
Getting Started with OBD-II




Introduction
Eventually on your journey into the world of embedded electronics, you will
want to “hack” a vehicle for data. As with many other integrated systems,
there is a specific ‘language’ for talking with vehicles. This tutorial will give a
basic introduction to the On-Board Diagnostics (OBD) specification that
vehicles and other industrial machines use to communicate with the outside
world.

Warning! Modifying your OBD-II system to a non-certified state is
considered a Federal Offense. The information provided is only
intended for reading from the OBD-II spec. Hack at your own risk!

The Definition

So what exactly is the OBD specification, and why do we care? According
to the Environmental Protection Agency’s website:

On-Board Diagnostics, or “OBD,” is a computer-based
system built into all 1996 and later light-duty vehicles
and trucks, as required by the Clean Air Act
Amendments of 1990. OBD systems are designed to
monitor the performance of some of an engine’s major
components including those responsible for controlling
emissions.

In other words, OBD is the language of the Engine Control Unit (ECU),
and it was designed to help fight emissions and engine failures.

Saving the planet is great (shout out to you citizen scientists!), but what this
also means is we can access other features of the car and collect
information from and on those parts. Learning how to work with those
protocols also means that you can determine what that Malfuction
Indicator Light (MIL) (aka the Check Engine Light) on your dash is
referring to when it tells you there’s an engine problem. If you or your
mechanic has ever read the DTCs (Diagnostic Trouble Codes) on your
vehicle, they are using OBD-II.

Unfortunately, the actual protocols themselves are not available publicly (if
only they’d open source!), but we’ve attempted to collect and clarify as
much as possible.

Page 1 of 8

The Hardware

Any vehicle manufacture from 1996 or later is required by law to have the
OBD-II computer system. You can access this system through the Data
Link Connector (DLC). It is a 16 pin connector that can tell you which
protocol your car communicates with, depending on which pins are
populated in it.

Data Link Connector in a 1998 Jeep Cherokee, with the pins labeled.

In cars, it will be located under the dash, near the driver’s seat, or in the
vicinity of the ashtray – somewhere easily accessible from the driver’s seat
without the use of tools to access it (i.e., you don’t need a screw driver to
pull off a panel to get to it).

Terminology
Before we get too much farther, let’s make sure we understand all the
keywords used in these protocols.

Engine/Electronic Control Unit (ECU)

The ECU can refer to a single module or a collection of modules. These are
the brains of the vehicle. They monitor and control many functions of the
car. These can be standard from the manufacturer, reprogrammable, or
have the capability of being daisy-chained for multiple features. Tuning
features on the ECU can allow the user to make the engine function at
various performance levels and various economy levels. On new cars,
these are all typically microcontrollers.

Some of the more common ECU types include:

• Engine Control Module (ECM) - This controls the actuators of the
engine, affecting things like ignition timing, air to fuel ratios, and idle
speeds.

• Vehicle Control Module (VCM) - Another module name that
controls the engine and vehicle performance.

• Transmission Control Module (TCM) - This handles the
transmission, including items like transmission fluid temperature,
throttle position, and wheel speed.

• Powertrain Control Module (PCM) - Typically, a combination of an
ECM and a TCM. This controls your powertrain.

• Electronic Brake Control Module (EBCM) - This controls and reads
data from the anti-lock braking system (ABS).

• Body Control Module (BCM) - The module that controls vehicle
body features, such as power windows, power seats, etc.

Diagnostic Trouble Code (DTC)

These codes are used to describe where an issue is occurring on the
vehicle and are defined by SAE (you can find the whole spec here for a
cost). These codes, can either be generic or unique to the vehicle
manufacturer.

Page 2 of 8

These codes take the following format:

XXXXX

• First unit identifies the type of error code:

◦ Pxxxx for powertrain
◦ Bxxxx for body
◦ Cxxxx for chassis
◦ Uxxxx for class 2 network

• Second digit shows whether the code is manufacturer unique or not:

◦ x0xxx for government-required code
◦ x1xxx for manufacturer-specific code

• Third digit shows us what system the trouble code references:

◦ xx1xx/xx2xx show air and fuel measurements
◦ xx3xx shows ignition system
◦ xx4xx shows emissions systems
◦ xx5xx references speed/idle control
◦ xx6xx deals with computer systems
◦ xx7xx/xx8xx involve the transmission
◦ xx9xx notates input/output signals and controls

• Digits four and five show the specific failure code.

