINTD bit of the CPUSTA register.

CPUSTAbits.GLINTD = 0;

11.3.2 Enabling Individual Interrupt(s)

For PIC17C4X devices, enabling individual peripheral interrupts occurs through bits in

the Peripheral Interrupt Enable register (PIE). For PIC17C7XX devices, this occurs via

bits in the Peripheral Interrupt Enable register 1 (PIE1), and the Peripheral Interrupt

Enable register 2 (PIE2). The INTSTA register contains the enable bits for

non-peripheral interrupts.

11.3.2.1 EXTERNAL INTERRUPT ON T0CKI PIN

This interrupt is edge triggered. You can specify whether this interrupt occurs on the

rising or falling edge by setting or clearing, respectively, the TMR0 Status/Control

(T0STA) register’s Timer0 External Clock Input Edge Select (T0SE) bit – [T0STA<6>].

#ifdef _TRIGGER_ON_RISING_EDGE
T0STAbits.T0SE = 1;

#else
T0STAbits.T0SE = 0;

#endif

To enable the external interrupt on the T0CKI pin, you must clear the INTSTA

register’s External Interrupt on T0CKI Pin Flag (T0CKIF) bit – [INTSTA<6>]. This

clears any previous occurrences of external interrupts on the T0CKI pin. You must set

the INTSTA register’s External Interrupt on T0CKI Pin Enable (T0CKIE) bit –

[INTSTA<2>].

INTSTAbits.T0CKIF = 0;
INTSTAbits.T0CKIE = 1;
apRNOVM^-page 80  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

11.3.2.2 EXTERNAL INTERRUPT ON INT PIN

There are two ways to enable the external interrupt on the INT pin:

Library Call

To enable the external interrupt on the INT pin through a library call, you must include

the int16.h header file and call the OpenRA0INT function.

#include <int16.h>

#ifdef _TRIGGER_ON_RISING_EDGE
OpenRA0INT(INT_ON | INT_RISE_EDGE);

#else
OpenRA0INT(INT_ON | INT_FALL_EDGE);

#endif

Modifying Register Bits

This interrupt is edge triggered. You can specify whether this interrupt occurs on the

rising or the falling edge by setting or clearing, respectively, the TMR0 Status/Control

(T0STA) register’s RA0/INT Pin Interrupt Edge Select (INTEDG) bit – [T0STA<7>].

#ifdef _TRIGGER_ON_RISING_EDGE
T0STAbits.INTEDG = 1;

#else
T0STAbits.INTEDG = 0;

#endif

To enable the external interrupt on the INT pin, you must clear the INTSTA register’s

External Interrupt on RA0/INT Pin Flag (INTF) bit – [INTSTA<4>]. This clears any

previous occurrence of external interrupts on the RA0/INT pin. You must set the

INTSTA register’s External Interrupt on RA0/INT Pin Enable (INTE) bit – [INTSTA<0>].

INTSTAbits.INTF = 0;
INTSTAbits.INTE = 1;
 2002 Microchip Technology Inc. apRNOVM^-page 81

MPLAB® C17 C Compiler User’s Guide
11.3.2.3 TMR0 OVERFLOW INTERRUPT

There are two ways to enable the TMR0 overflow interrupt:

Library Call

To enable the TMR0 Overflow Interrupt through a library call, you must include the

timers16.h header file and call the OpenTimer0 function. The OpenTimer0 function

also allows you to select a prescale selection value for the timer, as well as the source

(external/internal) of the clock.

The following table outlines the #define’s that exist in timers16.h header file for

prescale selection and the prescale value that is selected:

The following table outlines the #define’s that exist in timers16.h header file for

selecting an external or internal clock source:

#include <timers16.h>

// Enable the TMR0 Overflow interrupt on either the
// rising or falling edge. Set the prescale value to
// 1:8. Use an external clock.

#ifdef _TRIGGER_ON_RISING_EDGE
OpenTimer0(TIMER_INT_ON | T0_EDGE_RISE |

T0_PS_1_8 | T0_SOURCE_EXT);
#else

OpenTimer0(TIMER_INT_ON | T0_EDGE_FALL |
T0_PS_1_8 | T0_SOURCE_EXT);

#endif

#define Prescale Value

T0_PS_1_1 1:1

T0_PS_1_2 1:2

T0_PS_1_4 1:4

T0_PS_1_8 1:8

T0_PS_1_16 1:16

T0_PS_1_32 1:32

T0_PS_1_64 1:64

T0_PS_1_128 1:128

T0_PS_1_256 1:256

#define Prescale Value

T0_SOURCE_EXT External (I/O pin)

T0_SOURCE_INT Internal (TOSC)
apRNOVM^-page 82  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Modifying Register Bits

This interrupt is edge triggered. You can specify whether this interrupt occurs on the

rising or the falling edge by setting or clearing, respectively, the TMR0 Status/Control

(T0STA) register’s Timer0 External Clock Input Edge Select (T0SE) bit – [T0STA<6>].

#ifdef _TRIGGER_ON_RISING_EDGE
T0STAbits.T0SE = 1;

#else
T0STAbits.T0SE = 0;

#endif

To select the timer’s prescale value, you must set the Timer0 Prescale Selection

(T0PS3:T0PS0) bits – [T0STA<4>:T0STA<1>]. The following table outlines the values

of these bits and the prescale value that is selected:

To set Timer0’s prescale value to 1:8, perform the following:

T0STA = T0STA & 0b11100001; // Reset the prescale value
T0STA = T0STA | 0b00000110;

To set Timer0’s prescale value to 1:64, perform the following:

T0STA = T0STA & 0b11100001; // Reset the prescale value
T0STA = T0STA | 0b00001100;

To select the source (external/internal) of the clock, you must set (internal instruction

clock cycle) or clear (external clock input on the T0CKI pin) the Timer0 Clock Source

Select (T0CS) bit – [T0STA<5>].

#ifdef _EXTERNAL_CLOCK
T0STAbits.T0CS = 0;

#else
T0STAbits.T0CS = 1;

#endif

To enable the TMR0 overflow interrupt, you must clear the INTSTA register’s TMR0

Overflow Interrupt Flag (T0IF) bit – [INTSTA<5>]. This clears any previous

occurrences of TMR0 overflow interrupts. You must set the INTSTA register’s TMR0

Overflow Interrupt Enable (T0IE) bit – [INTSTA<1>].

INTSTAbits.T0IF = 0;
INTSTAbits.T0IE = 1;

To reset Timer0, you must clear the TMR0L and TMR0H registers.

TMR0L = 0;
TMR0H = 0;

T0PS3:T0PS0 Prescale Value

0000 1:1

0001 1:2

0010 1:4

0011 1:8

0100 1:16

0101 1:32

0110 1:64

0111 1:128

1xxx 1:256
 2002 Microchip Technology Inc. apRNOVM^-page 83

MPLAB® C17 C Compiler User’s Guide
11.3.2.4 TMR1 OVERFLOW INTERRUPT

There are two ways to enable the TMR1 overflow interrupt:

Library Call

To enable the TMR1 Overflow Interrupt through a library call, you must include the

timers16.h header file and call the OpenTimer1 function. The OpenTimer1 function

also allows you to select the source (external/internal) of the clock, as well as whether

to treat Timer1 and Timer2 as individual 8-bit timers or as one 16-bit timer.

The following table outlines the #define’s that exist in timers16.h header file for

selecting an external or internal clock source:

The following table outlines the #define’s that exist in timers16.h header file for

specifying whether to treat Timer1 and Timer2 as individual 8-bit timers or as one

16-bit timer:

#include <timers16.h>

// Enable the TMR1 Overflow interrupt.
// Use Timer1 as an individual 8-bit timer.
#ifdef _EXTERNAL_CLOCK
OpenTimer1(TIMER_INT_ON | T1_SOURCE_EXT | T1_T2_8BIT);

#else
OpenTimer1(TIMER_INT_ON | T1_SOURCE_INT | T1_T2_8BIT);

#endif

Modifying Register Bits

To select the source (external/internal) of the clock, you must clear (internal clock) or

set (external clock input on the TCLK12 pin) the Timer1 Clock Source Select

(TMR1CS) bit – [TCON1<0>].

#ifdef _EXTERNAL_CLOCK
TCON1bits.TMR1CS = 1;

#else
TCON1bits.TMR1CS = 0;

#endif

To specify whether to treat Timer1 and Timer2 as individual 8-bit timers or as one

16-bit timer, you must clear or set, respectively, the Timer2:Timer1 Mode Select (T16)

bit – [TCON1<3>].

#ifdef _16BIT_CLOCK
TCON1bits.T16 = 1;

#else
TCON1bits.T16 = 0;

#endif

#define Clock Source

T1_SOURCE_EXT External (I/O pin)

T1_SOURCE_INT Internal (TOSC)

#define Timer2:Timer1 Mode

T1_T2_8BIT Timer1 and Timer2 individual 8-bit timers

T1_T2_16BIT Timer1 and Timer2 16-bit single timer
apRNOVM^-page 84  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

PIC17C7XX DEVICES

To enable the TMR1 overflow interrupt for PIC17C7XX devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) TMR1 Interrupt Flag

(TMR1IF) bit – [PIR1<4>].

• The Timer1 On (TMR1ON) bit – [TCON2<0>]. This stops the timer until you are

ready to use it. See below for how to start the timer.

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of TMR1 overflow interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) TMR1 Interrupt Enable

(TMR1IE) bit – [PIE1<4>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.TMR1ON = 0;
PIR1bits.TMR1IF = 0;
PIE1bits.TMR1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

PIC17C4X DEVICES

To enable the TMR1 overflow interrupt for PIC17C4X devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register’s (PIR) TMR1 Interrupt Flag (TMR1IF)

bit – [PIR<4>].

• The Timer1 On (TMR1ON) bit – [TCON2<0>]. This stops the timer until you are

ready to use it. See below for how to start the timer.

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences ofTMR1 overflow interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) TMR1 Interrupt Enable

(TMR1IE) bit – [PIE<4>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.TMR1ON = 0;
PIRbits.TMR1IF = 0;
PIEbits.TMR1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;
 2002 Microchip Technology Inc. apRNOVM^-page 85

MPLAB® C17 C Compiler User’s Guide
ALL PIC17 DEVICES

To reset Timer1, clear the TMR1 register.

TMR1 = 0;
#ifdef _16BIT_CLOCK

TMR2 = 0;
#endif

To start Timer1, set the Timer1 On (TMR1ON) bit – [TCON2<0>].

TCON2bits.TMR1ON = 1;
#ifdef _16BIT_CLOCK
TCON2bits.TMR2ON = 1;
#endif

11.3.2.5 TMR2 OVERFLOW INTERRUPT

There are two ways to enable the TMR2 overflow interrupt:

Library Call

To enable the TMR2 Overflow Interrupt through a library call, you must include the

timers16.h header file and call the OpenTimer2 function. The OpenTimer2 function

also allows you to select the source (external/internal) of the clock.

The following table outlines the #define’s that exist in timers16.h header file for

selecting an external or internal clock source:

#include <timers16.h>

// Enable the TMR2 Overflow interrupt.
#ifdef _EXTERNAL_CLOCK

OpenTimer2(TIMER_INT_ON | T2_SOURCE_EXT);
#else

OpenTimer2(TIMER_INT_ON | T2_SOURCE_INT);
#endif

Modifying Register Bits

To select the source (external/internal) of the clock, you must clear (internal clock) or

set (external clock input on the TCLK12 pin) the Timer2 Clock Source Select

(TMR2CS) bit – [TCON1<1>].

#ifdef _EXTERNAL_CLOCK
TCON1bits.TMR2CS = 1;

#else
TCON1bits.TMR2CS = 0;

#endif

Note: If you are using Timer1 and Timer2 as a single 16-bit timer, you must also

clear the TMR2 register.

Note: If you are using Timer1 and Timer2 as a single 16-bit timer, you must also

set the Timer2 On (TMR2ON) bit – [TCON2<1>].

#define Clock Source

T2_SOURCE_EXT External (I/O pin)

T2_SOURCE_INT Internal (TOSC)
apRNOVM^-page 86  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

PIC17C7XX DEVICES

To enable the TMR2 overflow interrupt for PIC17C7XX devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) TMR2 Interrupt Flag

(TMR2IF) bit – [PIR1<5>].

• The Timer2 On (TMR2ON) bit – [TCON2<1>]. This stops the timer until you are

ready to use it. See below for how to start the timer.

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of TMR2 overflow interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) TMR2 Interrupt Enable

(TMR2IE) bit – [PIE1<5>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.TMR2ON = 0;
PIR1bits.TMR2IF = 0;
PIE1bits.TMR2IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

PIC17C4X DEVICES

To enable the TMR2 overflow interrupt for PIC17C4X devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register’s (PIR) TMR2 Interrupt Flag (TMR2IF)

bit – [PIR<5>].

• The Timer2 On (TMR2ON) bit – [TCON2<1>]. This stops the timer until you are

ready to use it. See below for how to start the timer.

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of TMR2 overflow interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) TMR2 Interrupt Enable

(TMR2IE) bit – [PIE<5>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.TMR2ON = 0;
PIRbits.TMR2IF = 0;
PIEbits.TMR2IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

ALL PIC17 DEVICES

To reset Timer2, clear the TMR2 register.

TMR2 = 0;

To start Timer2, set the Timer2 On (TMR2ON) bit – [TCON2<1>].

TCON2bits.TMR2ON = 1;
 2002 Microchip Technology Inc. apRNOVM^-page 87

MPLAB® C17 C Compiler User’s Guide
11.3.2.6 TMR3 OVERFLOW INTERRUPT

There are two ways to enable the TMR3 overflow interrupt:

Library Call

To enable the TMR3 Overflow Interrupt through a library call, you must include the

timers16.h header file and call the OpenTimer3 function. The OpenTimer3 function

also allows you to select the source (external/internal) of the clock.

The following table outlines the #define’s that exist in timers16.h header file for

selecting an external or internal clock source:

#include <timers16.h>

// Enable the TMR3 Overflow interrupt.
#ifdef _EXTERNAL_CLOCK

OpenTimer3(TIMER_INT_ON | T3_SOURCE_EXT);
#else

OpenTimer3(TIMER_INT_ON | T3_SOURCE_INT);
#endif

Modifying Register Bits

To select the source (external/internal) of the clock, you must clear (internal clock) or

set (external clock input on the TCLK3 pin) the Timer3 Clock Source Select

(TMR3CS) bit – [TCON1<2>].

