Page 1 of 16

sparkfun

SX1509 I/0O Expander Breakout Hookup Guide

Introduction

Is your Arduino running low on GPIO? Looking to control the brightness of
16 LEDs individually? Maybe blink or breathe a few autonomously? Want to
delegate scanning an 8x8 matrix of 64 buttons to another controller? These
are all tasks the for which the SX1509 16-10 Expander was made!

The SX1509 is a 16-channel GPIO expander with an I2C interface — that
means with just two wires, your microcontroller can interface with 16 fully
configurable digital input/output pins.

But, the SX1509 can do so much more than just simple digital pin control. It
can produce PWM signals, so you can dim LEDs. It can be set to blink or
even breathe pins at varying rates. And, with a built-in keypad engine, it
can interface with up to 64 buttons set up in an 8x8 matrix.

An SX1509 controlling three LEDs, monitoring three buttons and a 12-
button keypad, and producing SPI signals to drive a Serial 7-Segment
Display.

It's a really cool chip and a great tool for expanding the capability of your
Arduino or any other I2C-capable microcontroller.

Covered In this Tutorial

This tutorial will serve to familiarize you with all things SX1509 and the
SparkFun Breakout. Then we’ll demonstrate how take advantage of all of
the 1/0 expander’s features using an Arduino-compatible microcontroller
and our SX1509 Arduino Library.

The tutorial is split into the following sections:

+ SX1509 Breakout Board Overview — An overview of the features of
the SX1509 and the SparkFun breakout.

» Hardware Assembly — Tips and tricks for soldering headers or wires
to the SX1509 Breakout.

« Installing the SparkFun SX1509 Arduino Library — We’ve written an
Arduino library to abstract all of the ugly register bit-operations.

o Example: Digital In/Out and PWM — An example circuit and
Arduino sketch demonstrating some of the simpler 1/0
expander features.

o Example: LED Driving — Examples demonstrating how to
autonomously blink and breathe LEDs.

o Example: Button Matrices — How to use the SX1509’s keypad
engine to monitor a 12-button keypad.

Suggested Reading

Before delving into this tutorial, there are a few concepts you should
already be somewhat familiar with. Check out these related tutorials:

* |2C Communication — The SX1509 is controlled over an I2C interface.

Learn all about this powerful 2-wire interface.

* Logic Levels — While most Arduino’s operate at 5V, the SX1509
works at 3.3V. The GPIO are, at least, 5V tolerant!

+ Pulse-Width Modulation (PWM) — All of the SX1509’s output pins are
capable of producing a PWM signal. That means you can control the

brightness of LEDs!
Pulse-width Modulation Logic Levels
An introduction to the concept of Learn the difference between 3.3 V
pulse width modulation. and 5V devices.

Light-emitting Diodes (LEDs) 12C

Learn the basics about LEDs as well An introduction to 12C, one of the
as some more advanced topics to main embedded communications
help you calculate requirements for ~ protocols in use today.

projects containing many LEDs.

Page 2 of 16

SX1509 Breakout Board Overview

There’s a lot going on on the SX1509 Breakout. GPIO and power buses are
broken out in every-which direction, and configurable jumpers cover most of
the rest of the board.

k]

Breakout

g

X I XXX XXX T]
SC? 6 5 4 ut1 A
HE ;

This section will cover all things SX1509 Breakout, so you can get the most
out of the board’s features.

I12C and Power Input Headers

These two headers at the top and bottom of the breakout board are the
input and control headers to the board. This is where you can supply
power to the SX1509, and where your I2C signals — SDA and SCL — will
terminate.

These headers break out the following pins:

Pin Type Description
Label
INT Output Active low programmable interrupt
RST Input Active low reset (pulled high on-board)
GND Power Ground (0V)
3V3 Power Main supply voltage (1.425-3.6V)
SDA 12C 12C serial data line
SCL 12C I2C serial clock line
0SsC Clock Optional clock input, or programmable clock

In/Out signal output

Page 3 of 16

The SDA and SCL pins each have 10kQ resistors pulling them up to 3.3V.
These resistors can be disconnected by cutting the SJ1 jumpers.

RST - the SX1509’s active-low reset input — works just like an Arduino
reset pin. If the pin is pulled LOW, the SX1509 will power down. When RST
rises, the SX1509 will turn back on, but all of its settings will be cleared out.
The breakout board includes a 10kQ resistor pulling RST HIGH, so you
ignore this pin if you don’t need the reset functionality.

