Page 1 of 12

sparkfun

Spectrum Shield Hookup Guide

Introduction

Have you ever wanted to have your project react to music? Then this is the
product for you! The Spectrum Shield enables your Arduino with the
capability of splitting a stereo audio input into 7-bands per channel. You can
then read the amplitude of each channel using the ADC on your Arduino
allowing you to control everything from LEDs to motors, pumps to relays, or
even fire, all with sound.

The SparkFun Spectrum Analyzer Shield.

Materials Required

To follow along with this tutorial, we recommend the following items.
Spectrum Shield Hook-Up Guide SparkFun Wish List

SparkFun Spectrum Shield
DEV-13116

Breadboard - Small Self-Adhesive
PRT-00137

‘,.Q'?} Jumper Wires Premium 6" M/M Pack of 10
¢ PRT-08431

SparkFun USB Mini-B Cable - 6 Foot

CAB-11301

Resistor 330 Ohm 1/6 Watt PTH - 20 pack
COM-11507

COM-09881

SparkFun RedBoard - Programmed with Arduino
DEV-12757

(2) Audio Cable 3.5mm 6ft
CAB-08566

Arduino Stackable Header Kit
PRT-10007

v 272 ¢ B 9

Suggested Reading

We recommend you be familiar with these resources before continuing on
with this hookup guide.

» How to Solder

+ Analog to Digital Conversion
« Installing the Arduino IDE

* Integrated Circuits
 Polarity

* Light

Hardware Overview

Audio Connections
Audio Jacks

The Spectrum Shield contains two audio stereo jacks on board. The first is
the audio input jack (labeled “Input”). This allows you to input audio from
any device — such as an MP3 player, or cellular phone — using a basic
audio cable. This connection does not have to be used, as there is another
option for adding audio input, at the “Audio In” headers, described below.

The second audio jack is the audio output, labeled “Output”. This jack
allows you to route the audio back out to a speaker or other audio system,

after the sound levels have been processed by the Spectrum Analyzer ICs.

Audio In Header

Page 2 of 12

For some projects, you may not be piping audio from a pre-processed
source such as a cell phone. For users who want to use things like a MEMS
Mic Breakout or the Sound Detector as an audio source, there are three
header pins that allow you to connect bare wires to your shield.

>
c

=%
-
o

—
4

These pins are as follows:

* L = Left Audio Input
* G = Ground Audio Input
* R =Right Audio Input

With both the left and right inputs, you can use stereo devices on these
headers.

MSGEQ?7 ICs

The real power of this shield comes from the two MSGEQ?7 ICs on the
board. These are CMOS chips, which are seven band graphic equalizers.

Upon receiving an audio signal in, these ICs split the the spectrum into
seven bands, splitting it at the following levels:

* 63Hz

* 160Hz
* 400Hz
* 1kHz

* 2.5kHz
* 6.25kHz
* 16kHZ

For the visual learners, here’s the frequency graph from the MSGEQ7
datasheet:

81 180 400 1000 W00 ATSO 16000

Frequency Response

Source: Mixed Signal Integration MSGEQ7 Datasheet

Once the spectrum has been split into these ranges, each band is peak
detected and multiplexed. The DC output is a representation of the
amplitude of each frequency band. Using the strobe and reset pins on the
ICs allows the user to select the DC peak output.

RedBoard Connections

There are 4 main pins that connect the Spectrum Shield with the
Arduino/RedBoard or other microcontroller.

Page 3 of 12

Analog Pins - There are two analog pins connected to the MSGEQ7 ICs.
Analog 0 is the DC output from the first IC, while Analog 1 is the DC output
from the second.

Control Pins - The MSGEQ7 control pins are Strobe and Reset. These are
connected to D4 and D6, respectively. In order to enable the Strobe pin,
you must pull the Reset pin LOW. To reset the entire multiplexer, pull the
Reset pin HIGH.

The Strobe pin, once activated, cycles through each of the channels. After
the initial pulse, it starts at 63Hz, pulses each channel until 16kHz, and then
repeats, starting back at 63Hz. The DC output for each channel will follow
the Strobe pulse.

Remember: The reset line for the MSGEQ7 IC is not the same as the
“Reset” push button that resets the entire system (RedBoard + Shield).

Reset Button

The reset button allows you to reset your Arduino/RedBoard while the
shield is inserted. Holding the reset button will pull the reset pin of the
ATMega328 low, allowing a system reset. This will restart any sketches
currently running on the microcontroller.

Hardware Hookup

Solder Headers

As with any shield, the first step is to choose a connection method. We
recommend stackable headers, but you can choose any connection method
you prefer. Remeber that his shield uses the Arduino Uno R3 footprint. You
will need to solder, so make sure you have all the appropriate supplies
before you begin. Please check our tutorial on Arduino Shield Assembly, if
you aren’t sure how to do this.

Connect LEDs

For this project, we will use one LED to represent each frequency band. For
each LED, run a jumper wire from the RedBoard pin to the positive, anode
leg (longer leg) of the LED. From the negative, cathode leg (the shorter
leg), run a 330 Ohm resistor to GND. The connections should look like the
following:

Spectrum Shield — LED — Resistor — GND

* D7 - LED1 — 330 Ohm — GND
+ D8 — LED2 — 330 Ohm — GND
* D9 — LED3 — 330 Ohm — GND
* D10 — LED4 — 330 Ohm — GND
* D11 — LED5 — 330 Ohm — GND
* D12 — LED6 — 330 Ohm — GND
* D13 — LED7 — 330 Ohm — GND

The circuit below shows LEDs of the same color, but feel free to use a
different color for each band.

Page 4 of 12

Connect Audio System

At this point, it's time to connect your audio sources. For this example, we
are going to hook up a basic MP3 player. Plug one end of an audio cable
into the MP3 player, and plug the other end into the “Audio In” jack on the
Spectrum Shield.