#ifdef _EXTERNAL_CLOCK
TCON1bits.TMR3CS = 1;

#else
TCON1bits.TMR3CS = 0;

#endif

PIC17C7XX DEVICES

To enable the TMR3 overflow interrupt for PIC17C7XX devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) TMR3 Interrupt Flag

(TMR3IF) bit – [PIR1<6>].

• The Timer3 On (TMR3ON) bit – [TCON2<2>]. This stops the timer until you are

ready to use it. See below for how to start the timer.

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of TMR3 overflow interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) TMR3 Interrupt Enable

(TMR3IE) bit – [PIE1<6>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.TMR3ON = 0;
PIR1bits.TMR3IF = 0;
PIE1bits.TMR3IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

#define Clock Source

T3_SOURCE_EXT External (I/O pin)

T3_SOURCE_INT Internal (TOSC)
apRNOVM^-page 88  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

PIC17C4X DEVICES

To enable the TMR3 overflow interrupt for PIC17C4X devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register’s (PIR) TMR3 Interrupt Flag (TMR3IF)

bit – [PIR<6>].

• The Timer3 On (TMR3ON) bit – [TCON2<2>]. This stops the timer until you are

ready to use it. See below for how to start the timer.

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of TMR3 overflow interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) TMR3 Interrupt Enable

(TMR3IE) bit – [PIE<6>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.TMR3ON = 0;
PIRbits.TMR3IF = 0;
PIEbits.TMR3IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

ALL PIC17 DEVICES

To reset Timer3, you must clear the TMR3L and TMR3H registers.

TMR3L = 0;
TMR3H = 0;

To start Timer3, set the Timer3 On (TMR3ON) bit – [TCON2<2>].

TCON2bits.TMR3ON = 1;

11.3.2.7 PORTB INTERRUPT ON CHANGE

There are two ways to enable the PORTB Interrupt on Change:

Library Call

To enable the PORTB interrupt on change through a library call, you must include the

port16.h header file and call the OpenPORTB function.

#include <port16.h>
OpenPORTB(PORTB_CHANGE_INT_ON);

Modifying Register Bits

PIC17C7XX DEVICES

To enable the PORTB interrupt on change for PIC17C7XX devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) PORTB Interrupt on

Change Flag (RBIF) bit – [PIR1<7>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of PORTB interrupt. In addition, you must set the

following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) PORTB Interrupt on

Change Enable (RBIE) bit – [PIE1<7>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIR1bits.RBIF = 0;
PIE1bits.RBIE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;
 2002 Microchip Technology Inc. apRNOVM^-page 89

MPLAB® C17 C Compiler User’s Guide
PIC17C4X DEVICES

To enable the PORTB interrupt on change for PIC17C4X devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register’s (PIR) PORTB Interrupt on Change

Flag (RBIF) bit – [PIR<7>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of PORTB interrupt. In addition, you must set the

following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) PORTB Interrupt on Change

Enable (RBIE) bit – [PIE<7>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIRbits.RBIF = 0;
PIEbits.RBIE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.8 CAPTURE1 INTERRUPT

There are two ways to enable the Capture1 Interrupt:

Library Call

To enable the Capture1 Interrupt through a library call, you must include the

captur16.h header file and call the OpenCapture1 function. The OpenCapture1

function also allows you to select the edge on which the interrupt occurs.

The following table outlines the #define’s that exist in captur16.h header file for

edge selection:

#include <captur16.h>

// Enable the Capture1 Interrupt on the specified edge
#ifdef _TRIGGER_ON_EVERY_RISING_EDGE
OpenCapture1(CAPTURE_INT_ON | C1_EVERY_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_FALLING_EDGE
OpenCapture1(CAPTURE_INT_ON | C1_EVERY_FALL_EDGE);

#elif defined _TRIGGER_ON_EVERY_FOURTH_RISING_EDGE
OpenCapture1(CAPTURE_INT_ON | C1_EVERY_4_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_SIXTEENTH_RISING_EDGE
OpenCapture1(CAPTURE_INT_ON | C1_EVERY_16_RISE_EDGE);

#endif

#define Edge Selection

C1_EVERY_FALL_EDGE Every falling edge

C1_EVERY_RISE_EDGE Every rising edge

C1_EVERY_4_RISE_EDGE Every fourth rising edge

C1_EVERY_16_RISE_EDGE Every sixteenth rising edge
apRNOVM^-page 90  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Modifying Register Bits

This interrupt is edge triggered. You can specify whether this interrupt occurs on every

rising or falling edge, every fourth rising edge, or every sixteenth rising edge. To select

the edge, you must set the Capture1 Mode Select (CA1ED1:CA1ED0) bits –

[TCON1<5>:TCON1<4>]. The following table outlines the values of these bits and the

edge that is selected:

To set edge selection to every rising edge, perform the following:

TCON1 = TCON1 & 0b11001111; // Reset Edge Selection
TCON1 = TCON1 | 0b00010000;

To set edge selection to every fourth rising edge, perform the following:

TCON1 = TCON1 & 0b11001111; // Reset Edge Selection
TCON1 = TCON1 | 0b00100000;

PIC17C7XX DEVICES

To enable the Capture1 interrupt for PIC17C7XX devices, you must clear the following

bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) Capture1 Interrupt Flag

(CA1IF) bit – [PIR1<2>].

• The Capture1 Overflow Status (CA1OVF) bit – [TCON2<7>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of Capture1 interrupts. In addition, you must set

the following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) Capture1 Interrupt

Enable (CA1IE) bit – [PIE1<2>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.CA1OVF = 0;
PIR1bits.CA1IF = 0;
PIE1bits.CA1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

CA1ED1:CA1ED0 Edge Selection

00 Every falling edge

01 Every rising edge

10 Every fourth rising edge

11 Every sixteenth rising edge
 2002 Microchip Technology Inc. apRNOVM^-page 91

MPLAB® C17 C Compiler User’s Guide
PIC17C4X DEVICES

To enable the Capture1 interrupt for PIC17C4X devices, you must clear the following

bit flags:

• The Peripheral Interrupt Request Register’s (PIR) Capture1 Interrupt Flag

(CA1IF) bit – [PIR<2>].

• The Capture1 Overflow Status (CA1OVF) bit – [TCON2<7>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of Capture1 interrupts. In addition, you must set

the following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) Capture1 Interrupt Enable

(CA1IE) bit – [PIE<2>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.CA1OVF = 0;
PIRbits.CA1IF = 0;
PIEbits.CA1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.9 CAPTURE2 INTERRUPT

There are two ways to enable the Capture2 Interrupt:

Library Call

To enable the Capture2 Interrupt through a library call, you must include the

captur16.h header file and call the OpenCapture2 function. The OpenCapture2

function also allows you to select the edge on which the interrupt occurs.

The following table outlines the #define’s that exist in captur16.h header file for

edge selection:

#include <captur16.h>

// Enable the Capture2 Interrupt on the specified edge
#ifdef _TRIGGER_ON_EVERY_RISING_EDGE
OpenCapture2(CAPTURE_INT_ON | C2_EVERY_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_FALLING_EDGE
OpenCapture2(CAPTURE_INT_ON | C2_EVERY_FALL_EDGE);

#elif defined _TRIGGER_ON_EVERY_FOURTH_RISING_EDGE
OpenCapture2(CAPTURE_INT_ON | C2_EVERY_4_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_SIXTEENTH_RISING_EDGE
OpenCapture2(CAPTURE_INT_ON | C2_EVERY_16_RISE_EDGE);

#endif

#define Edge Selection

C2_EVERY_FALL_EDGE Every falling edge

C2_EVERY_RISE_EDGE Every rising edge

C2_EVERY_4_RISE_EDGE Every fourth rising edge

C2_EVERY_16_RISE_EDGE Every sixteenth rising edge
apRNOVM^-page 92  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Modifying Register Bits

This interrupt is edge triggered. You can specify whether this interrupt occurs on every

rising or falling edge, every fourth rising edge, or every sixteenth rising edge. To select

the edge, you must set the Capture2 Mode Select (CA2ED1:CA2ED0) bits –

[TCON1<7>:TCON1<6>]. The following table outlines the values of these bits and the

edge that is selected:

To set edge selection to every rising edge, perform the following:

TCON1 = TCON1 & 0b00111111; // Reset Edge Selection
TCON1 = TCON1 | 0b01000000;

To set edge selection to every fourth rising edge, perform the following:

TCON1 = TCON1 & 0b00111111; // Reset Edge Selection
TCON1 = TCON1 | 0b10000000;

PIC17C7XX DEVICES

To enable the Capture2 interrupt for PIC17C7XX devices, you must clear the following

bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) Capture2 Interrupt Flag

(CA2IF) bit – [PIR1<3>].

• The Capture2 Overflow Status (CA2OVF) bit – [TCON2<7>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of Capture2 interrupts. In addition, you must set

the following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) Capture2 Interrupt

Enable (CA2IE) bit – [PIE1<3>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.CA2OVF = 0;
PIR1bits.CA2IF = 0;
PIE1bits.CA2IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

CA2ED1:CA2ED0 Edge Selection

00 Every falling edge

01 Every rising edge

10 Every fourth rising edge

11 Every sixteenth rising edge
 2002 Microchip Technology Inc. apRNOVM^-page 93

MPLAB® C17 C Compiler User’s Guide
PIC17C4X DEVICES

To enable the Capture2 interrupt for PIC17C4X devices, you must clear the following

bit flags:

• The Peripheral Interrupt Request Register’s (PIR) Capture2 Interrupt Flag

(CA2IF) bit – [PIR<3>].

• The Capture2 Overflow Status (CA2OVF) bit – [TCON2<7>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of Capture2 interrupts. In addition, you must set

the following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) Capture2 Interrupt Enable

(CA2IE) bit – [PIE<3>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON2bits.CA2OVF = 0;
PIRbits.CA2IF = 0;
PIEbits.CA2IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.10 CAPTURE3 INTERRUPT

There are two ways to enable the Capture3 Interrupt:

Library Call

To enable the Capture3 Interrupt through a library call, you must include the

captur16.h header file and call the OpenCapture3 function. The OpenCapture3

function also allows you to select the edge on which the interrupt occurs.

The following table outlines the #define’s that exist in captur16.h header file for

edge selection:

#include <captur16.h>

// Enable the Capture3 Interrupt on the specified edge
#ifdef _TRIGGER_ON_EVERY_RISING_EDGE
OpenCapture3(CAPTURE_INT_ON | C3_EVERY_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_FALLING_EDGE
OpenCapture3(CAPTURE_INT_ON | C3_EVERY_FALL_EDGE);

#elif defined _TRIGGER_ON_EVERY_FOURTH_RISING_EDGE
OpenCapture3(CAPTURE_INT_ON | C3_EVERY_4_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_SIXTEENTH_RISING_EDGE
OpenCapture3(CAPTURE_INT_ON | C3_EVERY_16_RISE_EDGE);

#endif

Note: PIC17C7XX devices only.

#define Edge Selection

C3_EVERY_FALL_EDGE Every falling edge

C3_EVERY_RISE_EDGE Every rising edge

C3_EVERY_4_RISE_EDGE Every fourth rising edge

C3_EVERY_16_RISE_EDGE Every sixteenth rising edge
apRNOVM^-page 94  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Modifying Register Bits

This interrupt is edge triggered. You can specify whether this interrupt occurs on every

rising or falling edge, every fourth rising edge, or every sixteenth rising edge. To select

the edge, you must set the Capture3 Mode Select (CA3ED1:CA3ED0) bits –

[TCON3<2>:TCON1<1>]. The following table outlines the values of these bits and the

edge that is selected:

To set edge selection to every rising edge, perform the following:

TCON3 = TCON3 & 0b11111001; // Reset Edge Selection
TCON3 = TCON3 | 0b00000010;

To set edge selection to every fourth rising edge, perform the following:

TCON3 = TCON3 & 0b11111001; // Reset Edge Selection
TCON3 = TCON3 | 0b00000100;

To enable the Capture3 interrupt, you must clear the following bit flags:

• The Peripheral Interrupt Request Register2’s (PIR2’s) Capture3 Interrupt Flag

(CA3IF) bit – [PIR2<2>].

• The Capture3 Overflow Status (CA3OVF) bit – [TCON3<5>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of Capture3 interrupts. In addition, you must set

the following enable bits:

- The Peripheral Interrupt Enable Register2’s (PIE2’s) Capture3 Interrupt

Enable (CA3IE) bit – [PIE2<2>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON3bits.CA3OVF = 0;
PIR2bits.CA3IF = 0;
PIE2bits.CA3IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.11 CAPTURE4 INTERRUPT

There are two ways to enable the Capture4 Interrupt:

CA3ED1:CA3ED0 Edge Selection

00 Every falling edge

01 Every rising edge

10 Every fourth rising edge

11 Every sixteenth rising edge

Note: PIC17C7XX devices only.
 2002 Microchip Technology Inc. apRNOVM^-page 95

MPLAB® C17 C Compiler User’s Guide
Library Call

To enable the Capture4 Interrupt through a library call, you must include the

captur16.h header file and call the OpenCapture4 function. The OpenCapture4

function also allows you to select the edge on which the interrupt occurs.

The following table outlines the #define’s that exist in captur16.h header file for

edge selection:

#include <captur16.h>

// Enable the Capture4 Interrupt on the specified edge
#ifdef _TRIGGER_ON_EVERY_RISING_EDGE
OpenCapture4(CAPTURE_INT_ON | C4_EVERY_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_FALLING_EDGE
OpenCapture4(CAPTURE_INT_ON | C4_EVERY_FALL_EDGE);

#elif defined _TRIGGER_ON_EVERY_FOURTH_RISING_EDGE
OpenCapture4(CAPTURE_INT_ON | C4_EVERY_4_RISE_EDGE);

#elif defined _TRIGGER_ON_EVERY_SIXTEENTH_RISING_EDGE
OpenCapture4(CAPTURE_INT_ON | C4_EVERY_16_RISE_EDGE);

#endif

Modifying Register Bits

This interrupt is edge triggered. You can specify whether this interrupt occurs on every

rising or falling edge, every fourth rising edge, or every sixteenth rising edge. To select

the edge, you must set the Capture4 Mode Select (CA4ED1:CA4ED0) bits –

[TCON3<4>:TCON1<3>]. The following table outlines the values of these bits and the

edge that is selected:

To set edge selection to every rising edge, perform the following:

TCON3 = TCON3 & 0b11100111; // Reset Edge Selection
TCON3 = TCON3 | 0b00001000;

To set edge selection to every fourth rising edge, perform the following:

TCON3 = TCON3 & 0b11100111; // Reset Edge Selection
TCON3 = TCON3 | 0b00010000;

#define Edge Selection

C4_EVERY_FALL_EDGE Every falling edge

C4_EVERY_RISE_EDGE Every rising edge

C4_EVERY_4_RISE_EDGE Every fourth rising edge

C4_EVERY_16_RISE_EDGE Every sixteenth rising edge

CA4ED1:CA4ED0 Edge Selection

00 Every falling edge

01 Every rising edge

10 Every fourth rising edge

11 Every sixteenth rising edge
apRNOVM^-page 96  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

To enable the Capture4 interrupt, you must clear the following bit flags:

• The Peripheral Interrupt Request Register2’s (PIR2’s) Capture4 Interrupt Flag

(CA4IF) bit – [PIR2<3>].