INT is a very handy interrupt output, especially if you’re using any SX1509
pins as inputs. It can be configured to go LOW whenever a pin state
changes. The breakout board includes a 10kQ resistor pulling INT HIGH.

Finally, OSC breaks out the SX1509’s OSCIO pin — the oscillator
input/output. This highly-configurable pin can be used as either the clock
input for the SX1509 (if you don’t want to use its internal 2MHz clock), a
clock output (producing an up to 2MHz square wave signal), or a simple
digital 1/0.

Required and optional pins: The pairs of power and I2C pins are the
only ones required for interfacing with the SX1509. RST, INT, and
OSC are all optional, they can be left disconnected if you don't need
the feature they provide.

I/0 and GND/VCC Breakouts

The real meat of the breakout board are the pairs of rows breaking out all
sixteen 1/O pins plus the power rails.

The SX1509 breaks its 16 1/O into two banks — bank A and bank B. Each
bank can operate on a separate power supply, but by default they’re both
set to 3.3V. Bank A is powered by VCC1, and bank B is supplied by VCC2.
VCC1 and VCC2 can range between 1.2V and 3.6V, if you want to supply
them externally. Check out the “Jumpers” section for more information on
that.

Every I/O pin is capable of PWM and blink outputs, but only half of them
can be set to “breathe” (blink with smooth transitions from on to off). Also, if
you plan on using the SX1509 keypad driver, each /O is relegated to either
a row or column interface.

LED Driver Keypad

/10 PWM Blink Breathe Row Column

0 v v v
1 4 4 v
2 v 4 v

Page 4 of 16

4 v 4 v v
5 4 4 v v
6 v 4 v 4
7 v 4 v v
8 4 4 v
9 v 4 v
10 v v v
11 v 4 v
12 v 4 v v
13 v v v v
14 v 4 v v
15 4 4 v v

Ground (or Power) Rails

Running alongside the 1/O breakouts are a pair of power rails. These rails
can be distinguished by the bars of white silkscreen running between
each pad.

By default, these rails are both set to ground — handy if you want to fan out
some active-low buttons, or current-sourced LEDs. Jumpers on the back
side allow you to switch the rails from GND to either VCC1 or VCC2. You'll
need to cut the jumper between GND and the rail, then blob solder between
the rail and VCC.

This bus is completely optional. Just don’t solder male pins into both rows
of headers if you plan on using the breakout in a breadboard!

Address-Select Jumpers

Up to four SX1509’s can be connected to a single 12C bus, by configuring
them to different addresses. The SX1509 has two pins devoted to I2C
address selection: ADDO and ADD1. Each of those pins are broken out to a
jumper on the bottom of the board.

Page 5 of 16

The board defaults each of those pins to GND, which sets the I12C address
to Ox3E. To set either jumper to “1” (HIGH), grab a hobby knife, cut the
trace connecting to “0”, and blob some solder between the center pad and
“1”.

The four configurable addresses are listed on the back of the board, but for
quick reference, they are:

ADD1 ADDO I12C address

0 0 0x3E
0 1 O0x3F
1 0 0x70
1 1 0x71

VCC1 and VCC2 Jumpers

SJ1 and SJ2 on the back-side of the board connect VCC2 and VCC1,
respectively, to the 3V3 voltage supply input. So, if you're delivering 3.3V to
the board, each of the 1/0O banks will operate at 3.3V.

If you want to take advantage of the SX1509’s level-shifting capabilities by
powering these banks at something other than VCC, cut the jumpers and
plug any voltage between 1.2V and 3.6V into the VCC1 and/or VCC2 pins.

These supply buses are completely independent — so they can operate at
different voltages.

Hardware Assembly

You'll need to solder something into the SX1509 Breakout to use it, whether
that something is male or female headers or wire is completely up to you
and your intended application. If you’ve never soldered before, check out
our PTH soldering tutorial.

One option we like, which keeps the board as breadboard-compatible as
can be, is soldering male headers on the 1/0O banks, and female headers on
either (or both) of the power/I?C headers.

Page 6 of 16

Then you can use male-to-male jumper wires to connect between your
microcontroller and the breakout, and breadboard the rest of the 1/0.

Installing the SparkFun SX1509 Arduino
Library

Now that you've got the hardware all mostly figured out, it's time to start
programming! To help make using the SX1509 as painless as possible,
we’ve written an Arduino library to help interface with it. Visit the SparkFun
SX1509 Arduino Library GitHub repository, or click the button below to
download the latest version of the library.

