# 4-Mbit (256K × 16) Static RAM #### **Features** ■ Very high speed: 45 ns ■ Temperature ranges ☐ Industrial: —40 °C to +85 °C ☐ Automotive-A: —40 °C to +85 °C ■ Wide voltage range: 2.20 V to 3.60 V ■ Pin compatible with CY62146DV30 ■ Ultra low standby power $\hfill \square$ Typical standby current: 1 $\mu A$ Maximum standby current: 7 μA ■ Ultra low active power □ Typical active current: 2 mA at f = 1 MHz ■ Easy memory expansion with CE and OE features ■ Automatic power down when deselected Complementary metal oxide semiconductor (CMOS) for optimum speed and power ■ Available in a Pb-free 48-ball very fine-pitch ball grid array (VFBGA) and 44-pin TSOP II Packages ## **Functional Description** The CY62146EV30 is a high performance CMOS static RAM organized as 256K words by 16 bits. This device features an advanced circuit design designed to provide an ultra low active current. Ultra low active current is ideal for providing More Battery Life $^{\text{TM}}$ (MoBL $^{\circledR}$ ) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption by 80 percent when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99 percent when deselected (CE HIGH). The input and output pins (I/O0 through I/O15) are placed in a high impedance state when the device is deselected (CE HIGH), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or a write operation is in progress (CE LOW and WE LOW). $\overline{\text{To}}$ write to the device, take Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ input LOW. If Byte Low Enable $\overline{(BLE)}$ is LOW, then data from I/O pins $\overline{(I/O_0)}$ through I/O<sub>7</sub>) is written into the location specified on the address pins $\overline{(A_0)}$ through $\overline{(A_0)}$ . If Byte High Enable $\overline{(BHE)}$ is LOW, then data from the I/O pins $\overline{(I/O_8)}$ through I/O<sub>15</sub>) is written into the location specified on the address pins $\overline{(A_0)}$ through $\overline{(A_0)}$ . To read from the device, take Chip Enable ( $\overline{\text{CE}}$ ) and Output Enable ( $\overline{\text{OE}}$ ) LOW while forcing the Write Enable ( $\overline{\text{WE}}$ ) HIGH. If Byte Low Enable ( $\overline{\text{BLE}}$ ) is LOW, then data from the memory location specified by the address pins appears on I/O<sub>0</sub> to I/O<sub>7</sub>. If Byte High Enable ( $\overline{\text{BHE}}$ ) is LOW, then data from memory appears on I/O<sub>8</sub> to I/O<sub>15</sub>. See the Truth Table on page 11 for a complete description of read and write modes. For a complete list of related documentation, click here. # **Logic Block Diagram** Cypress Semiconductor Corporation Document Number: 38-05567 Rev. \*L ## **Contents** | Pin Configurations | 3 | |--------------------------------|---| | Product Portfolio | | | Maximum Ratings | 4 | | Operating Range | | | Electrical Characteristics | | | Capacitance | | | Thermal Resistance | | | AC Test Loads and Waveforms | 5 | | Data Retention Characteristics | | | Data Retention Waveform | | | Switching Characteristics | | | Switching Waveforms | | | Truth Table | | | Ordering information | 12 | |-----------------------------------------|----| | Ordering Code Definitions | 12 | | Package Diagrams | 13 | | Acronyms | 15 | | Document Conventions | 15 | | Units of Measure | 15 | | Document History Page | 16 | | Sales, Solutions, and Legal Information | 18 | | Worldwide Sales and Design Support | 18 | | Products | 18 | | PSoC®Solutions | 18 | | Cypress Developer Community | 18 | | Technical Support | 18 | ### **Pin Configurations** Figure 1. 