• The Capture4 Overflow Status (CA4OVF) bit – [TCON3<6>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of Capture4 interrupts. In addition, you must set

the following enable bits:

- The Peripheral Interrupt Enable Register2’s (PIE2’s) Capture4 Interrupt

Enable (CA4IE) bit – [PIE2<3>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

TCON3bits.CA4OVF = 0;
PIR2bits.CA4IF = 0;
PIE2bits.CA4IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.12 USART1 TRANSMIT INTERRUPT

There are two ways to enable the USART1 Transmit Interrupt:

Library Call

To enable the USART1 Transmit Interrupt through a library call, you must include the

usart16.h header file and call the OpenUSART1 function. The OpenUSART1 function

also allows you to configure the USART1. For more information on how to configure

the USART1, please refer to the MPLAB CXX Reference Guide (DS51224). The

following code snippet only shows how you would go about enabling the USART1

Transmit Interrupt.

#include <usart16.h>

OpenUSART1(USART_TX_INT_ON, 25);

Modifying Register Bits

This section only discusses the bits necessary to enable the USART1 Transmit

Interrupt. For information on configuring the USART1, please refer to the section in

the appropriate data sheet on the Transmit Status and Control Register (TXSTA).

PIC17C7XX DEVICES

To enable the USART1 transmit interrupt for PIC17C7XX devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) USART1 Transmit Interrupt

Flag (TX1IF) bit – [PIR1<1>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of USART1 transmit interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) USART1 Transmit

Interrupt Enable (TX1IE) bit – [PIE1<1>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIR1bits.TX1IF = 0;
PIE1bits.TX1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;
 2002 Microchip Technology Inc. apRNOVM^-page 97

MPLAB® C17 C Compiler User’s Guide
PIC17C4X DEVICES

To enable the USART1 transmit interrupt for PIC17C4X devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register’s (PIR) USART1 Transmit Interrupt

Flag (TX1IF) bit – [PIR<1>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of USART1 transmit interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) USART1 Transmit Interrupt

Enable (TX1IE) bit – [PIE<1>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIRbits.TX1IF = 0;
PIEbits.TX1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.13 USART1 RECEIVE INTERRUPT

There are two ways to enable the USART1 Receive Interrupt:

Library Call

To enable the USART1 Receive Interrupt through a library call, you must include the

usart16.h header file and call the OpenUSART1 function. The OpenUSART1 function

also allows you to configure the USART1. For more information on how to configure

the USART1, refer to the MPLAB C17 C Compiler Libraries (DS51296). The following

code snippet only shows how to go about enabling the USART1 Receive Interrupt.

#include <usart16.h>

OpenUSART1(USART_RX_INT_ON, 25);

Modifying Register Bits

This section only discusses the bits necessary to enable the USART1 Receive

Interrupt. For information on configuring the USART1, refer to the section in the

appropriate data sheet on the Receive Status and Control Register (RCSTA).

PIC17C7XX DEVICES

To enable the USART1 receive interrupt for PIC17C7XX devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register1’s (PIR1’s) USART1 Receive Interrupt

Flag (RC1IF) bit – [PIR1<0>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of USART1 receive interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register1’s (PIE1’s) USART1 Receive

Interrupt Enable (RC1IE) bit – [PIE1<0>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIR1bits.RC1IF = 0;
PIE1bits.RC1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;
apRNOVM^-page 98  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

PIC17C4X DEVICES

To enable the USART1 receive interrupt for PIC17C4X devices, you must clear the

following bit flags:

• The Peripheral Interrupt Request Register’s (PIR) USART1 Receive Interrupt Flag

(RC1IF) bit – [PIR<0>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of USART1 receive interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register’s (PIE) USART1 Receive Interrupt

Enable (RC1IE) bit – [PIE<0>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIRbits.RC1IF = 0;
PIEbits.RC1IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.14 USART2 TRANSMIT INTERRUPT

There are two ways to enable the USART2 Transmit Interrupt:

Library Call

To enable the USART2 Transmit Interrupt through a library call, you must include the

usart16.h header file and call the OpenUSART2 function. The OpenUSART2 function

also allows you to configure the USART2. For more information on how to configure

the USART2, refer to the MPLAB C17 C Compiler Libraries (DS51296). The following

code snippet only shows how to go about enabling the USART1 Transmit Interrupt.

#include <usart16.h>

OpenUSART2(USART_TX_INT_ON, 25);

Modifying Register Bits

This section only discusses the bits necessary to enable the USART2 Transmit

Interrupt. For information on configuring the USART2, please refer to the section in

the appropriate data sheet on the Transmit Status and Control Register (TXSTA2).

To enable the USART2 transmit interrupt, you must clear the following bit flags:

• The Peripheral Interrupt Request Register2’s (PIR2’s) USART2 Transmit Interrupt

Flag (TX2IF) bit – [PIR2<1>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of USART2 transmit interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register2’s (PIE2’s) USART2 Transmit

Interrupt Enable (TX2IE) bit – [PIE2<1>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIR2bits.TX2IF = 0;
PIE2bits.TX2IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

Note: PIC17C7XX devices only.
 2002 Microchip Technology Inc. apRNOVM^-page 99

MPLAB® C17 C Compiler User’s Guide
11.3.2.15 USART2 RECEIVE INTERRUPT

There are two ways to enable the USART2 Receive Interrupt:

Library Call

To enable the USART2 Receive Interrupt through a library call, you must include the

usart16.h header file and call the OpenUSART2 function. The OpenUSART2 function

also allows you to configure the USART2. For more information on how to configure

the USART2, refer to the MPLAB C17 C Compiler Libraries (DS51296). The following

code snippet only shows how to go about enabling the USART2 Receive Interrupt.

#include <usart16.h>

OpenUSART2(USART_RX_INT_ON, 25);

Modifying Register Bits

This section only discusses the bits necessary to enable the USART2 Receive

Interrupt. For information on configuring the USART2, please refer to the section in

the PIC17C7XX Data Sheet on the Receive Status and Control Register (RCSTA2).

To enable the USART2 receive interrupt, you must clear the following bit flags:

• The Peripheral Interrupt Request Register2’s (PIR2’s) USART2 Receive Interrupt

Flag (RC2IF) bit – [PIR2<0>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of USART2 receive interrupts. In addition, you

must set the following enable bits:

- The Peripheral Interrupt Enable Register2’s (PIE2’s) USART2 Receive Inter-

rupt Enable (RC2IE) bit – [PIE2<0>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIR2bits.RC2IF = 0;
PIE2bits.RC2IE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.16 SYNCHRONOUS SERIAL PORT INTERRUPT

To enable the Synchronous Serial Port Interrupt, you must clear the following bit flags:

• The Peripheral Interrupt Request Register2’s (PIR2’s) Synchronous Serial Port

Interrupt Flag (SSPIF) bit – [PIR2<7>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of synchronous serial port interrupts. In addition,

you must set the following enable bits:

- The Peripheral Interrupt Enable Register2’s (PIE2’s) Synchronous Serial Port

Interrupt Enable (SSPIE) bit – [PIE2<7>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

- PIR2bits.SSPIF = 0;

- PIE2bits.SSPIE = 1;

- INTSTAbits.PEIF = 0;

- INTSTAbits.PEIE = 1;

Note: PIC17C7XX devices only.

Note: PIC17C7XX devices only.
apRNOVM^-page 100  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

11.3.2.17 BUS COLLISION INTERRUPT *

To enable the Bus Collision Interrupt, you must clear the following bit flags:

• The Peripheral Interrupt Request Register2’s (PIR2’s) Bus Collision Interrupt Flag

(BCLIF) bit – [PIR2<6>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of bus collision interrupts. In addition, you must

set the following enable bits:

- The Peripheral Interrupt Enable Register2’s (PIE2’s) Bus Collision Interrupt

Enable (BCLIE) bit – [PIE2<6>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIR2bits.BCLIF = 0;
PIE2bits.BCLIE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

11.3.2.18 A/D MODULE INTERRUPT

There are two ways to enable the A/D Module Interrupt:

Library Call

To enable the A/D Module Interrupt through a library call, you must include the

adc16.h header file and call the OpenADC function. The OpenADC function also allows

you to configure the A/D converter. For more information on how to configure the A/D

converter, refer to the MPLAB C17 C Compiler Libraries (DS51296). The following

code snippet only shows how to go about enabling the A/D Module Interrupt.

#include <adc16.h>

OpenADC(ADC_INT_ON, ADC_CH_0);

Modifying Register Bits

This section only discusses the bits necessary to enable the A/D Module Interrupt. For

information on configuring the A/D Converter, please refer to the section in the

PIC17C7XX Data Sheet on the Analog-to-Digital converter.

To enable the A/D Module Interrupt, you must clear the following bit flags:

• The Peripheral Interrupt Request Register2’s (PIR2’s) A/D Module Interrupt Flag

(ADIF) bit – [PIR2<5>].

• The INTSTA register’s Peripheral Interrupt Flag (PEIF) bit – [INTSTA<7>]. This

clears any previous occurrences of A/D module interrupts. In addition, you must

set the following enable bits:

- The Peripheral Interrupt Enable Register2’s (PIE2’s) A/D Module Interrupt

Enable (ADIE) bit – [PIE2<5>].

- The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIR2bits.ADIF = 0;
PIE2bits.ADIE = 1;
INTSTAbits.PEIF = 0;
INTSTAbits.PEIE = 1;

Note: PIC17C7XX devices only.

Note: PIC17C7XX devices only.
 2002 Microchip Technology Inc. apRNOVM^-page 101

MPLAB® C17 C Compiler User’s Guide
11.4 DISABLING INTERRUPTS

The PIC17 devices contain 18 sources of interrupts. See 11.3 “Enabling Interrupts” for

a list of these interrupts.

All Interrupts on the PIC17 devices are initially disabled. The CPUSTA register

contains the Global Interrupt Disable (GLINTD) bit. When this bit is set (value on

RESET), all interrupts are disabled. You have the capability to:

• Disable global interrupts – disables all interrupts

• Disable individual interrupt(s)

11.4.1 Disabling Global Interrupts

Disabling global interrupts disables all interrupts regardless of their individual status.

There are two ways to disable all interrupts on the PIC17 devices.

Library Call

To disable global interrupts, you must include the int16.h header file and call the

Disable function.

#include <int16.h>

Disable();

Modifying Register Bits

To disable global interrupts, you must set the GLINTD bit of the CPUSTA register.

CPUSTAbits.GLINTD = 1;

11.4.2 Disabling Individual Interrupt(s)

This section explains how to disable each of the individual interrupts listed in

11.3 “Enabling Interrupts”. Individual peripheral interrupts are disabled through bits in

the Peripheral Interrupt Enable register (PIE) for PIC17C4X devices or in the

Peripheral Interrupt Enable register 1 (PIE1) and the Peripheral Interrupt Enable

register 2 (PIE2) for PIC17C7XX devices. The INTSTA register contains the disable

bits for non-peripheral interrupts. We will explore these registers in more detail in the

sections below.

11.4.2.1 EXTERNAL INTERRUPT ON T0CKI PIN

To disable the external interrupt on the T0CKI pin, you must clear the INTSTA

register’s External Interrupt on T0CKI Pin Enable (T0CKIE) bit – [INTSTA<2>].

INTSTAbits.T0CKIE = 0;

11.4.2.2 EXTERNAL INTERRUPT ON INT PIN

There are two ways to disable the external interrupt on the INT pin:

Library Call

To disable the external interrupt on the INT pin through a library call, you must include

the int16.h header file and call the CloseRA0INT function.

#include <int16.h>

CloseRA0INT();
apRNOVM^-page 102  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Modifying Register Bits

To disable the external interrupt on the INT pin, you must clear the INTSTA register’s

External Interrupt on RA0/INT Pin Enable (INTE) bit – [INTSTA<0>].

INTSTAbits.INTE = 0;

11.4.2.3 TMR0 OVERFLOW INTERRUPT

There are two ways to disable the TMR0 overflow interrupt:

Library Call

To disable the TMR0 Overflow Interrupt through a library call, you must include the

timers16.h header file and call the CloseTimer0 function.

#include <timers16.h>

CloseTimer0();

Modifying Register Bits

To disable the TMR0 overflow interrupt, you must clear the INTSTA register’s TMR0

Overflow Interrupt Enable (T0IE) bit – [INTSTA<1>].

INTSTAbits.T0IE = 0;

11.4.2.4 TMR1 OVERFLOW INTERRUPT

There are two ways to disable the TMR1 overflow interrupt:

Library Call

To disable the TMR1 Overflow Interrupt through a library call, you must include the

timers16.h header file and call the CloseTimer1 function

#include <timers16.h>

CloseTimer1();

Modifying Register Bits

PIC17C7XX DEVICES

To disable the TMR1 overflow interrupt for PIC17C7XX devices, you must clear either

of the following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) TMR1 Interrupt Enable

(TMR1IE) bit – [PIE1<4>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.TMR1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: Clearing the PEIE bit disables all peripheral interrupts.
 2002 Microchip Technology Inc. apRNOVM^-page 103

MPLAB® C17 C Compiler User’s Guide
PIC17C4X DEVICES

To disable the TMR1 overflow interrupt for PIC17C4X devices, you must clear either of

the following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) TMR1 Interrupt Enable (TMR1IE)

bit – [PIE<4>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.TMR1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.5 TMR2 OVERFLOW INTERRUPT

There are two ways to disable the TMR2 overflow interrupt:

Library Call

• To disable the TMR2 Overflow Interrupt through a library call, you must include

the timers16.h header file and call the CloseTimer2 function.