DOWNLOAD THE SX1509 ARDUINO LIBRARY!

For help installing the library, check out our Installing an Arduino Library
tutorial. If you downloaded the library as a ZIP, you can use Arduino’s
Sketch > Include Library > Add .ZIP Library tool to automatically add it to
your Arduino sketchbook.

The SparkFun SX1509 Arduino library includes all sorts of examples, which
demonstrate specific features of the 1/0 expander. Navigate to File >
Examples > SparkFun SX1509 10 Expander to check them out.

1D sitch_sep2la | Arduing 165 ez 5
] ese Skmch Took el
New =N
Open [
Open Recert v
Sketchbeok » ”
ramgples. L] 01 Batscs. »
Clee [B0 Dhgital
S il lAnsiog *
Save Ar Chrbs Shates§ 0t Cormmanic stsmn 0
Page Setup Chrla St P 05.Coneol
Print CuleP szl H
07 Dngiley "
Preferences Ctibe Comma [or—
Quat il mise »
10 Startersia
Aetanols?
Bndge
EEPROM
Eaplon »
Erharnat »
Firmata
GSM
LigpmdCrystal 0
Robot Control
Robet Moter " pr—"

0

Serve
SettwareSeral
1

ark
boeathe
clock

demo
Stepper

hia}
WiFi

sgtaestinrmapt
daghatiirte
keypad
keypadinterrapt

'
[
[
[l
{ agtsFead
[

Wre [

[

Sparkun $01509 10 fxpander

Quickly, we’ll walk you through a few quick examples that show off the 1/0
expander’s range of features.

Example: Digital In/Out and PWM

Page 7 of 16

As with almost any I/O expander, each of the SX1509’s GPIO can be
configured as simple digital inputs or outputs. So you can toggle LEDs on
or off, monitor for button presses, or even bit-bang more advanced digital
interfaces like SPI (probably nothing that’s timing-dependent though).

Here’s a quick example that shows how you can digitalWrite or
digitalRead using the SX1509. If you want to follow along, hook up a
circuit like below:

Match up 3.3V, GND, SDA, and SCL between your Arduino and the
SX1509 Breakout. Then connect an LED to I/0O 15 — you can either

configure it to source or sink current. And connect an active-low button to
1/0 0.

Then throw this code onto your Arduino:

Page 8 of 16

#include <Wire.h> // Include the I2C library (required)
#include <SparkFunSX1509.h> // Include SX1509 library

SX1509 io; // Create an SX1509 object

// SX1509 pin definitions:

// Note: these aren't Arduino pins. They're the SX1509 I/O:
const int SX1509_LED_PIN = 15; // LED connected to 15 (source
ing current)

const int SX1509_BTN_PIN = 7; // Button connected to @ (active
-low)

bool ledState = false;

void setup()
{
pinMode(13, OUTPUT); // Use pin 13 LED as debug output
digitalWrite(13, LOW); // Start it as low
// Call io.begin(<I2C address>) to initialize the I/O
// expander. It'll return 1 on success, 0 on fail.
if (!io.begin(Ox3E))
{
// If we failed to communicate, turn the pin 13 LED on
digitalWrite(13, HIGH);
while (1)
5 // And loop forever.

// Call io.pinMode(<pin>, <mode>) to set any SX1509 pin as
// either an INPUT, OUTPUT, INPUT_PULLUP, or ANALOG_OUTPUT
io.pinMode (SX1509_LED_PIN, OUTPUT);

io.pinMode (SX1509_BTN_PIN, INPUT_PULLUP);

// Blink the LED a few times before we start:

for (int i=0; i<5; i++)

{
// Use io.digitalWrite(<pin>, <LOW | HIGH>) to set an
// SX1509 pin either HIGH or LOW:
io.digitalWrite(SX1509_LED_PIN, HIGH);
delay(100);
io.digitalWrite(SX1509_LED_PIN, LOW);
delay(100);

void loop()
{
// Use io.digitalRead() to check if an SX1509 input I/0 is
// either LOW or HIGH.
if (io.digitalRead(SX1509_BTN_PIN) == LOW)
{
// If the button is pressed toggle the LED:
ledState = !ledState;
io.digitalWrite(SX1509_LED_PIN, ledState);
while (io.digitalRead(SX1509_BTN_PIN) == LOW)
; // Wait for button to release

When you press the button down, the LED state should toggle. Check
through the code to see how easy it is! Not all that different from Arduino
code you may already be familiar with.