48-ball VFBGA pinout [1, 2] Figure 2. 44-pin TSOP II pinout [1] #### **Product Portfolio** | | | | | | | | | Power Di | ssipation | | | |---------------|------------------------------|---------------------------|----------------|-------|--------------------------------|----------------|----------------------|----------------|----------------------------------------|----------------|-----| | Product | Range | V <sub>CC</sub> Range (V) | | Speed | Operating I <sub>CC</sub> (mA) | | | | Standby I <sub>SB2</sub> (μ <b>A</b> ) | | | | Product | Kange | | | (ns) | f = 1 MHz | | f = f <sub>max</sub> | | | | | | | | Min | <b>Typ</b> [3] | Max | | <b>Typ</b> [3] | Max | <b>Typ</b> [3] | Max | <b>Typ</b> [3] | Max | | CY62146EV30LL | Industrial /<br>Automotive-A | 2.2 | 3.0 | 3.6 | 45 | 2 | 2.5 | 15 | 20 | 1 | 7 | #### Notes - 1. NC pins are not connected on the die. - 2. Pins H1, G2, and H6 in the BGA package are address expansion pins for 8Mb, 16Mb and 32Mb respectively. - 3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$ , $T_A = 25$ °C. ## **Maximum Ratings** Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage temperature ......-65 °C to + 150 °C Ambient temperature with power applied ......-55 °C to + 125 °C Supply voltage to ground potential ........-0.3 V to + 3.9 V ( $V_{CCmax}$ + 0.3 V) DC voltage applied to outputs in High-Z state $^{[4,\;5]}$ .....-0.3 V to 3.9 V (V\_CC\_max + 0.3 V) | DC input voltage $^{[4, 5]}$ $-0.3$ V to $3.9$ V ( $V_{CC max}$ | (+ 0.3 V) | |-------------------------------------------------------------------|-----------| | Output current into outputs (LOW) | 20 mA | | Static Discharge Voltage (per MIL-STD-883, Method 3015) | >2001 V | | Latch-up Current | >200 mA | # **Operating Range** | Device | Range | Ambient<br>Temperature | <b>V</b> <sub>CC</sub> <sup>[6]</sup> | | |-------------|------------------------------|------------------------|---------------------------------------|--| | CY62146EV30 | Industrial /<br>Automotive-A | –40 °C to +85 °C | 2.2 V to 3.6 V | | #### **Electrical Characteristics** Over the Operating Range | D | Donordotion. | T+ 0- | Test Conditions | | | 45 ns (Ind'I/Auto-A) | | | |---------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|--------------------|-----------------------|------|--| | Parameter | Description | lest Co | naitions | Min | Typ <sup>[7]</sup> | Max | Unit | | | V <sub>OH</sub> | Output high voltage | I <sub>OH</sub> = -0.1 mA | | 2.0 | - | _ | V | | | | | $I_{OH} = -1.0 \text{ mA}, V_0$ | <sub>CC</sub> ≥ 2.70 V | 2.4 | - | _ | V | | | $V_{OL}$ | Output low voltage | I <sub>OL</sub> = 0.1 mA | | ı | - | 0.4 | V | | | | | $I_{OL}$ = 2.1 mA, $V_{CO}$ | <sub>C</sub> ≥ 2.70 V | ı | _ | 0.4 | V | | | $V_{IH}$ | Input high voltage | $V_{CC}$ = 2.2 V to 2.7 | 7 V | 1.8 | _ | V <sub>CC</sub> + 0.3 | V | | | | | $V_{CC} = 2.7 \text{ V to } 3.6$ | 6 V | 2.2 | - | V <sub>CC</sub> + 0.3 | V | | | V <sub>IL</sub> | Input LOW Voltage | V <sub>CC</sub> = 2.2 V to 2.7 V | | -0.3 | - | 0.6 | V | | | | | V <sub>CC</sub> = 2.7 V to 3.6 V | | -0.3 | - | 0.8 | V | | | I <sub>IX</sub> | Input leakage current | $GND \le V_I \le V_{CC}$ | | -1 | - | +1 | μΑ | | | I <sub>OZ</sub> | Output leakage current | GND $\leq$ V <sub>O</sub> $\leq$ V <sub>CC</sub> , | Output disabled | -1 | - | +1 | μΑ | | | I <sub>CC</sub> | V <sub>CC</sub> operating supply current | $f = f_{max} = 1/t_{RC}$ | $V_{CC} = V_{CC(max)}$ ,<br>$I_{OUT} = 0 \text{ mA}$ | - | 15 | 20 | mA | | | | | f = 1 MHz | I <sub>OUT</sub> = 0 mA<br>CMOS levels | _ | 2 | 2.5 | | | | I <sub>SB1</sub> | Automatic CE power down current – CMOS inputs | $\overline{\text{CE}}$ > V <sub>CC</sub> - 0.2 V,<br>V <sub>IN</sub> > V <sub>CC</sub> - 0.2 V or V <sub>IN</sub> < 0.2 V,<br>f = f <sub>max</sub> (Address and data only), | | - | 1 | 7 | μА | | | | | $f = 0$ ( $\overline{OE}$ , $\overline{BHE}$ , $\overline{BLE}$ and $\overline{WE}$ ), $V_{CC} = 3.60 \text{ V}$ | | | | | | | | I <sub>SB2</sub> <sup>[8]</sup> | Automatic CE power down current – CMOS inputs | $\overline{\text{CE}} \ge V_{\text{CC}} - 0.2 \text{ V}$<br>$V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{ V}$<br>$f = 0, V_{\text{CC}} = 3.60$ | $'$ or $V_{INI} \leq 0.2 V$ , | - | 1 | 7 | μΑ | | - A. V<sub>IL(min)</sub> = -2.0 V for pulse durations less than 20 ns. 5. V<sub>IH(max)</sub> = V<sub>CC</sub> + 0.75 V for pulse durations less than 20 ns. 6. Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V<sub>CC</sub>(min) and 200 μs wait time after V<sub>CC</sub> stabilization. 7. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC(typ)</sub>, T<sub>A</sub> = 25 °C. - 8. Chip enable ( $\overline{\text{CE}}$ ) and byte enables ( $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ ) need to be tied to CMOS levels to meet the $I_{SB1}/I_{SB2}/I_{CCDR}$ spec. Other inputs can be left floating. # Capacitance | Parameter [9] | Description | Test Conditions | Max | Unit | |------------------|--------------------|---------------------------------------------------------------------|-----|------| | C <sub>IN</sub> | Input capacitance | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$ | 10 | pF | | C <sub>OUT</sub> | Output capacitance | | 10 | pF | ### **Thermal Resistance** | Parameter [9] | Description | Test Conditions | VFBGA | TSOP II | Unit | |---------------|---------------------------------------|-------------------------------------------------------------------------|-------|---------|------| | $\Theta_{JA}$ | | Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board | 42.10 | 55.52 | °C/W | | $\Theta_{JC}$ | Thermal resistance (junction to case) | | 23.45 | 16.03 | °C/W | ### **AC Test Loads and Waveforms** Figure 3. AC Test Loads and Waveforms | Parameters | 2.50 V | 3.0 V | Unit | |-----------------|--------|-------|------| | R1 | 16667 | 1103 | Ω | | R2 | 15385 | 1554 | | | R <sub>TH</sub> | 8000 | 645 | Ω | | V <sub>TH</sub> | 1.20 | 1.75 | V | Note 9. Tested initially and after any design or process changes that may affect these parameters. #### **Data Retention Characteristics** Over the Operating Range | Parameter | Description | Condition | Min | <b>Typ</b> [10] | Max | Unit | | |----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|-----|------|----| | $V_{DR}$ | V <sub>CC</sub> for data retention | | | 1.5 | - | - | V | | ICCDR [11] | Data retention current | $V_{CC} = 1.5 \text{ V},$ $\overline{CE} \ge V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V}$ | Industrial /<br>Automotive-A | - | 0.8 | 7 | μΑ | | t <sub>CDR</sub> <sup>[12]</sup> | Chip deselect to data retention time | _ | | 0 | _ | - | ns | | t <sub>R</sub> [13] | Operation recovery time | _ | | 45 | _ | _ | ns | ### **Data Retention Waveform** Figure 4. Data Retention Waveform #### Notes <sup>10.</sup> Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC(typ)</sub>, T<sub>A</sub> = 25 °C. 11. Chip enable (CE) and byte enables (BHE and BLE) need to be tied to CMOS levels to meet the I<sub>SB1</sub>/I<sub>SB2</sub>/I<sub>CCDR</sub> spec. Other inputs can be left floating. 