#include <timers16.h>

CloseTimer2();

Modifying Register Bits

PIC17C7XX DEVICES

To disable the TMR2 overflow interrupt for PIC17C7XX devices, you must clear either

of the following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) TMR2 Interrupt Enable

(TMR2IE) bit – [PIE1<5>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.TMR2IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

PIC17C4X DEVICES

To disable the TMR2 overflow interrupt for PIC17C4X devices, you must clear either of

the following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) TMR2 Interrupt Enable (TMR2IE)

bit – [PIE<5>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.TMR2IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.
apRNOVM^-page 104  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

11.4.2.6 TMR3 OVERFLOW INTERRUPT

There are two ways to disable the TMR3 overflow interrupt:

Library Call

To disable the TMR3 Overflow Interrupt through a library call, you must include the

timers16.h header file and call the CloseTimer3 function.

#include <timers16.h>

CloseTimer3();

Modifying Register Bits

PIC17C7XX DEVICES

To disable the TMR3 overflow interrupt for PIC17C7XX devices, you must clear either

of the following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) TMR3 Interrupt Enable

(TMR3IE) bit – [PIE1<6>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.TMR3IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

PIC17C4X DEVICES

To disable the TMR3 overflow interrupt for PIC17C4X devices, you must clear either of

the following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) TMR3 Interrupt Enable (TMR3IE)

bit – [PIE<6>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.TMR3IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.7 PORTB INTERRUPT ON CHANGE

There are two ways to disable the PORTB Interrupt on Change:

Library Call

To disable the PORTB interrupt on change through a library call, you must include the

port16.h header file and call the ClosePORTB function.

#include <port16.h>

ClosePORTB();

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.
 2002 Microchip Technology Inc. apRNOVM^-page 105

MPLAB® C17 C Compiler User’s Guide
Modifying Register Bits

PIC17C7XX DEVICES

To disable the PORTB interrupt on change for PIC17C7XX devices, you must clear

either of the following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) PORTB Interrupt on Change

Enable (RBIE) bit – [PIE1<7>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.RBIE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

PIC17C4X DEVICES

To disable the PORTB interrupt on change for PIC17C4X devices, you must clear

either of the following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) PORTB Interrupt on Change

Enable (RBIE) bit – [PIE<7>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.RBIE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.8 CAPTURE1 INTERRUPT

There are two ways to disable the Capture1 Interrupt:

Library Call

To disable the Capture1 Interrupt through a library call, you must include the

captur16.h header file and call the CloseCapture1 function.

#include <captur16.h>

CloseCapture1();

Modifying Register Bits

PIC17C7XX DEVICES

To disable the Capture1 interrupt on PIC17C7XX devices, you must clear either of the

following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) Capture1 Interrupt Enable

(CA1IE) bit – [PIE1<2>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.CA1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.
apRNOVM^-page 106  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

PIC17C4X DEVICES

To disable the Capture1 interrupt on PIC17C4X devices, you must clear either of the

following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) Capture1 Interrupt Enable

(CA1IE) bit – [PIE<2>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.CA1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.9 CAPTURE2 INTERRUPT

There are two ways to disable the Capture2 Interrupt:

Library Call

To disable the Capture2 Interrupt through a library call, you must include the

captur16.h header file and call the CloseCapture2 function.

#include <captur16.h>

CloseCapture2();

Modifying Register Bits

PIC17C7XX DEVICES

To disable the Capture2 interrupt on PIC17C7XX devices, you must clear either of the

following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) Capture2 Interrupt Enable

(CA2IE) bit – [PIE1<3>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.CA2IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

PIC17C4X DEVICES

To disable the Capture2 interrupt on PIC17C4X devices, you must clear either of the

following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) Capture2 Interrupt Enable

(CA2IE) bit – [PIE<3>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.CA2IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.
 2002 Microchip Technology Inc. apRNOVM^-page 107

MPLAB® C17 C Compiler User’s Guide
11.4.2.10 CAPTURE3 INTERRUPT

There are two ways to disable the Capture3 Interrupt:

Library Call

To disable the Capture3 Interrupt through a library call, you must include the

captur16.h header file and call the CloseCapture3 function

#include <captur16.h>

CloseCapture3();

Modifying Register Bits

To disable the Capture3 interrupt, you must clear either of the following enable bits:

• The Peripheral Interrupt Enable Register2’s (PIE2’s) Capture3 Interrupt Enable

(CA3IE) bit – [PIE2<2>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE2bits.CA3IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.11 CAPTURE4 INTERRUPT

There are two ways to disable the Capture4 Interrupt:

Library Call

To disable the Capture4 Interrupt through a library call, you must include the

captur16.h header file and call the CloseCapture4 function.

#include <captur16.h>

CloseCapture4();

Modifying Register Bits

To disable the Capture4 interrupt, you must clear either of the following enable bits:

• The Peripheral Interrupt Enable Register2’s (PIE2’s) Capture4 Interrupt Enable

(CA4IE) bit – [PIE2<3>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE2bits.CA4IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: Only pertains to PIC17C7XX devices. Does not apply to PIC17C4X

devices.

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Only pertains to PIC17C7XX devices. Does not apply to PIC17C4X

devices.

Note: Clearing the PEIE bit disables all peripheral interrupts.
apRNOVM^-page 108  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

11.4.2.12 USART1 TRANSMIT INTERRUPT

There are two ways to disable the USART1 Transmit Interrupt:

Library Call

To disable the USART1 Transmit Interrupt through a library call, you must include the

usart16.h header file and call the CloseUSART1 function.

#include <usart16.h>

CloseUSART1();

Modifying Register Bits

PIC17C7XX DEVICES

To disable the USART1 transmit interrupt for PIC17C7XX devices, you must clear

either of the following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) USART1 Transmit Interrupt

Enable (TX1IE) bit – [PIE1<1>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.TX1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

PIC17C4X DEVICES

To disable the USART1 transmit interrupt for PIC17C4X devices, you must clear either

of the following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) USART1 Transmit Interrupt

Enable (TX1IE) bit – [PIE<1>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.TX1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.13 USART1 RECEIVE INTERRUPT

There are two ways to disable the USART1 Receive Interrupt:

Library Call

To disable the USART1 Receive Interrupt through a library call, you must include the

usart16.h header file and call the CloseUSART1 function.

#include <usart16.h>

CloseUSART1();

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.
 2002 Microchip Technology Inc. apRNOVM^-page 109

MPLAB® C17 C Compiler User’s Guide
Modifying Register Bits

PIC17C7XX DEVICES

To disable the USART1 receive interrupt for PIC17C7XX devices, you must clear

either of the following enable bits:

• The Peripheral Interrupt Enable Register1’s (PIE1’s) USART1 Receive Interrupt

Enable (RC1IE) bit – [PIE1<0>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE1bits.RC1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

PIC17C4X DEVICES

To disable the USART1 receive interrupt for PIC17C4X devices, you must clear either

of the following enable bits:

• The Peripheral Interrupt Enable Register’s (PIE) USART1 Receive Interrupt

Enable (RC1IE) bit – [PIE<0>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIEbits.RC1IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.14 USART2 TRANSMIT INTERRUPT

There are two ways to disable the USART2 Transmit Interrupt:

Library Call

To disable the USART2 Transmit Interrupt through a library call, you must include the

usart16.h header file and call the CloseUSART2 function.

#include <usart16.h>

CloseUSART2();

Modifying Register Bits

To disable the USART2 transmit interrupt, you must clear either of the following

enable bits:

• The Peripheral Interrupt Enable Register2’s (PIE2’s) USART2 Transmit Interrupt

Enable (TX2IE) bit – [PIE2<1>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE2bits.TX2IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: PIC17C7XX devices only.

Note: Clearing the PEIE bit disables all peripheral interrupts.
apRNOVM^-page 110  2002 Microchip Technology Inc.

Enabling/Disabling Interrupts
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

11.4.2.15 USART2 RECEIVE INTERRUPT

There are two ways to disable the USART2 Receive Interrupt:

Library Call

To disable the USART2 Receive Interrupt through a library call, you must include the

usart16.h header file and call the CloseUSART2 function.

#include <usart16.h>

CloseUSART2();

Modifying Register Bits

To disable the USART2 receive interrupt, you must clear either of the following enable

bits:

• The Peripheral Interrupt Enable Register2’s (PIE2’s) USART2 Receive Interrupt

Enable (RC2IE) bit – [PIE2<0>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE2bits.RC2IE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.16 SYNCHRONOUS SERIAL PORT INTERRUPT

To disable the Synchronous Serial Port Interrupt, you must clear either of the following

enable bits:

• The Peripheral Interrupt Enable Register2’s (PIE2’s) Synchronous Serial Port

Interrupt Enable (SSPIE) bit – [PIE2<7>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE2bits.SSPIE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: PIC17C7XX devices only.

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: Only pertains to PIC17C7XX devices. Does not apply to PIC17C4X

devices.

Note: Clearing the PEIE bit disables all peripheral interrupts.
 2002 Microchip Technology Inc. apRNOVM^-page 111

MPLAB® C17 C Compiler User’s Guide
11.4.2.17 BUS COLLISION INTERRUPT

To disable the Bus Collision Interrupt, you must clear either of the following enable

bits:

• The Peripheral Interrupt Enable Register2’s (PIE2’s) Bus Collision Interrupt

Enable (BCLIE) bit – [PIE2<6>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE2bits.BCLIE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

11.4.2.18 A/D MODULE INTERRUPT

There are two ways to disable the A/D Module Interrupt:

Library Call

To disable the A/D Module Interrupt through a library call, you must include the

adc16.h header file and call the CloseADC function.

#include <adc16.h>

CloseADC();

Modifying Register Bits

To disable the A/D Module Interrupt, you must clear either of the following enable bits:

• The Peripheral Interrupt Enable Register2’s (PIE2’s) A/D Module Interrupt Enable

(ADIE) bit – [PIE2<5>].

• The INTSTA register’s Peripheral Interrupt Enable (PEIE) bit – [INTSTA<3>].

PIE2bits.ADIE = 0; //Disable all
 //peripheral interrupts
INTSTAbits.PEIE = 0;

Note: Only pertains to PIC17C7XX devices. Does not apply to PIC17C4X

devices.

Note: Clearing the PEIE bit disables all peripheral interrupts.

Note: PIC17C7XX devices only.

Note: Clearing the PEIE bit disables all peripheral interrupts.
apRNOVM^-page 112  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 12. Implementation-Defined Behavior
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

12.1 INTRODUCTION

This section describes the behavior of MPLAB C17 where the ANSI standard

X3.159-1989 describes the behavior as implementation defined. The text below in

italic font is taken directly from the ANSI standard with the appropriate section in

parentheses.

12.2 HIGHLIGHTS

This chapter covers ANSI implementation issues for the following categories:

• Identifiers

• Characters

• Integers

• Floating Point

• Arrays and Pointers

• Registers

• Structures and Unions

• Bit-Fields

• Enumerations

• Switch Statements

• Preprocessor Directives

12.3 IDENTIFIERS

The number of significant initial characters (beyond 31) in an identifier

without external linkage (3.1.2)

The number of significant initial characters (beyond 6) in an identifier

with external linkage (3.1.2)

Whether case distinctions are significant in an identifier with external

linkage (3.1.2)

All MPLAB C17 identifiers have 31 significant characters. Case distinctions are

significant in an identifier with external linkage.

12.4 CHARACTERS

The value of an integer character constant that contains more than one

character or a wide character constant that contains more than one

multibyte character (3.1.3.4)

The value of the integer character constant is the 8-bit value of the first character.

Wide characters are not supported.
 2002 Microchip Technology Inc. apRNOVM^-page 113

MPLAB® C17 C Compiler User’s Guide
Whether a ‘plain’ char has the same range of values as signed char or

unsigned char (3.2.1.1)

A ‘plain’ char has the same range of values as a signed char.

12.5 INTEGERS

A ‘char’, a ‘short int’, or and ‘int’ bit-field, or their signed or unsigned

varieties, or an enumeration type, may be used in an expression

wherever an ‘int’ or ‘unsigned int’ may be used. If an ‘int’ can represent

all values of the original type, the value is converted to an ‘int’;

otherwise, it is converted to an ‘unsigned int’. These are called the

“integral promotions.” All other arithmetic types are unchanged by the

integral promotions. The integral promotions preserve value including

sign. (3.2.1.1)

The result of converting an integer to a shorter signed integer, or the

result of converting an unsigned integer to a signed integer of equal

length, if the value cannot be represented (3.2.1.2)

When converting from a larger integer type to a smaller integer type, the high order

bits of the value are discarded and the remaining bits are interpreted according to the

type of the smaller integer type. When converting from an unsigned integer to a

signed integer of equal size, the bits of the unsigned integer are simply reinterpreted

according to the rules for a signed integer of that size.

The results of bitwise operations on signed integers (3.3)

The bitwise operators are applied to the signed integer as if it were an unsigned

integer of the same type (i.e., the sign bit is treated as any other bit).

The sign of the remainder on integer division (3.3.5)

The remainder has the same sign as the quotient.

The result of a right shift of a negative-valued signed integral type (3.3.7)

The value is shifted as if it were an unsigned integral type of the same size (i.e., the

sign bit is not propagated).

12.6 FLOATING POINT

The representations and sets of values of the various types of floating

point numbers (3.1.2.5)

The direction of truncation when an integral number is converted to a

floating point number that cannot exactly represent the original value

(3.2.1.3)

The direction of truncation or rounding when a floating point number is

converted to a narrower floating point number (3.2.1.4)

The rounding to the nearest method is used.
apRNOVM^-page 114  2002 Microchip Technology Inc.

Implementation-Defined Behavior
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

12.7 ARRAYS AND POINTERS

The type of integer required to hold the maximum size of an array – that

is, the type of the size of operator, size_t (3.3.3.4, 4.1.1)

size_t is defined as an unsigned int.

The result of casting a pointer to an integer, or vice-versa (3.3.4)

The integer will contain the binary value used to represent the pointer. If the pointer is

larger than the integer, the representation will be truncated to fit in the integer.

The type of integer required to hold the difference between two pointers

to elements of the same array, ptrdiff_t (3.3.6, 4.1.1)

ptrdiff_t is defined as an unsigned int.

12.8 REGISTERS

The extent to which objects can actually be placed in registers by use of

the register storage class specifier (3.5.1)

The register storage class specifier is ignored.

12.9 STRUCTURES AND UNIONS

A member of a union object is accessed using a member of a different

type (3.3.2.3)

The value of the member is the bits residing at the location for the member interpreted

as the type of the member being accessed.

The padding and alignment of members of structures (3.5.2.1)

Members of structures and unions are aligned on byte boundaries.