Getting Started with the SX1509 Library

Page 9 of 16

To begin, include the “SparkFunSX1509.h” library (and the “Wire.h” library
as well), and create an sx15e9 object in the global area:

#include <Wire.h> // Include the I2C library (required)
#include <SparkFunSX1509.h> // Include SX1509 library

SX1509 io; // Create an SX1509 object

You'll use that io object from here on out. To initialize the /O expander —
and to make sure it's communicating correctly — call io.begin(<address>),
where <address> is the I2C address of the expander (Ox3E by default).
Check the return value of begin() to make sure everything is hunky-dory.

if (!io.begin(©x3E))
{
// If we failed to communicate, turn the pin 13 LED on
digitalWrite(13, HIGH);
while (1)
; // And loop forever.

Then you can use functions you should already be mostly familiar with to
control the I/O. Just tag the io object onto the beginning of pinMode ,
digitalWrite and digitalRead, and go about your Arduino-business as
normal!

Analog Output (PWM)

You can also use any I/O as an “analog” (PWM) output by using the
analogWrite(<pin>, <@-255>) function — just like Arduino analog output!
There are just a couple differences to be aware of:

« ANALOG_OUTPUT: If you want a pin to produce PWM signals, call
pinMode(<pin>, ANALOG_OUTPUT) in your setup. That will tell the
SX1509 to initialize the pin as an “LED driver”.

» Sinking Current: analoghrite(<pin>, <@-255>) assumes that the
LED is hooked up in a current-sinking fashion — meaning the LED’s
cathode (negative pin) is terminated into the SX1509. Thus,
analogWrite ing to 255 will actually pull the pin LOW, and 0 will set it
HIGH.

Here’s some example code:

Page 10 of 16

#include <Wire.h> // Include the I2C library (required)
#include <SparkFunSX1509.h> // Include SX1509 library

SX1509 io; // Create an SX1509 object

// SX1509 pin definitions:

// Note: these aren't Arduino pins. They're the SX1509 I/0:
const int SX1509_LED_PIN = 15; // LED connected to 15 (sourcin
g current)

void setup()

{
io.begin(Ox3E); // Initialize the SX1509

// Set up a pin as an ANALOG_OUTPUT, if you want to use
// pwm or other LED driver functions.
io.pinMode(SX1509_LED_PIN, ANALOG_OUTPUT);

}

void loop()
{
for (int i=0; i<256; i++)
{
// PWM the LED from @ to 255
io.analogWrite(SX1509_LED_PIN, i);
delay(2); // Delay 2ms between each
}
delay(500); // Delay half-second at the top.
for (int i=255; i>=@; i--)
{
// PWM the LED from 255 to @
io.analogWrite(SX1509_LED_PIN, i);
delay(2); // Delay 2ms between each

}
delay(500); // Delay half-second at the bottom.

That’s a real fine breathing LED! But the SX1509 is so much more than a
simple digital /O expander. Its LED-driving capabilities mean you can
offload all of that breathing to the SX1509, leaving your loop() for more
important tasks!

Example: LED Driving

One of the SX1509’s coolest features is its built-in LED-driving support.
Beyond digital or even PWM output, the SX1509 can also autonomously
blink or breathe LEDs! Just tell it how long to blink, or how fast to rise/fall,
and it'll do the rest for you.

For this example, grab four LEDs and wire them up to pins 8, 13, 14, and
15.

Page 11 of 16

Source vs. Sink: The SX1509 can either source or sink current, but it
has a much higher capacity for sinking current. It can source up to
8mA per I/O, or sink up to 15mA. If you're driving LEDs, we
recommend hooking them up to sink current.

Here’s an example that sets an LED tied to pin 8 to blink:

#inc
#inc

cons
SX15

cons

void

{

lude <Wire.h> // Include the I2C library (required)
lude <SparkFunSX1509.h> // Include SX1509 library

t byte SX1509_ADDRESS = @x3E; // SX1509 I2C address (@)

09 io; // Create an SX1509 object

t byte SX1509_LED_PIN = 8; // LED connected to pin 8
setup()

if (!io.begin(SX1509_ADDRESS))

{

//
//
//
//
//
io

io.