◦ xxx00 to xxx99 - these are based on the systems defined in
the third digit.

You can find some incomplete lists of DTCs here and here.

Parameter Identification (PID)

These are the actual meat and potatoes of the information you can pull off
of an OBD-II system. The PIDs are the definitions of the different
parameters you could be interested in checking out. These are similar to
the third digit in the DTCs.

Not all PIDs are supported on all protocols, and there can be several
unique, custom PIDs for each manufacturer. Unfortunately, these also are
not generally published, so you may need to do a lot of hunting and/or
reverse engineering to determine to which system each PID relates.

There are different modes available, and each mode has several options of
PIDs available in that mode. For more general information on that, please
check out the PID wiki page.

Malfunction Indicator Lamp (MIL)

The MIL is that terrible little light in the dash that indicates a problem with
the car. There are a few variations, but they all indicate an error found by
the OBD-II protocol.

“Check-Engine-Light” by IFCAR - Own work. Licensed under Public Domain
via Commons

Another possibility you might find on your dash includes this option:

Page 3 of 8

“Motorkontrollleuchte” by Benutzer:chris828 - Own work by the original
uploader. Licensed under Public Domain via Commons

No matter which one it is, these usually aren’t great lights to see, unless
you feel like hacking!

OBD-II Protocols
There are five different communication protocols available under the OBD-II
spec. Like so many things, manufacturers tend to have their preferences
and think their protocol is best, hence the variation. Here’s a quick overview
of each and a description of the pins used on the DLC for each.

SAE J1850 PWM

This signal is Pulse Width Modulation, which runs at 41.6 kbps. This
protocol is generally used on Ford vehicles.

SAE J1850 PWM

Feature Description

BUS + Pin 2

BUS - Pin 10

12V Pin 16

GND Pins 4, 5

Bus State: Active when BUS + is pulled HIGH, BUS - is
pulled LOW

Maximum Signal
Voltage:

5V

Minimum Signal
Voltage:

0V

Number of bytes: 12

Bit Timing: '1' bit - 8uS, '0' bit - 16uS, Start of Frame - 48uS

SAE J1850 VPW

This protocol is Variable Pulse Width, which runs at 10.4 kbps. GM vehicles
typically use this version.

SAE J1850 VPW

Feature Description

BUS + Pin 2

12V Pin 16

GND Pins 4, 5

Bus State: Bus idles low

Maximum Signal
Voltage:

+7V

Page 4 of 8

Decision Signal
Voltage:

+3.5V

Minimum Signal
Voltage:

0V

Number of bytes: 12

Bit Timing: '1' bit -HIGH 64uS, '0' bit -HIGH 128uS, Start of
Frame - HIGH 200uS

ISO 9141-2

If you have a Chrysler, European, or Asian vehicle, this is your protocol. It
runs at 10.4 kbps and is asynchronous serial communication.

ISO 9141-2

Feature Description

K Line (bidirectional) Pin 7

L Line (unidirectional,
optional)

Pin 15

12V Pin 16

GND Pins 4, 5

Bus State: K Line idles HIGH. Bus is active when
driven LOW.

Maximum Signal Voltage: +12V

Minimum Signal Voltage: 0V

Number of bytes: Message: 260, Data: 255

Bit Timing: UART: 10400bps, 8-N-1

ISO 14230 KWP2000

This is the Keyword Protocol 2000, another asynchronous serial
communication method that also runs at up to 10.4 kbps. This also is used
on Chrsyler, European, or Asian vehicles.

ISO 14230 KWP2000

Feature Description

K Line (bidirectional) Pin 7

L Line (unidirectional, optional) Pin 15

12V Pin 16

GND Pins 4, 5

Bus State: Active when driven LOW.

Maximum Signal Voltage: +12V

Minimum Signal Voltage: 0V

Number of bytes: Data: 255

Page 5 of 8

Bit Timing: UART: 10400bps, 8-N-1

ISO 15765 CAN

This protocol has been mandated in all vehicles sold in the US from 2008
and later. However, if you have a European car from 2003 or later, the
vehicle may have CAN. It’s a two-wire communication method and can run
at up to 1Mbps.