12.10 BIT-FIELDS

Whether a ‘plain’ int bit-field is treated as a signed int or as an unsigned

int bit-field (3.5.2.1)

A ‘plain’ int bit-field is treated as an unsigned int bit-field.

The order of allocation of bit-fields within a unit (3.5.2.1)

Bit-fields are allocated from least significant bit to most significant bit in order of

occurrence.

Whether a bit-field can straddle a storage-unit boundary (3.5.2.1)

A bit-field cannot straddle a storage unit boundary.

12.11 ENUMERATIONS

The integer type chosen to represent the values of an enumeration type

(3.5.2.2)

signed int is used to represent the values of an enumeration type.
 2002 Microchip Technology Inc. apRNOVM^-page 115

MPLAB® C17 C Compiler User’s Guide
12.12 SWITCH STATEMENTS

The maximum number of case values in a switch statement (3.6.4.2)

The maximum number of values is limited only by target memory.

12.13 PREPROCESSING DIRECTIVES

The method for locating includable source files (3.8.2)

Includable source files specified via the #include <filename> mechanism are

searched for in the path specified in the MCC_INCLUDE environment variable. The

MCC_INCLUDE environment variable contains a semi-colon delimited list of

directories to search.

The support for quoted names for includable source files (3.8.2)

Includable source files specified via the #include “filename” mechanism are

searched for in the current directory and then in the path specified in the

MCC_INCLUDE environment variable. The MCC_INCLUDE environment variable

contains a semi-colon delimited list of directories to search.

The behavior on each recognized #pragma directive (3.8.6)

Each #pragma directive is listed in 2.6 “Statement Differences”.
apRNOVM^-page 116  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Chapter 13. MPLAB C17 Diagnostics
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

13.1 INTRODUCTION

This appendix lists diagnostic messages generated by the MPLAB C17 compiler.

13.2 HIGHLIGHTS

The following diagnostic types apply to MPLAB C17:

• Errors

• Warnings

13.3 ERRORS

1000: argument count mismatch in function call

To call a function, the number of arguments passed must match exactly the number

of parameters declared for the function.

1001: type mismatch in argument %d

The type of an argument to a function call must be compatible with the declared

type of the corresponding parameter

1002: arithmetic type expected in expression

The operator requires that its operand be of arithmetic type

1003: arithmetic or pointer to object type required

1004: array must have integral constant size

1005: object of pointer type required for [] operator

The array access operator, ‘[]’, requires that one operand be a pointer and the

other be an integer, that is, for ‘x[y]’ the expression ‘*(x+y)’ must be valid. ‘x[y]’ is

functionally equivalent to ‘*(x+y)’.

1006: ‘−>’ requires pointer to struct or union

The member access operator ‘−>’ requires operands of pointer to struct/union.

1007: call of non-function

The operand of the ‘()’ function call post-fix operator must be of type ‘pointer to

function.’ Most commonly, this is a function identifier. Common causes include

missing scope parentheses.

1008: cannot modify ‘const’ qualified object

An object qualified with ‘const’ is declared to be read-only data and modifications

to it are therefore not allowed.

1009: cannot return an object of array type

1010: unable to locate include file ‘%s’

The compiler was unable to locate the ‘%s’ file. Common causes include

misspelled file ‘%s’ and misconfigured include path.
 2002 Microchip Technology Inc. apRNOVM^-page 117

MPLAB® C17 C Compiler User’s Guide
1011: unable to open include file ‘%s’

The compiler was unable to open the ‘%s’d file. Common causes include

misspelled file’%s’ and insufficient access rights

1012: ‘)’ expected in macro definition

A closing parenthesis is missing in the definition of a macro.

1013: constant expression required

1014: ‘)’ expected

A closing parenthesis is missing.

1015: ‘%s’

source code ‘#error’ directive message

1016: divide by zero in constant expression

The compiler cannot process a constant expression which contains a divide by (or

modulus by) zero.

1017: divide by constant zero in expression

The compiler cannot process an expression which contains a divide by (or modulus

by) constant zero.

1018: ‘.’ requires struct or union

The member access operator ‘.’ requires operands of struct/union.

1019: duplicate case label value %d

1020: duplicate declaration for symbol ‘%s’

1021: duplicate label ‘%s’

1022: #elif in #else clause not allowed

1023: #elif without #if

1024: #else without #if

1025: #endif without #if

1026: extra ‘default’ statement in switch

A switch statement can only have a single ‘default’ label. Common causes include

a missing ‘}’ to close an inner switch.

1027: extraneous input following ‘%s’

1028: ‘high’ and ‘low’ are not valid in this context

1029: identifier expected

1030: member access on incomplete structure type ‘%s’

1031: initializer count mismatch for ‘%s’

1032: initializer list required for ‘%s’

1034: type mismatch in initializer

1035: value expected in initializer

1036: in-line assembly must be within a function body

1037: integer constant expected

1038: integer type required

Bitwise operators require that both operands be of integer type. Common causes

include a missing ‘*’ or ‘[]’ operator.
apRNOVM^-page 118  2002 Microchip Technology Inc.

Implementation-Defined Behavior
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

1040: invalid character constant

1041: invalid expression in assembly statement

1042: invalid member of structure ‘%s’

1043: invalid storage class in parameter %d

1044: lvalue required

An expression which designates an object is required. Common causes include

missing parentheses and a missing ‘*’ operator.

1045: argument count mismatch invoking macro ‘%s’

1046: identifier expected in macro definition

1047: missing argument %d in macro ‘%s’

1048: misplaced ‘break’ statement

A ‘break’ statement must be inside a ‘while’, ‘do’, ‘for’ or ‘switch’ statement.

Common causes include a misplaced ‘}’.

1049: misplaced ‘continue’ statement

A ‘continue’ statement must be inside a ‘while’, ‘do’, ‘for’ or ‘switch’ statement.

1050: missing ‘)’ in macro invocation on line %d

1051: missing #endif

1052: multiple ‘#else’ clauses for ‘#if’ not allowed

1053: cannot use ‘%s’ twice in same declaration

1054: cannot use type twice in same declaration

1055: must have constant operand for 1-bit quantity

1056: must have constant operand for 3-bit quantity

1057: identifier expected following ‘%s’

1058: pointer operand required for ‘*’ operator

The ‘*’ dereference operator requires a pointer to a non-void object as its operand

1059: syntax error: Expecting second parameter

1060: hardware multiply is not supported on the 17c42

1061: pragma error: bank type specified for ROM section

1062: block assignments must be four bytes or smaller

1064: 32-bit integers not supported

1065: invalid assembly instruction

1066: variable length argument lists not supported

1067: number of parameters conflicts with previous definition

1068: old style function definitions not supported

1069: ‘(’ expected in macro invocation

1070: operator %c requires arithmetic operands

1071: operator ‘%s’ requires arithmetic operands

1072: operator %c requires integral operands

1073: parameter ‘%s’ type mismatch

1074: cannot cast a pointer’s location qualifier
 2002 Microchip Technology Inc. apRNOVM^-page 119

MPLAB® C17 C Compiler User’s Guide
1075: error in pragma directive

1076: redundant section modifier ‘%s’ in pragma

1077: definition ‘%s’ does not match prototype

1078: conflicting qualifiers specified

1079: redeclaration of ‘%s’ does not match first

1080: scalar operand required

A conditional statement control expression must be of scalar type, (i.e., an integer

or a pointer).

1081: section address permitted only at definition

1082: section pragma not allowed inside a function

1083: section overlay attribute does not match definition

1084: section share attribute does not match definition

1085: section type does not match definition

1086: shift by a negative value

1087: static function ‘%s’ missing definition

1088: conflicting storage classes specified

1089: structure, Union or Enum type mismatch ‘%s’

1090: switch expression must be 8-bit

1091: symbol ‘%s’ already defined

1092: syntax error

1093: syntax error, expecting string

1094: conflicting types specified

1095: type declarator mismatch

1096: type location mismatch

1097: type mismatch

The type of the return value is not compatible with the declared return type of the

function. Common causes include a missing ‘*’ or ‘[]’ operator

1098: type mismatch in redeclaration of ‘%s’

The type of the symbol declared is not compatible with the type of a previous

declaration of the same symbol. Common causes include missing qualifiers or

misplaced qualifiers.

1099: type qualifier mismatch

1100: type range mismatch

1101: type storage class mismatch

1102: undefined symbol ‘%s’

A symbol has been referenced before it has been defined. Common causes

include a misspelled symbol ‘%s’, a missing header file which declares the symbol,

and a reference to a symbol valid only in an inner scope.

1103: unexpected input after ‘%s’

1104: unknown preprocessor directive ‘%s’
apRNOVM^-page 120  2002 Microchip Technology Inc.

Implementation-Defined Behavior
B

a
s
ic

s

Part

1

A
d

v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

1105: unresolved label ‘%s’

The label has been referenced via a ‘goto’ statement, but has not been defined in

the function. Common causes include a misspelled label identifier and a reference

to an out of scope label, (i.e., a label defined in another function).

1106: bit field type must be integer

1107: section #pragmas not allowed inside functions

13.4 WARNINGS

2000: no prototype for ‘%s’

2001: shift by zero

2002: shift by more bits than contained in operand

2003: ‘rom’ and ‘volatile’ in same declaration

2004: unused symbol block

2005: redefinition of macro ‘%s’ is not identical

2006: call of function ‘%s’ without prototype

A function call has been made without an in-scope function prototype for the

function being called. This can be un-safe, as no type-checking for the function

arguments can be performed.

2007: unknown pragma ‘%s’ encountered
 2002 Microchip Technology Inc. apRNOVM^-page 121

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 122  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE

Part

1
Section 4 – Appendices
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Appendix A. Reference Documents..125

Appendix B. Example Programs ...127

Appendix C. ASCII Character Set..129
 2002 Microchip Technology Inc. DS51290A-page 123

MPLAB® C17 C Compiler User’s Guide
apRNOVM^-page 124  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Appendix A. Reference Documents
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

A.1 INTRODUCTION

This appendix gives references that may be helpful in programming with MPLAB C17.

A.2 HIGHLIGHTS

This appendix lists the following reference types:

• C Standards Information

• General C Information

A.3 C STANDARDS INFORMATION

American National Standard for Information Systems – Programming Language – C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,

New York, 10036.

This standard specifies the form and establishes the interpretation of programs

expressed in the programming language C. Its purpose is to promote portability,

reliability, maintainability and efficient execution of C language programs on a

variety of computing systems.

A.4 GENERAL C INFORMATION

Harbison, Samuel P., and Steele, Guy L., C A Reference Manual, Fourth Edition,

Prentice-Hall, Englewood Cliffs, New Jersey 07632.

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language, Second

Edition. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Presents a concise exposition of C as defined by the ANSI standard. This book is

an excellent reference for C programmers.

Kochan, Steven G. Programming In ANSI C, Revised Edition. Hayden Books,

Indianapolis, Indiana 46268.

Another excellent reference for learning ANSI C, used in colleges and universities.

A best selling authoritative reference for the C programming language.

Van Sickle, Ted. Programming Microcontrollers in C, First Edition. LLH Technology

Publishing, Eagle Rock, Virginia 24085.

Although this book focuses on Motorola® microcontrollers, the basic principles of

programming with C for microcontrollers is useful.
 2002 Microchip Technology Inc. apRNOVM^-page 125

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 126  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Appendix B. Example Programs
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

B.1 INTRODUCTION

This chapter gives an overview of the MPLAB C17 example programs included with

the compiler program and support files.

B.2 HIGHLIGHTS

The contents of this chapter are as following:

• Overview of Example Files

• Example Details

B.3 OVERVIEW OF EXAMPLE FILES

Example files may be found in the examples directory after you have installed MPLAB

C17. The examples included at the time this document was published are contained in

subdirectories as follows:

• General Examples

- Example1

- Example2

- Example3

• Peripheral-Specific Examples

- AD

- INT

- LINK

- PORT

- PWM

- TABLE_R/W

- USART

Additions, deletions or other changes to this list may have occurred. Check the

readme.txt in the examples directory for more information on what examples are

available and a brief description of the function of each example.

B.4 EXAMPLE DETAILS

The types of files typically found in an example subdirectory are as follows:

• Source files (.c, .asm) – the main program files.

• Batch files (.bat) – for use with command-line applications.
 2002 Microchip Technology Inc. apRNOVM^-page 127

MPLAB® C17 C Compiler User’s Guide
Additional files will be necessary to build the example into an application.

From c:\mcc\h:

• Header files (.h) – include files with device register definitions.

From c:\mcc\lib:

• Precompiled object files (.o) – provide “canned” start-up code, initialization code,

interrupt service routines (for MPLAB C17) and register definitions, based on

device and memory model used.

• Library files (.lib) – include microchip libraries.

From c:\mcc\lkr:

• Linker script files (.lkr) – directions for the linker, based on device.

To build the application, follow either the instructions for building on the command line

(Chapter 4) or using MPLAB IDE (MPLAB IDE User’s Guide DS51025).

Note: When linking, you may get the following message:

“Warning – Could not open source file '<filename>'.

This file will not be present in the list file.”

This comes from using precompiled libraries, where the source for these

libraries is not in the default directory (c:\mcc\src).
apRNOVM^-page 128  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Part

1
Appendix C. ASCII Character Set
B
a
s
ic

s
A

d
v
a
n

c
e
d

 U
s
a
g

e

Part

2

R
e
fe

re
n

c
e
s

Part

3

Part

4

A
p

p
e
n

d
ic

e
s

Most Significant Character

L
e

a
s

t
S

ig
n

if
ic

a
n

t
C

h
a

ra
c

te
r

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
 2002 Microchip Technology Inc. apRNOVM^-page 129

MPLAB® C17 C Compiler User’s Guide
NOTES:
apRNOVM^-page 130  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE
Glossary
A

Absolute Section (MPLINK Linker)

A section with a fixed (absolute) address that can not be changed by the linker.

Access RAM – PIC18 Devices Only

Special general purpose registers on PIC18 devices that allow access regardless of the

setting of the bank select bit (BSR).

Alpha Character

Alpha characters are those characters that are letters of the arabic alphabet

(a, b, …, z, A, B, …, Z).

ANSI

American National Standards Institute, which is an organization responsible for

formulating and approving computer-related standards in the United States.

Alphanumeric

Alphanumeric characters are comprised of alpha characters and decimal digits

(0,1, …, 9).

Application

A set of software and hardware usually designed to be a product controlled by a

PICmicro® microcontroller.