//
io
//
//
//
//

void

The i
magic

while (1)
)
Set up the SX1509's clock to use the internal 2MHz
oscillator. The second parameter divides the oscillator
clock to generate a slower LED clock.
[4] divides the 2Mhz clock by 2 ~ (4-1) (8, ie. 25@kHz)
The divider parameter can be anywhere between 1-7.
.clock (INTERNAL_CLOCK_2MHZ, 4);
pinMode(SX1509_LED_PIN, OUTPUT); // Set LED pin to OUTPUT
Blink the LED pin -- ~1000 ms LOW, ~500 ms HIGH:
.blink(SX1509 LED_PIN, 1000, 500);
The timing parameters are ms delays, and aren't 100%
exact. The library will estimate to try to get them as
close as possible. Play with the clock divider to maybe
get more accurate timing.
Loop()
0.blink(<pin>, <low_ms>, <high_ms>) function works most of the

in this example — setting the LED pin to blink LOW for 1000ms and

HIGH for 500ms. Those timing values will not end up being exact. The
SX1509’s timing mechanism is dependent on dividing the clock (we're
using the internal 2MHz oscillator), and doesn’t always divide down
perfectly.

Before configuring the pin to blink, we call
io.clock(<source>, <divider>) to setthe clock that drives our LEDs. In
this example we use the SX1509’s internal 2MHz clock as the source, and

divide
param

that down to 250kHz for the LED clock. Play with that second
eter to see just how much the blink timing depends on it.

Try using the blink function to blink the other LEDs!

Page 12 of 16

LED Breathing

Half of the SX1509’s I/O pins are capable of producing “breathing” outputs
— where a pin fades in and out at a set rate. Pins 4-7 and 12-15 have this

capability.

Using the same circuit as before, here’s a quick example showing off the
SX1509’s breathe feature:

#include <Wire.h> // Include the I2C library (required)
#include <SparkFunSX1509.h> // Include SX1509 library

const byte
SX1509 io;

// RGB LED
const byte
const byte
const byte

SX1509_ADDRESS = Ox3E; // SX1509 I2C address (00)
// Create an SX1509 object

connected to pins 13, 14, and 15:
SX1509_RED_LED = 13; // Red LED on 13
SX1509_GRN_LED = 14; // Green LED on 14
SX1509_BLU_PIN = 15; // Blue LED on 15

void setup()

{

if (!io.begin(SX1509_ADDRESS))

{

while (1)

>

// Use the internal 2MHz oscillator.

// Set LED clock to 500kHz (2MHz / (2~(3-1)):
io.clock (INTERNAL_CLOCK_2MHZ, 3);

// To breathe an LED, make sure you set it as an
// ANALOG_OUTPUT, so we can PWM the pin:
io.pinMode(SX1509 RED_LED, ANALOG_OUTPUT);

// Breathe an LED: 1000ms LOW, 500ms HIGH,

// 5eems to rise from low to high

// 250ms to fall from high to low
io.breathe(SX1509_RED_LED, 1000, 500, 500, 250);

// Set up Green LED:
io.pinMode(SX1509_GRN_LED, ANALOG_OUTPUT);
io.breathe(SX1509_GRN_LED, 500, 500, 500, 500);

// Set up blue LED:
io.pinMode(SX1509_BLU_PIN, ANALOG_OUTPUT);
io.breathe(SX1509_BLU_PIN, 1509, 500, 1000, 250);

void loop()

Make sure you set the pin as an ANALOG_OUTPUT using the pinMode()

function. Then

call

io.breathe(<pin>, <low_ms>, <high_ms>, <rise_ms>, <fall_ms) to set
the LOW and HIGH time as well as the number of milliseconds it takes to
rise from LOW to HIGH and fall from HIGH to LOW.

Easy-peasy! And now you have the loop() left free for more important
tasks. (As ifl Nothing’s more important than blinking LEDs.)

Example: Button Matrices

Page 13 of 16

Blinking and breathing LEDs can be fun, but the SX1509’s real power lies in
its keypad engine. By wiring up buttons in a row/column matrix, you can
connect up to 64 buttons to the SX1509.

Keypad matrices are very common — they allow you to save immensely on
GPIO. You could monitor a 16-button, 4x4 keypad pad with 8 I/O, or four of
those keypads (a 64-button/8x8 matrix) with just 16 1/0.

In this example, we’ll use seven SX1509 1/0 to monitor a 12-button Keypad
— which is a matrix of four rows and three columns. We'll also use the
SX1509’s interrupt output, so we don’t constantly have to poll the 1/0
expander. Here's the circuit:

There isn’t a lot of flexibility in the SX1509’s keypad engine. The rows of
you matrix have to be connected, sequentially, to pins 0-7, and the columns
wire up to pins 8-15. Our four row buses must route to pins 0-3, and the
three columns are connected to 8-10. That still leaves plenty of pins for
LED driving!