ISO 15765 CAN

Feature Description

CAN HIGH (CAN
H)

Pin 6

CAN LOW (CAN
L)

Pin 14

12V Pin 16

GND Pins 4, 5

Bus State: Active when CANH pulled HIGH, CANL pulled
LOW. Idle when signals are floating.

CANH Signal
Voltage:

+3.5V

CANL Signal
Voltage:

+1.5V

Maximum Signal
Voltage:

CANH = +4.5V, CANL = +2.25V

Minimum Signal
Voltage:

CANH = +2.75V, CANL = +0.5V

Number of bytes: L

Bit Timing: 250kbit/sec or 500kbit/sec

Using a Simulator
While these protocols are great for collecting data from your vehicle, it can
be a real pain when prototyping to have to sit with a computer, various
electronics, and cables running all over the place in the front of your car.
Luckily, there are many simulators out there that allow basic prototyping
and testing of OBD-II systems.

We have a few different simulators laying around here that are useful for
working with these protocols. We’ll update this section if/when we get our
hands on any additional ones.

ECUsim 2000

Page 6 of 8

This ECU simulator is designed and manufactured by the lovely folks over
at ScanTool. You can view all of the product information over at their
product page here.

To get started using this simulator, you must make the following
connections:

1. Plug a USB cable in to the simulator and the computer. Install the
necessary drivers.

2. Plug in the OBD-II cable to the simulator.
3. Power your simulator off of the supplied 12V power supply.
4. Open up a serial terminal at 115200 bps, 8,N,1 connecting to the

serial port the simulator is configured to.
5. Configure the simulator to the protocol you desire to test.
6. Connect to your ECU device (OBD-II board, CAN-Bus Shield,

Raspberry Pi, etc.)

Now, you can leverage the power of the simulator by verifying that the data
being transmitted over the bus is what your ECU reader is receiving and
vice verse.

Several different programming options are available for configuring the
simulator. Check out the programming manual for more information. The
version we currently have has firmware compatible with several different
OBD-II protocols, which will vary depending on what you order.

The programming manual also includes all of the commands that you can
use for the simulator.

For example, if we need to determine what protocol our simulator is
currently set to, we would use the SPI command. In our terminal, that
would look like the following:

Reading ECUsim 2000 protocol settings.

This shows that the simulator is currently set to the ISO 15765-4 protocol
(a.k.a CAN), with an 11 bit ID type and is running at 500 kbps.

If you then need to send data from your simulator to a device such as the
SparkFun OBD-II UART Board or CAN-Bus Shield for testing, you can use
the transmit command SOMT <header>, <data> . For example, if we want to
send the command that the engine fuel pressure is 100kPa, we would send
SOMT followed by the Parameter ID (PID) for fuel pressure, which is 0A ,

and follow that with the hex value for 100 (64) in this case.

Page 7 of 8

Transmitting fuel pressure via the ECUsim 2000.

If we initially leave the connection floating (by forgetting to tighten the
anchor screws on the DB9 connector) in order to simulate a connection
problem, we receive the CAN ERROR message the first time we send the
command. On this simulator, that means that there is a problem between
the simulator and our CAN reader. Once we fix the connection however, the
simulator is able to send the data, and tells us exactly what it transmitted.
Pretty neat!

Resources and Going Further

Going Further

Now that you have a basic understanding of the OBD-II protocols and how
to work with the various communication tools available, it’s time to make
your own project!

If you have any feedback, please visit the comments or contact our
technical support team at TechSupport@sparkfun.com.

Additional Resources

Check out these products and projects for more OBD-II inspiration!

• OBD-II UART Board Hookup Guide
• CAN-Bus Shield Hookup Guide
• OBD-II forum
• Environmental Protection Agency’s OBD Site
• SAE Standards
• National OBD Clearinghouse
• OBD Trouble Codes
• Parsing OBD-II Data Out
• freediag: Vehicle Diagnostics Suite
• pyOBD: Open-source OBD-II Diagnostics
• Windows-based Diagnostics software
• OBD Diags

Page 8 of 8

10/22/2015https://learn.sparkfun.com/tutorials/getting-started-with-obd-ii?_ga=1.106567491.193945...