12. Tested initially and after any design or process changes that may affect these parameters. 13. Full device operation requires linear V<sub>CC</sub> ramp from V<sub>DR</sub> to V<sub>CC(min)</sub> ≥ 100 μs or stable at V<sub>CC(min)</sub> ≥ 100 μs. ## **Switching Characteristics** Over the Operating Range | Parameter [14, 15] | Description | 45<br>(Industrial / A | ns<br>lutomotive-A) | Unit | |---------------------|-----------------------------------|-----------------------|---------------------|------| | | · | Min | Max | | | Read Cycle | | <u> </u> | | | | t <sub>RC</sub> | Read cycle time | 45 | _ | ns | | t <sub>AA</sub> | Address to data valid | _ | 45 | ns | | t <sub>OHA</sub> | Data hold from address change | 10 | _ | ns | | t <sub>ACE</sub> | CE LOW to data valid | - | 45 | ns | | t <sub>DOE</sub> | OE LOW to data valid | - | 22 | ns | | t <sub>LZOE</sub> | OE LOW to Low-Z [16] | 5 | _ | ns | | t <sub>HZOE</sub> | OE HIGH to High-Z [16, 17] | - | 18 | ns | | t <sub>LZCE</sub> | CE LOW to Low-Z [16] | 10 | _ | ns | | t <sub>HZCE</sub> | CE HIGH to High-Z [16, 17] | - | 18 | ns | | t <sub>PU</sub> | CE LOW to power up | 0 | _ | ns | | t <sub>PD</sub> | CE HIGH to power down | - | 45 | ns | | t <sub>DBE</sub> | BLE / BHE LOW to data valid | - | 22 | ns | | t <sub>LZBE</sub> | BLE / BHE LOW to Low-Z [16] | 5 | _ | ns | | t <sub>HZBE</sub> | BLE / BHE HIGH to High-Z [16, 17] | - | 18 | ns | | Write Cycle [18, 19 | 9] | | | | | t <sub>WC</sub> | Write cycle time | 45 | _ | ns | | t <sub>SCE</sub> | CE LOW to write end | 35 | _ | ns | | t <sub>AW</sub> | Address setup to write end | 35 | ı | ns | | t <sub>HA</sub> | Address hold from write end | 0 | _ | ns | | t <sub>SA</sub> | Address setup to write start | 0 | _ | ns | | t <sub>PWE</sub> | WE pulse width | 35 | _ | ns | | t <sub>BW</sub> | BLE / BHE LOW to write end | 35 | _ | ns | | t <sub>SD</sub> | Data setup to write end | 25 | | ns | | t <sub>HD</sub> | Data hold from write end | 0 | - | ns | | t <sub>HZWE</sub> | WE LOW to High-Z [16, 17] | _ | 18 | ns | | t <sub>LZWE</sub> | WE HIGH to Low-Z [16] | 10 | _ | ns | <sup>14.</sup> Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1 V/ns) or less, timing reference levels of V<sub>CC(typ)</sub>/2, input pulse levels of 0 to V<sub>CC(typ)</sub>, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> as shown in the Figure 3 on page 5. 15. In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the byte enable and/or chip enable signals as described in the Application Notes AN13842 and AN66311. However, the issue has been fixed and in production now, and hence, these Application Notes are no longer applicable. They are available for download on our website as they contain information on the date code of the parts, beyond which the fix has been in production. <sup>16.</sup> At any given temperature and voltage condition, $t_{HZCE}$ is less than $t_{LZCE}$ , $t_{HZDE}$ is less than $t_{LZBE}$ , $t_{HZOE}$ is less than $t_{LZOE}$ , and $t_{HZWE}$ is less than $t_{LZWE}$ for any given <sup>17.</sup> t<sub>HZOE</sub>, t<sub>HZOE</sub>, t<sub>HZDE</sub>, and t<sub>HZWE</sub> transitions are measured when the outputs enter a high impedance state. 18. The internal write time of the memory is defined by the overlap of WE, CE = V<sub>IL</sub>, BHE and/or BLE = V<sub>IL</sub>. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write 19. The minimum write pulse width for Write Cycle No. 3 (WE controlled, OE LOW) should be sum of t<sub>HZWE</sub> and t<sub>SD</sub>. # **Switching Waveforms** Figure 5. Read Cycle 1 (Address Transition Controlled) $^{[20,\,21]}$ Figure 6. Read Cycle No. 2 (OE Controlled) [21, 22] <sup>20.</sup> The device is continuously selected. $\overline{OE}$ , $\overline{CE} = V_{\parallel L}$ , $\overline{BHE}$ and/or $\overline{BLE} = V_{\parallel L}$ . 21. $\overline{WE}$ is HIGH for read cycle. <sup>22.</sup> Address valid before or similar to $\overline{\text{CE}}$ and $\overline{\text{BHE}}$ , $\overline{\text{BLE}}$ transition LOW. ### Switching Waveforms (continued) Figure 7. Write Cycle No. 1 (WE Controlled) [23, 24, 25] Figure 8. Write Cycle No. 2 (CE Controlled) [23, 24, 25] #### Notes - 23. The internal write time of the memory is defined by the overlap of WE, CE = V<sub>IL</sub>, BHE and/or BLE = V<sub>IL</sub>. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write. 24. Data I/O is high impedance if OE = V<sub>IL</sub>. 25. If CE goes HIGH simultaneously with WE = V<sub>IH</sub>, the output remains in a high impedance state. - 26. During this period, the I/Os are in output state and input signals must not be applied. ## Switching Waveforms (continued) Figure 9. Write Cycle No. 3 ( $\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [27, 28] Figure 10. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [27] Notes 27. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ = V<sub>IH</sub>, the o<u>utpu</u>t remains in <u>a high</u> impedance state. 28. The minimum write pulse width for Write Cycle No. 3 (WE Controlled, $\overline{\text{OE}}$ LOW) should be sum of t<sub>HZWE</sub> and t<sub>SD</sub>. 29. During this period, the I/Os are in output state and input signals must not be applied. ### **Truth Table** | <b>CE</b> [30] | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----------------|----|----|-----|-----|--------------------------------------------------------------------------------------------------|---------------------|----------------------------| | Н | Х | Х | Х | Х | High-Z | Deselect/power-down | Standby (I <sub>SB</sub> ) | | L | Х | Х | Н | Н | High-Z | Output disabled | Active (I <sub>CC</sub> ) | | L | Н | L | L | L | Data out (I/O <sub>0</sub> –I/O <sub>15</sub> ) | Read | Active (I <sub>CC</sub> ) | | L | Н | L | Н | L | Data out (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>I/O <sub>8</sub> –I/O <sub>15</sub> in High-Z | Read | Active (I <sub>CC</sub> ) | | L | Н | L | L | Н | Data out (I/O <sub>8</sub> –I/O <sub>15</sub> );<br>I/O <sub>0</sub> –I/O <sub>7</sub> in High-Z | Read | Active (I <sub>CC</sub> ) | | L | Н | Н | L | L | High-Z | Output disabled | Active (I <sub>CC</sub> ) | | L | Н | Н | Н | L | High-Z | Output disabled | Active (I <sub>CC</sub> ) | | L | Н | Н | L | Н | High-Z | Output disabled | Active (I <sub>CC</sub> ) | | L | L | Х | L | L | Data in (I/O <sub>0</sub> –I/O <sub>15</sub> ) | Write | Active (I <sub>CC</sub> ) | | L | L | Х | Н | L | Data in (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>I/O <sub>8</sub> –I/O <sub>15</sub> in High-Z | Write | Active (I <sub>CC</sub> ) | | L | L | Х | L | Η | Data in (I/O <sub>8</sub> –I/O <sub>15</sub> );<br>I/O <sub>0</sub> –I/O <sub>7</sub> in High-Z | Write | Active (I <sub>CC</sub> ) | Note 30. Chip enable must be at CMOS levels (not floating). Intermediate voltage levels on this pin is not permitted. # **Ordering Information** | Speed (ns) | Ordering Code | Package<br>Diagram | Package Type | Operating<br>Range | |------------|----------------------|--------------------|--------------------------|--------------------| | 45 | CY62146EV30LL-45BVXI | 51-85150 | 48-ball VFBGA (Pb-free) | Industrial | | | CY62146EV30LL-45ZSXI | 51-85087 | 44-pin TSOP II (Pb-free) | | | | CY62146EV30LL-45ZSXA | 51-85087 | 44-pin TSOP II (Pb-free) | Automotive-A | Please contact your local Cypress sales representative for availability of other parts ### **Ordering Code Definitions** # **Package Diagrams** Figure 11. 