Here’s the example code:

Page 14 of 16

Page 15 of 16

#include <Wire.h> // Include the I2C library (required)
#include <SparkFunSX1509.h> // Include SX1509 library

const byte SX1509_ADDRESS = Ox3E; // SX1509 I2C address (00)
SX1509 io; // Create an SX1509 object

#define KEY_ROWS 4
#define KEY_COLS 3

// Handy array we'll use to map row/column pairs to
// character values:
char keyMap[KEY_ROWS][KEY_COLS] = {

{1, 2, 3,

{rar, s, 6},

{7, '8%, '},

{"*', 'e’, '#'}};

// ARDUINO pin 2 connected to SX1509 interrupt
#define INTERRUPT_PIN 2

void setup()
{
Serial.begin(9600); // Use serial to print output
if (!io.begin(SX1509_ADDRESS))
{
Serial.println("Failed to communicate.");
while (1)

>

}

// To initialize the keypad engine, you at least need

// to tell it how many rows and columns are in the matrix.

// io.keypad(KEY_ROWS, KEY_COLS);

// You can customize the keypad behavior further, by

// defining scan time, debounce time, and sleep time:

// Sleep time range: 128 ms - 8192 ms (powers of 2) ©=OFF

unsigned int sleepTime = 0;

// Scan time range: 1-128 ms, powers of 2

byte scanTime = 16; // Scan time per row, in ms

// Debounce time range: 0.5 - 64 ms (powers of 2)

byte debounceTime = 8; // Debounce time

io.keypad(KEY_ROWS, KEY_COLS, sleepTime, scanTime, debounceT
ime);

// Set the ARDUINO pin as an input, to monitor the interrupt
pinMode (INTERRUPT_PIN, INPUT_PULLUP);
Serial.println("Row | Col | Key");

void loop()
{
// If the interrupt pin goes active-low, a keypad button
// is begin pressed:
if (!digitalRead(INTERRUPT_PIN))
{
// Use readKeypad() to get a binary representation for
// which row and column are pressed
unsigned int keyData = io.readKeypad();

// Use the getRow, and getCol helper functions to find
// which row and column keyData says are active.

byte row = io.getRow(keyData);

byte col = io.getCol(keyData);

char key = keyMap[row][col];

Serial.print(String(row) + " | " + String(col) + " | ");

Page 16 of 16

Serial.println(key);
¥
}

After uploading the code, open the serial monitor and press some keys!

"

com128 o o] e

|

Row | Col | Eey -

I 20 #

21118

11216

2101017 =

111158

ol z213

31110

21218

[¥] Autoscroll \Nolineending | | 5500 baud
=

Now just hook up a cellular shield and go make some prank calls!

Keep in mind any of these SX1509 features can be combined, as long as
you don’t run out of I/O (then just cascade another expander!). Check out
the library’s examples for demonstrations of other features — like the clock
output, or input debouncing.

Resources & Going Further

Here are a few SX1509 and SX1509 Breakout-related resources you may
find handy, as you begin to build your I/O-expanding project:

» SX1509 Datasheet — This datasheet has everything you'll need if you
want to mess around with the SX1509'’s register data, or build the
SX1509 into a PCB design of your own.

» SX1509 Breakout GitHub Repository — Here’s where we host all of
the design files for the SX1509 Breakout.

* SX1509 Breakout Schematic — A PDF of the breakout board’s
schematic.

» SX1509 Arduino Library GitHub Repository — This is where you'll find
the latest version of the SX1509 Arduino library.

What are you going to build with the SX1509 I/O Expander? Any project
that needs 16 or more outputs is bound to be blog-worthy. Let us know
what you build with it! If you need any inspiration, here are a few tutorials
you may find enlightening:

* Using the Serial 7-Segment Display — You can bit-bang an SPI
interface using the SX1509, and use it to drive this 7-Segment LED.
Or! Use the SX1509 to drive a basic 7-Segment display.

* Using the Arduino Pro Mini 3.3V — The Arduino Pro Mini pairs very
well with the SX1059!

» Bubble Display Hookup Guide — These awesome little bubble
displays are ripe for interfacing with the SX1509.

https://learn.sparkfun.com/tutorials/sx1509-i0-expander-breakout-hookup-guide? ga=1.21... 10/8/2015