ASCII

American Standard Code for Information Interchange is character set encoding using

7 binary digits to represent each character. It includes upper and lower case letters,

digits, symbols and control characters.

Assembler (Assemblers)

A language tool that translates assembly source code into machine code.

Assembly Language (Assemblers)

A programming language that is once removed from machine language. Machine

languages consist entirely of numbers and are difficult for humans to read and write.

Assembly languages enable a programmer to use names (mnemonics) instead of

numbers.

Assigned Section (MPLINK™ Linker)

A section which has been assigned to a target memory block in the linker command

file. The linker allocates an assigned section into its specified target memory block.

Asynchronous Stimulus (Simulators)

Data generated to simulate external inputs to a simulator device.
 2002 Microchip Technology Inc. apRNOVM^-page 131

MPLAB® C17 C Compiler User’s Guide
B

Breakpoint – Hardware (MPLAB® ICE 2000, MPLAB ICD, MPLAB ICD 2)

An event whose execution will cause a halt.

Breakpoint – Software (Debuggers)

An address where execution of the firmware will halt. Usually achieved by a special

break opcode.

Build (MPLAB® IDE v5.xx/v6.xx)

The compilation and linking of all the source files for an application.

C

C (Compilers)

A high level programming language that may be used to develop applications for

microcontrollers, especially high-end device families.

Calibration Memory

A special function register or registers used to hold values for calibration of a

PICmicro® microcontroller on-board RC oscillator or other device peripherals.

COFF (MPLAB ASM30, Linkers)

Common Object File Format. An object file format that contains machine code and

debugging information.

Command Line Interface

Command line interface refers to executing a program on the command line with

options.

Compiler (Compilers)

A language tool that translates source code into assembly code.

Configuration Bits

Special-purpose bits programmed to set PICmicro® microcontroller modes of

operation. A configuration bit may or may not be preprogrammed.

Control Directives (Assemblers)

Control directives in an assembler permit code to be conditionally assembled.

Cross Reference File (Linkers)

A file that references a table of symbols and a list of files that references the symbol. If

the symbol is defined, the first file listed is the location of the definition. The remaining

files contain references to the symbol.

D

Data Directives (Assemblers)

Data directives are those that control the assembler’s allocation of program or data

memory and provide a way to refer to data items symbolically; that is, by meaningful

names.

Data Memory

On a PICmicro MCU device, data memory (RAM) is comprised of General Purpose

Registers (GPRs) and Special Function Registers (SFRs). Some devices also have

EEPROM data memory.
apRNOVM^-page 132  2002 Microchip Technology Inc.

Glossary
Directives

Directives provide control of the language tool’s operation.

Download

Download is the process of sending data from a host to another device, such as an

emulator, programmer or target board.

DSC

See Digital Signal Controller.

DSP

See Digital Signal Processing.

E

EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that

can be erased electrically. Data is written or erased one byte at a time. EEPROM

retains its contents even when power is turned off.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that

can be erased usually by exposure to ultraviolet radiation.

Emulation (MPLAB ICE 2000)

The process of executing software loaded into emulation memory as if it were firmware

residing on a microcontroller device.

Emulation Memory (MPLAB ICE 2000)

Program memory contained within the emulator.

Emulator (MPLAB ICE 2000)

Hardware that performs emulation.

Emulator System (MPLAB ICE 2000)

The MPLAB ICE 2000 emulator system includes the pod, processor module, device

adapter, cables and MPLAB IDE software.

Event (MPLAB IDE v5.xx/v6.xx)

A description of a bus cycle which may include address, data, pass count, external

input, cycle type (fetch, R/W) and time stamp. Events are used to describe triggers and

breakpoints.

Executable Code

Software that is ready to be loaded for execution.

Export (MPLAB IDE v5.xx/v6.xx)

Send data out of the MPLAB IDE in a standardized format.

Expressions

Expressions are used in the operand field of the source line and may contain constants,

symbols, or combinations of constants and/or symbols separated by arithmetic or

logical operators. Each constant or symbol may be preceded by a plus or minus to

indicate a positive or negative expression.
 2002 Microchip Technology Inc. apRNOVM^-page 133

MPLAB® C17 C Compiler User’s Guide
Extended Microcontroller Mode – PIC17 and PIC18 Devices Only

In extended microcontroller mode, on-chip program memory as well as external

memory is available. Execution automatically switches to external if the program

memory address is greater than the internal memory space of the PIC17 or PIC18

device.

External Input Line (MPLAB ICE 2000)

An external input signal logic probe line (TRIGIN) for setting an event based upon

external signals.

External Label (Linkers)

A label that has external linkage.

External Linkage (Linkers)

A function or variable has external linkage if it can be referenced from outside the

module in which it is defined.

External RAM – PIC17 and PIC18 Devices Only

Off-chip Read/Write memory.

External Symbol (Linkers)

A symbol for an identifier which has external linkage.

External Symbol Definition (Linkers)

A symbol for a function or variable defined in the current module.

External Symbol Reference (Linkers)

A symbol which references a function or variable defined outside the current module.

External Symbol Resolution (Linkers)

A process performed by the linker in which external symbol definitions from all input

modules are collected in an attempt to resolve all external symbol references. Any

external symbol references which do not have a corresponding definition cause a linker

error to be reported.

F

File Registers

On-chip general purpose and special function registers.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle

instruction. Since the PICmicro microcontroller architecture is pipelined, it prefetches

the next instruction in the physical address space while it is executing the current

instruction. However, if the current instruction changes the program counter, this

prefetched instruction is explicitly ignored, causing a forced NOP cycle.

G

GPR

General Purpose Register. The portion of PICmicro MCU data memory (RAM)

available for general use, e.g., program-specific variables.
apRNOVM^-page 134  2002 Microchip Technology Inc.

Glossary
H

Halt (MPLAB IDE v5.xx/v6.xx)

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

HEX Code

Executable instructions assembled or compiled from source code into hexadecimal

format code. HEX code is contained in a HEX file.

HEX File

An ASCII file containing hexadecimal addresses and values (HEX code) suitable for

programming a device.

High Level Language (Language Tools)

A language for writing programs that is of a higher level of abstraction from the

processor than assembly code. High level languages (such as C) employ a compiler to

translate statements into machine instructions that the target processor can execute.

I

ICD

In-Circuit Debugger. MPLAB ICD and MPLAB ICD 2 are Microchip’s in-circuit

debuggers for PIC16F87X and PIC18FXXXX devices, respectively. These ICDs work

with MPLAB IDE.

ICE

In-Circuit Emulator. MPLAB ICE 2000 is Microchip’s in-circuit emulator that works with

MPLAB IDE. PICMASTER (Obsolete product) and ICEPIC (Third Party product) are

other ICE devices.

IDE

Integrated Development Environment. A software application that is used for firmware

development. The MPLAB IDE integrates a project manager, an editor, language tools,

debug tools, programmers and an assortment of other tools within one Windows®

application. A user developing an application can write code, compile, debug and test

an application without leaving the MPLAB IDE desktop.

Identifier

A function or variable name.

Import (MPLAB IDE v5.xx/v6.xx)

Bring data into the MPLAB IDE from an outside source, such as from a HEX file.

Initialized Data (Language Tools)

Data which is defined with an initial value. In C,

int myVar=5

defines a variable which will reside in an initialized data section.

Instructions (Language Tools)

A sequence of bits that tells a central processing unit to perform a particular operation

and can contain data to be used in the operation.

Instruction Set (Language Tools)

The collection of machine language instructions that a particular processor

understands.
 2002 Microchip Technology Inc. apRNOVM^-page 135

MPLAB® C17 C Compiler User’s Guide
Internal Linkage (Linkers)

A function or variable has internal linkage if it can not be accessed from outside the

module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including

computing and communications.

Interrupt

An asynchronous event that suspends normal processing and temporarily diverts the

flow of control through an "interrupt handler" routine.

Interrupts may be caused by both hardware (I/O, timer, machine check) and software

(supervisor, system call or trap instruction).

In general the computer responds to an interrupt by storing the information about the

current state of the running program; storing information to identify the source of the

interrupt; and invoking a first-level interrupt handler. This is usually a kernel level

privileged process that can discover the precise cause of the interrupt (e.g. if several

devices share one interrupt) and what must be done to keep operating system tables

(such as the process table) updated. This first-level handler may then call another

handler, e.g. one associated with the particular device which generated the interrupt.

Interrupt Handler

A routine which is executed when an interrupt occurs. Interrupt handlers typically deal

with low-level events in the hardware of a computer system such as a character arriving

at a serial port or a tick of a real-time clock. Special care is required when writing an

interrupt handler to ensure that either the interrupt which triggered the handler's

execution is masked out (inhibited) until the handler is done, or the handler is written in

a re-entrant fashion so that multiple concurrent invocations will not interfere with each

other.

If interrupts are masked then the handler must execute as quickly as possible so that

important events are not missed. This is often arranged by splitting the processing

associated with the event into "upper" and "lower" halves. The lower part is the interrupt

handler which masks out further interrupts as required, checks that the appropriate

event has occurred (this may be necessary if several events share the same interrupt),

services the interrupt, e.g. by reading a character from a UART and writing it to a

queue, and re-enabling interrupts.

The upper half executes as part of a user process. It waits until the interrupt handler

has run. Normally the operating system is responsible for reactivating a process which

is waiting for some low-level event. It detects this by a shared flag or by inspecting a

shared queue or by some other synchronization mechanism. It is important that the

upper and lower halves do not interfere if an interrupt occurs during the execution of

upper half code. This is usually ensured by disabling interrupts during critical sections

of code such as removing a character from a queue.

Interrupt Request

The name of an input found on many processors which causes the processor to

suspend normal instruction execution temporarily and to start executing an interrupt

handler routine. Such an input may be either "level sensitive" – the interrupt condition

will persist as long as the input is active or "edge triggered" – an interrupt is signaled

by a low-to-high or high-to-low transition on the input. Some processors have several

interrupt request inputs allowing different priority interrupts.
apRNOVM^-page 136  2002 Microchip Technology Inc.

Glossary
Interrupt Service Routine

User-generated code that is entered when an interrupt occurs. The location of the code

in program memory will usually depend on the type of interrupt that has occurred.

IRQ

See Interrupt Request.

ISO

See International Organization for Standardization.

ISR

See Interrupt Service Routine.

L

Librarian (Librarians)

A language tool that creates and manipulates libraries.

Library (Librarians)

A library is a collection of relocatable object modules. It is created by assembling

multiple source files to object files, and then using the librarian to combine the object

files into one library file. A library can be linked with object modules and other libraries

to create executable code.

Linker (Linkers)

A language tool that combines object files and libraries to create executable code,

resolving references from one module to another.

Linker Script Files (Linkers)

Linker script files are the command files of a linker. They define linker options and

describe available memory on the target platform.

Listing Directives (Assemblers)

Listing directives are those directives that control the assembler listing file format. They

allow the specification of titles, pagination and other listing control.

Listing File (Assemblers)

A listing file is an ASCII text file that shows the machine code generated for each C

source statement, assembly instruction, assembler directive, or macro encountered in

a source file.

Logic Probes (MPLAB ICE 2000)

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes

provide external trace inputs, trigger output signal, +5V and a common ground.

M

Machine Code

The representation of a computer program that is actually read and interpreted by the

processor. A program in machine code consists of a sequence of machine instructions

(possibly interspersed with data). Instructions are binary strings. The collection of all

possible instructions for a particular processor is known as its "instruction set".

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a

processor without being translated. Also called machine code.
 2002 Microchip Technology Inc. apRNOVM^-page 137

MPLAB® C17 C Compiler User’s Guide
Macro (Assemblers)

A collection of assembler instructions that are included in the assembly code when the

macro name is encountered in the source code. Macros must be defined before they

are used; forward references to macros are not allowed.

All statements following a MACRO directive and prior to an ENDM directive are part of the

macro definition. Labels used within the macro must be local to the macro so the macro

can be called repetitively.

Macro Directives (Assemblers)

Directives that control the execution and data allocation within macro body definitions.

Make Project (MPLAB IDEv5.xx/v6.xx)

A command that rebuilds an application by recompiling only those source files that

have changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also µC.

Memory Models (Compilers)

(C17): Versions of libraries and/or precompiled object files based on a device’s memory

(RAM/ROM) size and structure.

(C18): A description that specifies the size of pointers that point to program memory.

Microcontroller

A highly integrated chip that contains all the components comprising a controller.

Typically this includes a CPU, RAM, some form of ROM, I/O ports and timers. Unlike a

general-purpose computer, which also includes all of these components, a

microcontroller is designed for a very specific task – to control a particular system. As

a result, the parts can be simplified and reduced, which cuts down on production costs.

Microcontroller Mode – PIC17 and PIC18 Devices Only

One of the possible program memory configurations of the PIC17 and PIC18 families of

microcontrollers. In microcontroller mode, only internal execution is allowed. Thus, only

the on-chip program memory is available in microcontroller mode.

Microprocessor Mode – PIC17 and PIC18 Devices Only

One of the possible program memory configurations of the PIC17 and PIC18 families

of microcontrollers. In microprocessor mode, the on-chip program memory is not used.

The entire program memory is mapped externally.

Mnemonics

Instructions that are translated directly into machine code. Mnemonics are used to

perform arithmetic and logical operations on data residing in program or data memory

of a microcontroller. They can also move data in and out of registers and memory as

well as change the flow of program execution. Also referred to as Opcodes.
apRNOVM^-page 138  2002 Microchip Technology Inc.

Glossary
MPASM Assembler

Microchip Technology’s relocatable macro assembler. MPASM assembler is a

command-line or Windows-based PC application that provides a platform for

developing assembly language code for Microchip’s PICmicro microcontroller (MCU)

families, KEELOQ
® devices and Microchip memory devices. Generically, MPASM

assembler will refer to the entire development platform including the macro assembler

and utility functions.

MPASM assembler will translate source code into either object or executable code. The

object code created by the assembler may be turned into executable code through the

use of the MPLINK linker.

MPLAB C1X

Refers to both the MPLAB C17 and MPLAB C18 C compilers from Microchip. MPLAB

C17 is the C compiler for PIC17 devices and MPLAB C18 is the C compiler for PIC18

and PIC18FXXXX devices.

MPLAB ICD and MPLAB ICD 2

Microchip’s in-circuit debuggers, for PIC16F87X and PIC18FXXX devices,

respectively. The ICDs work with MPLAB IDE. The main component of each ICD is the

module. A complete system consists of a module, header, demo board, cables and

MPLAB IDE Software.