48-ball VFBGA (6 × 8 × 1.0 mm) BV48/BZ48 Package Outline, 51-85150 NOTE: PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web. 51-85150 \*H ## Package Diagrams (continued) Figure 12. 44-pin TSOP Z44-II Package Outline, 51-85087 51-85087 \*E # **Acronyms** | Acronym | Description | |---------------------------------------------|---------------------------------| | BHE | Byte High Enable | | BLE Byte Low Enable | | | CMOS Complementary Metal Oxide Semiconducto | | | CE | Chip Enable | | I/O | Input/Output | | ŌĒ | Output Enable | | SRAM | Static Random Access Memory | | TSOP | Thin Small Outline Package | | VFBGA | Very Fine-Pitch Ball Gird Array | | WE | Write Enable | ## **Document Conventions** ### **Units of Measure** | Symbol | Unit of Measure | | | |--------|-----------------|--|--| | °C | degree Celsius | | | | MHz | megahertz | | | | μΑ | microampere | | | | mA | milliampere | | | | ns | nanosecond | | | | Ω | ohm | | | | pF | picofarad | | | | V | volt | | | | W | watt | | | # **Document History Page** | Document Title: CY62146EV30 MoBL <sup>®</sup> , 4-Mbit (256K × 16) Static RAM<br>Document Number: 38-05567 | | | | | |------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Rev. | ECN No. | Orig. of<br>Change | Submission<br>Date | Description of Change | | ** | 223225 | AJU | See ECN | New data sheet. | | *A | 247373 | SYT | See ECN | Changed status from Advance Information to Preliminary. Moved Product Portfolio to Page 2 Changed $V_{CC}$ stabilization time in footnote #8 from 100 $\mu$ s to 200 $\mu$ s Removed Footnote #14( $t_{LZBE}$ ) from Previous revision Changed $t_{CCDR}$ from 2.0 $\mu$ A to 2.5 $\mu$ A Changed typo in Data Retention Characteristics ( $t_R$ ) from 100 $\mu$ s to $t_{RC}$ ns Changed $t_{OHA}$ from 6 ns to 10 ns for both 35 ns and 45 ns Speed Bin Changed $t_{HZOE}$ , $t_{HZBE}$ , $t_{HZWE}$ from 12 to 15 ns for 35 ns Speed Bin and 15 to 18 ns for 45 ns Speed Bin Changed $t_{SCE}$ and $t_{BW}$ from 25 to 30 ns for 35 ns Speed Bin and 40 to 35 n for 45 ns Speed Bin Changed $t_{HZCE}$ from 12 to 18 ns for 35 ns Speed Bin and 15 to 22 ns for 45 ns Speed Bin Changed $t_{SD}$ from 15 to 18 ns for 35 ns Speed Bin and 20 to 22 ns for 45 ns Speed Bin Changed $t_{SD}$ from 15 to 18 ns for 35 ns Speed Bin Changed $t_{SD}$ from 15 to 18 ns for 35 ns Speed Bin Changed $t_{SD}$ from 15 to 18 ns for 35 ns Speed Bin Changed $t_{SD}$ from 15 to 18 ns for 35 ns Speed Bin Changed $t_{SD}$ from 15 to 18 ns for 35 ns Speed Bin Changed Ordering Information to include Pb-Free Packages | | *B | 414807 | ZSD | See ECN | Changed status from Preliminary to Final. Changed the address of Cypress Semiconductor Corporation on Page #1 fror "3901 North First Street" to "198 Champion Court" Removed 35ns Speed Bin Removed "L" version of CY62146EV30 Changed ball E3 from DNU to NC Removed the redundant foot note on DNU. Changed $I_{CC}$ (Max) value from 2 mA to 2.5 mA and $I_{CC}$ (Typ) value from 1.5 m to 2 mA at f=1 MHz Changed $I_{CC}$ (Typ) value from 12 mA to 15 mA at f = $f_{max}$ Changed $I_{SB1}$ and $I_{SB2}$ Typ values from 0.7 $\mu$ A to 1 $\mu$ A and Max values from 2.5 $\mu$ A to 7 $\mu$ A. Changed the AC test load capacitance from 50pF to 30pF on Page# 4 Changed $I_{CCDR}$ from 2.5 $\mu$ A to 7 $\mu$ A. Added $I_{CCDR}$ from 2.5 $\mu$ A to 7 $\mu$ A. Added $I_{CCDR}$ from 3 ns to 5 ns Changed $I_{LZCE}$ from 6 ns to 5 ns Changed $I_{LZCE}$ from 6 ns to 5 ns Changed $I_{HZCE}$ from 22 ns to 18 ns Changed $I_{PWE}$ from 30 ns to 35 ns. Changed $I_{PWE}$ from 30 ns to 25 ns. Updated the package diagram 48-ball VFBGA from *B to *D Updated the ordering information table and replaced the Package Name column with Package Diagram. | | *C | 925501 | VKN | See ECN | Added footnote #8 related to I <sub>SB2</sub> and I <sub>CCDR</sub> Added footnote #12 related AC timing parameters | | *D | 2678796 | VKN /<br>PYRS | 03/25/2009 | Added Automotive-A information in all instances across the document. | | *E | 2944332 | VKN | 06/04/2010 | Added Contents Removed byte enable from footnote #2 in Electrical Characteristics Added footnote related to chip enable in Truth Table Updated Package Diagrams. Updated links in Sales, Solutions, and Legal Information. | # **Document History Page** (continued) | Documen<br>Documen | Document Title: CY62146EV30 MoBL <sup>®</sup> , 4-Mbit (256K × 16) Static RAM<br>Document Number: 38-05567 | | | | | |--------------------|------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Rev. | ECN No. | Orig. of<br>Change | Submission<br>Date | Description of Change | | | *F | 3109050 | PRAS | 12/13/2010 | Changed Table Footnotes to Footnotes. Added Ordering Code Definitions. | | | *G | 3302915 | RAME | 07/14/2011 | Removed the references of AN1064 SRAM system guidelines from the datasheet. Updated all the notes. Updated Ordering Code Definitions. Added Units of Measure. Updated to new template. | | | *H | 3961126 | TAVA | 04/10/2013 | Updated Package Diagrams: spec 51-85150 – Changed revision from *F to *H. spec 51-85087 – Changed revision from *C to *E. Completing Sunset Review. | | | *1 | 4101995 | VINI | 08/22/2013 | Updated Switching Characteristics: Updated Note 15. Updated to new template. | | | *J | 4348752 | MEMJ | 04/16/2014 | Updated Switching Characteristics: Added Note 19 and referred the same note in "Write Cycle" (for t <sub>PWE</sub> parameter in WE controlled, OE LOW Write cycle). Updated Switching Waveforms: Added Note 28 and referred the same note in Figure 9 (for t <sub>PWE</sub> parameter in WE controlled, OE LOW Write cycle). Completing Sunset Review. | | | *K | 4576526 | MEMJ | 11/21/2014 | Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. | | | *L | 5233278 | VINI | 04/21/2016 | Updated Thermal Resistance: Replaced "two-layer" with "four-layer" in "Test Conditions" column. Updated all values in "VFBGA" and "TSOP II" columns. Updated to new template. Completing Sunset Review. | | ## Sales, Solutions, and Legal Information #### Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. cypress.com/usb cypress.com/wireless #### **Products** **USB Controllers** Wireless/RF ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch #### **PSoC®Solutions** PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP #### **Cypress Developer Community** Forums | Projects | Video | Blogs | Training | Components #### **Technical Support** cypress.com/support © Cypress Semiconductor Corporation, 2004-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.