MPLAB ICE 2000

Microchip’s in-circuit emulator that works with MPLAB IDE.

MPLAB IDE

The name of the main executable program that supports the IDE.

(IDE5): MPLAB IDE v5.xx has a built-in project manager, editor and simulator (MPLAB

SIM) and support for an emulator or debugger. The MPLAB IDE software resides on

the PC host. The executable (mplab.exe) calls many other files. MPLAB IDE v5.xx

and lower is a 16-bit application.

(IDE6): MPLAB IDE v6.xx has a built-in project manager, editor and support for debug

and programming tools. The MPLAB IDE software resides on the PC host. The

executable calls many other files. MPLAB IDE v6.xx and higher is a 32-bit application.

MPLAB SIM

Microchip’s simulator that works with MPLAB IDE in support of PICmicro MCU devices.

MPLIB Object Librarian

The MPLIB librarian is an object librarian for use with COFF object modules created

using either MPASM assembler (mpasm or mpasmwin v2.0) or MPLAB C1X C compil-

ers.

The MPLIB librarian will combine multiple object files into one library file. Then the

librarian can be used to manipulate the object files within the created library.

MPLINK Object Linker

The MPLINK linker is an object linker for the Microchip MPASM assembler and the

Microchip MPLAB C17 or C18 C compilers. MPLINK linker also may be used with the

Microchip MPLIB librarian. MPLINK linker is designed to be used with MPLAB IDE,

though it does not have to be.

The MPLINK linker will combine object files and libraries to create a single executable

file.
 2002 Microchip Technology Inc. apRNOVM^-page 139

MPLAB® C17 C Compiler User’s Guide
MPSIM Simulator

The DOS version of Microchip’s MPLAB SIM simulator.

MRU

Most Recently Used. Refers to files and windows available to be selected from

MPLAB IDE main pull down menus.

N

Nesting Depth

The maximum level to which macros can include other macros.

Node (MPLAB IDE v5.xx)

MPLAB IDE project component.

Non Real-Time

Refers to the processor at a breakpoint or executing single step instructions or

MPLAB IDE being run in simulator mode.

Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the

program counter.

O

Object Code

The machine code generated by a source code language processor such as an

assembler or compiler. A file of object code may be immediately executable or it

may require linking with other object code files, e.g. libraries, to produce a complete

executable program.

Object File

A module which may contain relocatable code or data and references to external code

or data. Typically, multiple object modules are linked to form a single executable output.

Special directives are required in the source code when generating an object file. The

object file contains object code.

Object File Directives

Directives that are used only when creating an object file.

Off-Chip Memory – PIC17 and PIC18 Devices Only

Off-chip memory refers to the memory selection option for the PIC17 or PIC18 device

where memory may reside on the target board, or where all program memory may be

supplied by the Emulator. The Memory tab accessed from Options > Development

Mode provides the Off-Chip Memory selection dialog box.

Opcodes

Operational Codes. See Mnemonics.

Operators

Arithmetic symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when

forming well-defined expressions. Each operator has an assigned precedence.
apRNOVM^-page 140  2002 Microchip Technology Inc.

Glossary
OTP

One Time Programmable. EPROM devices that are not in windowed packages. Since

EPROM needs ultraviolet light to erase its memory, only windowed devices are

erasable.

P

Pass Counter (MPLAB IDE v5.xx/v6.xx)

A counter that decrements each time an event (such as the execution of an instruction

at a particular address) occurs. When the pass count value reaches zero, the event is

satisfied. You can assign the Pass Counter to break and trace logic, and to any

sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any IBM or compatible Personal Computer running Windows 3.1x or

Windows 95/98, Windows NT, or Windows 2000.

PICmicro MCUs

PICmicro microcontrollers (MCUs) refers to all Microchip microcontroller families.

PICSTART Plus Programmer

A device programmer from Microchip. Programs 8, 14, 28 and 40 pin PICmicro

microcontrollers. Must be used with MPLAB IDE Software.

Pod (MPLAB ICE 2000)

The external emulator box that contains emulation memory, trace memory, event and

cycle timers and trace/breakpoint logic.

Power-on-Reset Emulation (MPLAB ICE 2000)

A software randomization process that writes random values in data RAM areas to

simulate uninitialized values in RAM upon initial power application.

Pragma (Compilers)

A directive that has meaning to a specific compiler.

Precedence

The concept that some elements of an expression are evaluated before others;

(i.e., * and / before + and -). In language tools, operators of the same precedence are

evaluated from left to right. Use parentheses to alter the order of evaluation.

Program Counter

A register that specifies the current execution address for emulation and simulation.

Program Memory

The memory area in a microcontroller where instructions are stored. Also, the memory

in the emulator or simulator containing the downloaded target application firmware.

Programmer

A device used to program electrically programmable semiconductor devices such as

microcontrollers.
 2002 Microchip Technology Inc. apRNOVM^-page 141

MPLAB® C17 C Compiler User’s Guide
Project (MPLAB IDE v5.xx/v6.xx)

A set of source files and instructions to build the object and executable code for an

application.

PRO MATE II Programmer

A device programmer from Microchip. Programs all PICmicro microcontrollers and

most memory and Keeloq devices. Can be used with MPLAB IDE or stand-alone.

Prototype System

A term referring to a user's target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PICmicro MCU devices have a PWM

peripheral.

Q

Qualifier

An address or an address range used by the Pass Counter or as an event before

another operation in a complex trigger.

R

Radix

The number base, hexadecimal, or decimal, used in specifying an address and for

entering data in the Window > Modify command.

RAM

Random Access Memory (Data Memory).

Raw Data

The binary representation of code or data associated with a section.

Real-Time

When released from the halt state in the emulator or MPLAB ICD mode, the processor

runs in real-time mode and behaves exactly as the normal chip would behave. In

real-time mode, the real-time trace buffer of MPLAB ICE is enabled and constantly

captures all selected cycles, and all break logic is enabled. In the emulator or MPLAB

ICD, the processor executes in real-time until a valid breakpoint causes a halt, or until

the user halts the emulator.

In the simulator real-time simply means execution of the microcontroller instructions as

fast as they can be simulated by the host CPU.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care

should be taken when writing recursive macros; it is easy to get caught in an infinite

loop where there will be no exit from the recursion.

Relaxation

The process of converting an instruction to an identical, but smaller instruction. This is

useful for saving on code size. The assembler currently knows how to RELAX a CALL

instruction into an RCALL instruction. This is done when the symbol that is being called

is within +/- 32k instruction words from the current instruction.
apRNOVM^-page 142  2002 Microchip Technology Inc.

Glossary
Relocatable Section (Linkers)

A section whose address is not fixed (absolute). The linker assigns addresses to

relocatable sections through a process called relocation.

Relocation (Linkers)

A process performed by the linker in which absolute addresses are assigned to

relocatable sections and all identifier symbol definitions within the relocatable sections

are updated to their new addresses.

ROM

Read Only Memory (Program Memory).

Run

The command that releases the emulator from halt, allowing it to run the application

code and change or respond to I/O in real time.

S

Section (Linkers)

An portion of code or data which has a name, size and address.

SFR

See Special Function Registers.

Shared Section (MPLINK Linker)

A section which resides in a shared (non-banked) region of data RAM.

Shell (MPASM Assembler)

The MPASM assembler shell is a prompted input interface to the macro assembler.

There are two MPASM assembler shells: one for the DOS version and one for the

Windows® version.

Simulator

A software program that models the operation of PICmicro microcontrollers.

Single Step (MPLAB IDE v5.xx/v6.xx)

This command steps though code, one instruction at a time. After each instruction,

MPLAB IDE updates register windows, watch variables and status displays so you can

analyze and debug instruction execution.

You can also single step C compiler source code, but instead of executing single

instructions, MPLAB IDE will execute all assembly level instructions generated by the

line of the high level C statement.

Skew (MPLAB ICE 2000)

The information associated with the execution of an instruction appears on the

processor bus at different times. For example, the executed Opcodes appears on the

bus as a fetch during the execution of the previous instruction, the source data address

and value and the destination data address appear when the Opcodes is actually

executed, and the destination data value appears when the next instruction is

executed. The trace buffer captures the information that is on the bus at one instance.

Therefore, one trace buffer entry will contain execution information for three

instructions. The number of captured cycles from one piece of information to another

for a single instruction execution is referred to as the skew.
 2002 Microchip Technology Inc. apRNOVM^-page 143

MPLAB® C17 C Compiler User’s Guide
Skid (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2))

When a hardware breakpoint is used to halt the processor, one or more additional

instructions may be executed before the processor halts. The number of extra

instructions executed after the intended breakpoint is referred to as the skid.

Source Code – Assembly

Source code consists of PICmicro MCU instructions and MPASM assembler directives

and macros that will be translated into machine code by an assembler.

Source Code – C

A program written in the high level language called “C” which will be converted into

PICmicro MCU machine code by a compiler. Machine code is suitable for use by a

PICmicro MCU or Microchip development system product like MPLAB IDE.

Source File – Assembly

The ASCII text file of PICmicro MCU instructions and MPASM assembler directives and

macros (source code) that will be translated into machine code by an assembler. It is

an ASCII file that can be created using any ASCII text editor.

Source File – C

The ASCII text file containing C source code that will be translated into machine code

by a compiler. It is an ASCII file that can be created using any ASCII text editor.

Special Function Registers

Registers that control I/O processor functions, I/O status, timers, or other modes or

peripherals.

Stack – Hardware

An area in PICmicro MCU memory where function arguments, return values, local

variables and return addresses are stored; (i.e., a “Push-Down” list of calling routines).

Each time a PICmicro MCU executes a CALL or responds to an interrupt, the software

pushes the return address to the stack. A return command pops the address from the

stack and puts it in the program counter.

The PIC18 family also has a hardware stack to store register values for “fast” interrupts.

Stack – Software

The compiler uses a software stack for storing local variables and for passing

arguments to and returning values from functions.

Static RAM or SRAM

Static Random Access Memory. Program memory you can Read/Write on the target

board that does not need refreshing frequently.

Status Bar (MPLAB IDE v5.xx/v6.xx)

The Status Bar is located on the bottom of the MPLAB IDE window and indicates such

current information as cursor position, development mode and device and active tool

bar.

Step Into (MPLAB IDE v5.xx/v6.xx)

This command is the same as Single Step. Step Into (as opposed to Step Over) follows

a CALL instruction into a subroutine.
apRNOVM^-page 144  2002 Microchip Technology Inc.

Glossary
Step Over (MPLAB IDE v5.xx/v6.xx)

Step Over allows you to debug code without stepping into subroutines. When stepping

over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.

If for some reason the subroutine gets into an endless loop or does not return properly,

the next breakpoint will never be reached.

The Step Over command is the same as Single Step except for its handling of CALL

instructions.

Stimulus (Simulators)

Input to the simulator, i.e., data generated to exercise the response of simulation to

external signals. Often the data is put into the form of a list of actions in a text file.

Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch (Simulators)

A counter for measuring execution cycles.

Symbol (MPLAB IDE v5.xx/v6.xx)

A symbol is a general purpose mechanism for describing the various pieces which

comprise a program. These pieces include function names, variable names, section

names, file names, struct/enum/union tag names, etc.

Symbols in MPLAB IDE refer mainly to variable names, function names and assembly

labels.

System Button

The system button is another name for the system window control. Clicking on the

system button pops up the system menu.

System Window Control

The system window control is located in the upper left corner of windows and some

dialogs. Clicking on this control usually pops up a menu that has the items “Minimize,”

“Maximize,” and “Close.” In some MPLAB IDE windows, additional modes or functions

can be found.

T

Target (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

Refers to user hardware.

Target Application (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

Firmware residing on the target board.

Target Board (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

The circuitry and programmable device that makes up the target application.

Target Processor (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

The microcontroller device on the target application board.

Template (Editor)

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor

stores templates in template files.

Tool Bar (MPLAB IDE v5.xx/v6.xx)

A row or column of icons that you can click on to execute MPLAB IDE functions.
 2002 Microchip Technology Inc. apRNOVM^-page 145

MPLAB® C17 C Compiler User’s Guide
Trace (Debuggers)

An emulator or simulator function that logs program execution. The emulator logs

program execution into its trace buffer which is uploaded to MPLAB IDE’s trace

window.

Trace Memory (Debuggers)

Trace memory contained within the emulator. Trace memory is sometimes called the

trace buffer.

Trigger Output (MPLAB ICE 2000)

Trigger output refers to an emulator output signal that can be generated at any address

or address range, and is independent of the trace and breakpoint settings. Any number

of trigger output points can be set.

Trigraphs (Compilers)

These are three-character sequences, all starting with ??, that are defined by ISO C to

stand for single characters

The nine trigraphs and their replacements are

U

Unassigned Section (MPLINK Linker)

A section which has not been assigned to a specific target memory block in the linker

command file. The linker must find a target memory block in which to allocate an

unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to

the host PC or from the target board to the emulator.

W

Warning

An alert that is provided to warn you of a situation that would cause physical damage

to a device, software file, or equipment.

Watchdog Timer (WDT)

A timer on a PICmicro microcontroller that resets the processor after a selectable

length of time. The WDT is enabled or disabled and set up using configuration bits.

Watch Variable (MPLAB IDE v5.xx/v6.xx)

A variable that you may monitor during a debugging session in a watch window.

Watch Window (MPLAB IDE v5.xx/v6.xx)

Watch windows contain a list of watch variables that are updated at each breakpoint.

Trigraph: ??(??) ??< ??> ??= ??/ ??' ??! ??-

Replacement: [] { } # \ ^ | ~
apRNOVM^-page 146  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

USER’S GUIDE

MPLAB® C17 C COMPILER

USER’S GUIDE

Index
Symbols

#include .. 28, 82

#pragma interrupt ... 28

#pragma list / nolist .. 29

#pragma sectiontype 29, 65

#pragma varlocate 30, 94

.asm .. 39, 57

.c ... 22, 39, 57

.cod ... 39, 57

.err .. 23, 60

.h .. 60

.hex ... 39, 42, 57, 61

.lib ... 39, 57

.lkr ... 39, 57

.lst ... 39, 57

.map ... 39, 57, 61

.o .. 23, 39, 57

.out ... 39, 57, 61

A

ACSII Character Set 153

Add Project Files .. 44

Address Spaces, ROM and RAM 34, 65

ALUSTA ... 73, 87

ANSI C vs. MPLAB C17 25

ANSI Compatibility 135

ANSI-89 extension ... 78

Architecture .. 20

Arrays

ANSI C ... 138

Initialization .. 33

asm (_asm) .. 27, 89

Assembler, Internal .. 89

Assembly Language, Mixing with C 90

Assembly, Inline ... 91

Attributes

Overlay ... 66, 70

Shared ... 66, 71

AUTOEXEC.BAT .. 24

B

Banked/Paged Data 69

bin directory .. 24, 59

Bit-Fields .. 35

ANSI C ... 139

BSR .. 73, 87

C

C Programming References 149

C, Mixing with Assembly Language 90

c0l17.asm ... 68

c0s17.asm .. 67

Call Conventions

Functions .. 72

Mixing C and ASM 90

Software Stack ... 72

char ... 78

Characters, ANSI C 136

ClrWdt() ... 79

code .. 65, 70

Code and Data Sections 65

Code File .. 39, 57

Code, Locating .. 70

Code, Start Up 39, 47, 57, 60, 67

COFF File ... 39, 57, 61

Command Line

Multiple File Compile 61

Option Descriptions 58

Overview .. 55

Single File Compile 59

Comments .. 89

Compiler Versions .. 23

Constants .. 31

Contents, Section ... 66

Controlling What Goes on the Stack 72

Customer Support ... 10

D

Data in Program Memory 71

Data Representation 77

Data Type ... 77

Floating Point ... 78

Integer .. 78

Data, Locating ... 70

Development Mode ... 41

doc directory ... 24

Documentation

Conventions ... 7

Layout .. 5

Numbering Conventions 8

Updates .. 7
 2002 Microchip Technology Inc. DS51290A-page 147

MPLAB® C17 C Compiler User’s Guide
E

Edit Project ...42

Enable/Disable Interrupts87, 97

endasm (_endasm)27, 89

endian ...77

Enumerations, ANSI C139

Environment Variable See MCC_INCLUDE

Error File ...23, 60

Errors ..141

Example Code ..151

examples directory ..24

Executable

Directory ...24, 59

Files23, 37, 39, 57, 61

External Declaration79, 80

F

far ..27, 69, 82

Floating Point ..78

ANSI C ...137

FSRx ...23, 75

Function Call Conventions72

Functions ..26, 32

G

Glossary ..155

Going Forward ..53, 62

H

h directory ...24, 42, 59

Header

Directory24, 42, 59

File ..60

Hex File ...39, 42, 57, 61

I

idata ..65, 67, 70

Identifiers, ANSI C ..135

IEEE 754 ...78

Include

Current Search Path28, 42

Directory ...59

Initialization ...67

Arrays ...33

Data39, 47, 57, 60, 68

Stack ..69

Inline Assembly Language91

Install _TMR0 ..74

Install Language Tool50

Install/Uninstall the Compiler24

Install_INT ...80

Install_PIV ...80

Install_T0CKI ..80

Install_TMR0 ...80

Installation Requirements23

int ..78

Integers ...78

ANSI C ..136

Internet Address ..9

Interrupts ...83

Disable ..121

Enable ..97

Enable/Disable ...87

Handler Code39, 47, 57, 60

ISR, Writing ..84

Latency ...86

Nested ..73, 87

Saving FSR ..75

Support Macros73, 86

Vector, Writing ..85

ISR See Interrupts

K

Keyword Differences27

L

Latency, Interrupt ..86

lib directory ..24, 47, 59

Librarian See MPLIB Librarian

Libraries8, 19, 53, 62, 93

Library

Directory24, 47, 59

Files ..39, 57

Linker

Directory ...24, 59

Script ..39, 48, 57

Linker Script ..82, 94

Linker See MPLINK Linker

list ..29

Listing File ...39, 57

little endian ..77

lkr directory ..24, 59

Locating Code ...70

Locating Data ..70

long ...78

M

main(), branching to69

Make Project ...50

Map File ..39, 57, 61

MCC_INCLUDE24, 28, 59

mcc17 ..23, 37, 58

mcc17d ..23, 37

Memory

Models ..47, 69

Requirements ...23

Microchip Internet Web Site9

MPLAB C17 Description19, 164

MPLAB C17 Libraries ..8

MPLAB C17 vs. ANSI C25

MPLAB ICE ...19

MPLAB IDE ...19, 24, 40
DS51290A-page 148  2002 Microchip Technology Inc.

Index
MPLAB Projects ... 37

MPLAB SIM .. 19

MPLIB Librarian 21, 39, 57

MPLINK Linker 21, 39, 43, 51, 57, 89

N

near .. 27, 69

Nesting Interrupts 73, 87

New Project .. 41

Node Properties ... 43

Nop() ... 79

O

Object Files .. 23

Object Files, Precompiled 39, 47, 57

Oddities of Standard Functions 35

Operators ... 33

Optimization Tips .. 93

Overlay ... 70

overlay .. 66

P

Paged/Banked Data 69

PCLATH ... 73, 87

PICmicro MCU ... 170

Pointers .. 35

ANSI C ... 138

pragma interrupt ... 28

pragma list / nolist .. 29

pragma sectiontype 29, 65

pragma See also #pragma

pragma varlocate 30, 94

Precompiled Object Files 47

Preprocessor Directives, ANSI C 139

Processor Header File 26, 79, 82

PRODH .. 74, 75

PRODH, PRODL .. 23

PRODL ... 74, 75

Product Support ... 11

Program Components, Basic 26

Program Memory, Data in 71

Project Nodes ... 44

Project Window .. 52

Projects, MPLAB IDE 37

R

RAM

Address Spaces 34

Pointers .. 34, 35

ram ... 27, 33, 69

Ranges, Integer Types 78

README File ... 8

References ... 8

Register Definitions 39, 47, 57, 60, 80

Registers, ANSI C .. 138

Reserved Resources 23

Reset() ... 79

Rlcf() .. 79

Rlncf() .. 79

ROM

Address Spaces 34

Pointers .. 34, 35

rom ... 27, 33, 69

String .. 34

romdata .. 65, 70

Rrcf() .. 79

S

Sections

Allocation .. 65

Attributes .. 66

Code and Data ... 65

Contents ... 66

Default Names ... 67

SFRs ... 80

SFRs, Using ... 82

Shared .. 71

shared ... 66

short .. 78

signed char ... 78

signed int .. 78

signed long ... 78

signed short .. 78

Simulator See MPLAB SIM

Sizes, Integer Types 78

Sleep() ... 79

Software Stack Call Conventions 72

Source Code 22, 39, 57

Directory ... 24

Special Function Registers 80

src directory .. 24

Stack, Software .. 71

Control What Goes On 72

Initialization .. 69

Size and Location 71

Standard Functions, Oddities 35

Start Up Code 39, 47, 57, 60, 67

STARTUP() (_ _STARTUP()) 68

Statement Differences 28

Static Locals And Parameters 93

Static Strings .. 34

Storage Classes ... 32

Strings .. 35

Structures ... 35

ANSI C ... 138

Support

Customer .. 10

Product ... 11

Swapf() .. 79

switch .. 33

ANSI C ... 139
 2002 Microchip Technology Inc. DS51290A-page 149

MPLAB® C17 C Compiler User’s Guide
System Requirements, Host Computer23

T

TBLPTR ..75

TBLPTRH, TBLPTRL, TBLAT23

Troubleshooting ..9, 50

U

udata ...65, 66, 70

Uninstall the Compiler24

Unions, ANSI C ...138

unsigned char ...78

unsigned int ..78

unsigned long ...78

unsigned short ..78

USE_INITDATA ..68

USE_STARTUP ..68

Using SFR’s ..82

V

Variables ...31

Versions, Compiler ...23

volatile ...81, 82

W

Warnings ...145

Watchdog Timer (WDT)79

WREG33, 73, 75, 84, 87

Writing an Interrupt Service Routine84

Writing Efficient Code93

Writing the Interrupt Vector85

WWW Address ...9
DS51290A-page 150  2002 Microchip Technology Inc.

Index
NOTES:
 2002 Microchip Technology Inc. DS51290A-page 151

MPLAB® C17 C Compiler User’s Guide
NOTES:
DS51290A-page 152  2002 Microchip Technology Inc.

Index
NOTES:
 2002 Microchip Technology Inc. DS51290A-page 153

DS51290A-page 154  2002 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao
Rm. B503, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

12/05/02

WORLDWIDE SALES AND SERVICE

	Preface
	Introduction
	Highlights
	About This Guide
	Document Layout
	Conventions Used in this Guide
	Documentation Updates
	Documentation Numbering Conventions

	Warranty Registration
	Recommended Reading
	Troubleshooting
	Microchip On-Line Support
	Customer Change Notification Service
	Customer Support
	Systems Information and Upgrade Line

	Chapter 1. Compiler Overview and Installation
	1.1 Introduction
	1.2 Highlights
	1.3 MPLAB C17 Description
	1.4 Basic Functionality
	1.5 Input/Output Files
	1.5.1 Source Code Format (.c)
	1.5.2 Error File Format (.err)
	1.5.3 Object File Format (.o)

	1.6 Reserved Resources
	1.7 Host Computer System Requirements
	1.8 Compiler Versions
	1.9 Install/Uninstall the Compiler

	Chapter 2. Differences Between MPLAB C17 and ANSI C
	2.1 Introduction
	2.2 Highlights
	2.3 MPLAB C17 vs. ANSI C
	2.4 Components of a Basic MPLAB C17 Program
	2.5 Keyword Differences
	2.6 Statement Differences
	2.6.1 #include filename
	2.6.2 #pragma interrupt fname
	2.6.3 #pragma list / #pragma nolist
	2.6.4 #pragma sectiontype
	2.6.5 #pragma varlocate n name #pragma varlocate {gpr | sfr} name
	2.6.6 Constants
	2.6.7 Variables
	2.6.8 Storage Classes
	2.6.9 Functions
	2.6.10 Operators
	2.6.11 switch Statement
	2.6.12 Initializing Arrays
	2.6.13 Pointers
	2.6.14 Structures
	2.6.15 Bit-fields

	Chapter 3. Using MPLAB C17 with MPLAB IDE
	3.1 Introduction
	3.2 Highlights
	3.3 MPLAB Projects Overview
	3.4 Using MPLAB C17 with MPLAB IDE
	3.4.1 Overview
	3.4.2 Create Source File
	3.4.3 Set Development Mode
	3.4.4 New Project
	3.4.5 Edit Project
	3.4.6 Set Node Properties
	3.4.7 Add Files to the Project
	3.4.8 Add Source File
	3.4.9 Add Precompiled Object Files
	3.4.10 Select Linker Script
	3.4.11 Finish Project Edit
	3.4.12 Make Project
	3.4.13 Troubleshooting
	3.4.14 Project Window

	3.5 Code Development
	3.6 Additional Options and Library Information

	Chapter 4. Using MPLAB C17 on the Command Line
	4.1 Introduction
	4.2 Highlights
	4.3 Command Line Overview
	4.4 Using MPLAB C17 on the Command Line
	4.4.1 Command Line Interface
	4.4.2 Compiling a Single File on the Command Line
	4.4.3 Compiling Multiple Files on the Command Line

	4.5 Code Development
	4.6 Library Information

	Chapter 5. Runtime Environment
	5.1 Introduction
	5.2 Highlights
	5.3 Code and Data Sections
	5.3.1 Section Attributes
	5.3.2 Section Contents
	5.3.3 Default Sections and Names

	5.4 Startup and Initialization
	5.4.1 _ _STARTUP()
	5.4.2 Initialized Data Support
	5.4.3 Stack Initialization
	5.4.4 Branching to main()

	5.5 Memory Models
	5.6 Locating Code
	5.6.1 Section Types Used to Place Code
	5.6.2 Attributes – Overlay

	5.7 Locating Data
	5.7.1 Section Types Used to Place Data
	5.7.2 Attributes – Overlay
	5.7.3 Attributes – Shared
	5.7.4 Locating Data in Program Memory

	5.8 Software Stack
	5.8.1 Changing Stack Size and Location
	5.8.2 Controlling What Goes on the Stack

	5.9 Software Stack Call Conventions
	5.10 Function Call Conventions
	5.11 Interrupt Support Macros

	Chapter 6. Data Types
	6.1 Introduction
	6.2 Highlights
	6.3 Data Representation
	6.4 Integer
	6.5 Floating Point

	Chapter 7. Device Support Files
	7.1 Introduction
	7.2 Highlights
	7.3 Processor Header File
	7.4 Register Definitions File
	7.5 Using SFRs

	Chapter 8. Mixing Assembly Language and C Modules
	8.1 Introduction
	8.2 Highlights
	8.3 Internal Assembler
	8.4 Calling Conventions
	8.5 Mixing Assembly Language and C Variables and Functions
	8.6 Using In-line Assembly Language

	Chapter 9. Interrupts
	9.1 Introduction
	9.2 Highlights
	9.3 Writing an Interrupt Service Routine
	9.3.1 Guidelines for Writing ISR’s
	9.3.2 Syntax for Writing ISR’s
	9.3.3 Coding ISR’s

	9.4 Writing the Interrupt Vector
	9.5 Interrupt Service Routine Context Saving
	9.6 Latency
	9.7 Nesting Interrupts
	9.8 Enabling/Disabling Interrupts

	Chapter 10. Writing Efficient Code
	10.1 Introduction
	10.2 Highlights
	10.3 Static Locals And Parameters
	10.4 Optimization Tips

	Chapter 11. Enabling/Disabling Interrupts
	11.1 Introduction
	11.2 Highlights
	11.3 Enabling Interrupts
	11.3.1 Enabling Global Interrupts
	Library Call
	Modifying Register Bits
	11.3.2 Enabling Individual Interrupt(s)
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits

	11.4 Disabling Interrupts
	11.4.1 Disabling Global Interrupts
	Library Call
	Modifying Register Bits
	11.4.2 Disabling Individual Interrupt(s)
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits
	Library Call
	Modifying Register Bits

	Chapter 12. Implementation-Defined Behavior
	12.1 Introduction
	12.2 Highlights
	12.3 Identifiers
	12.4 Characters
	12.5 Integers
	12.6 Floating Point
	12.7 Arrays and Pointers
	12.8 Registers
	12.9 Structures and Unions
	12.10 Bit-Fields
	12.11 Enumerations
	12.12 Switch Statements
	12.13 Preprocessing Directives

	Chapter 13. MPLAB C17 Diagnostics
	13.1 Introduction
	13.2 Highlights
	13.3 Errors
	13.4 Warnings

	Appendix A. Reference Documents
	Appendix B. Example Programs
	Appendix C. ASCII Character Set
	Glossary
	Index
	Worldwide Sales and Service