The second audio cable then provides the audio output to a speaker
system. Plug one end into the “Audio Out” jack on the Spectrum shield, and
plug the other end into a speaker.

Power the System

You can use an external power supply (such as a wall adapter or 9V
battery) if you so desire. For this basic example however, the system will
function fine if you power it off of the miniUSB connection on the RedBoard.

Keep in mind if you end up switching out the LEDs for LED strips or an LED
matrix, you will most likely need an external power supply. Check the
datasheet or hookup guide for any larger displays used.

Final Circuit

Once complete, your circuit should look like the following diagram:

) 85N LI

I

nding sexeads
21N0S oIpNY

ndug &

h D Fritzingorg

Spectrum Shield Hookup Diagram

Arduino Code

Basic Arduino Example

Now that you have your hardware all hooked up, it’s time to get things
blinking!

If you’re unsure how to program your Arduino/RedBoard, please check our
tutorial here.

We are going to walk through the SparkFun Spectrum Demo sketch.
Download that file below, and upload it to your Arduino.

SPARKFUN SPECTRUM DEMO

Page 5 of 12

The first thing we must do in our code is set up the RedBoard pins to
function properly. The Spectrum Shield pin connections to the RedBoard
must be defined, and any pins that will be driving LEDs must also be
declared.

//Declare Spectrum Shield pin connections
#define STROBE 4

#define RESET 6

#define DC_One A®@

#define DC_Two Al

//Define LED connections on the Arduino/Shield
int LED[] = {7, 8, 9, 10, 11, 12, 13};

//Define spectrum variables
int freq_amp;

int Frequencies_One[7];

int Frequencies_Two[7];

int i;

Note that we declare the LED pins in an array. This enables us to step
through the LED pins using a for loop, which we will discuss later. We
also declare two arrays Frequencies_One and Frequencies_Two . These
will be used to store the frequencies output by the MSGEQ?7 ICs.

In the setup loop, set each LED pin as an output (notice that for loop used

to step through each LED pin connection!), and set the initial state of the
LEDs to off. The shield pins must also be declared as outputs for the
STROBE and RESET pins so we can control the shield using the RedBoard.
The DC output pins are each declared as an INPUT in the code, because
the RedBoard will be reading data in from these pins. Once the pins are

declared, the ICs are initialized by cycling the STROBE and RESET pins as

described earlier in the Control Pins section.

R R R G by L OO KR sk kst ek ok k ok /

void setup() {
//Set LED pin configurations
for(i=0; i<7; i++)
{
pinMode(LED[i], OUTPUT);
digitalwrite(LED[i], LOW);
¥

//Set spectrum Shield pin configurations
pinMode (STROBE, OUTPUT);

pinMode (RESET, OUTPUT);

pinMode(DC_One, INPUT);

pinMode(DC_Two, INPUT);
digitalWrite(STROBE, HIGH);
digitalWrite(RESET, HIGH);

//Initialize Spectrum Analyzers
digitalWrite(STROBE, LOW);
delay(1);

digitalWrite(RESET, HIGH);
delay(1);

digitalWrite(STROBE, HIGH);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);

digitalWrite(RESET, LOW);

Page 6 of 12

For the main section of the sketch, we loop through two user-defined
functions. Read_Frequenices() and Graph_Frequencies() tell the
RedBoard to read the frequencies coming off the Spectrum Shield, and light
up the connected LEDs, respectively.

JFFFEAAAAAAAAAARIMGIN FUNCEION Loop* * ki kkokokdodod bbbk koo
*/
void loop() {

Read_Frequencies();
Graph_Frequencies();
delay(50);

The Read_Frequencies() function is defined next in the code. This steps
through each frequency band on the Spectrum Shield, reading the DC
values output, and storing these values into the predefined frequency
arrays.

JrFFEEFERRRRRARDY]] frquencies from Spectrum Shield**kx*kiksiokxk
Hkokk

void Read_Frequencies(){

//Read frequencies for each band

for (freg_amp = ©; freq_amp<7; freq_amp++)

{
Frequencies_One[freq_amp] = analogRead(DC_One);
Frequencies_Two[freq_amp] = analogRead(DC_Two);
digitalWrite(STROBE, HIGH);
digitalWrite(STROBE, LOW);

The function where the real fun happens is the Graph_Frequencies()
function. With this function, the RedBoard drives the LEDs based on the
frequencies being read by the Spectrum Shield.

We have included two different example sketches in the repository, to show
different methods of lighting the LEDs. Each will create a different effect, so
you can choose which works better for your particular project. In this first
example, we compare the two frequencies to see which is larger. We then
use the higher DC output as the delay time for turning the LED on. This
cycles through each LED, turning them on or off based on the frequency
output. This creates a bit of a “Jacob’s Ladder” effect with the lights.

/***********Light LEDs based on frequencies*******************
*kkok
void Graph_Frequencies(){
for(i= 0; i<7; i++)
{
if(Frequencies_Two[i] > Frequencies_One[i]){
digitalWrite(LED[i], HIGH);
delay(Frequencies_Two[i]);
digitalWrite(LED[i], LOW);

¥

else{
digitalWrite(LED[i], HIGH);
delay(Frequencies_One[i]);
digitalWrite(LED[i], LOW);

}

Page 7 of 12

If instead you would prefer to have all the LEDs on at the same time and
have the lights brighten or dim based on the frequency outputs, use the
SparkFun PWM Demo instead.

In this sketch, the LEDs are all turned on, but as the RedBoard cycles
through each frequency channel, the RedBoard uses PWM to control the
brightness of each LED. The frequency values are mapped from the 0-1023
analog readings to the 0-255 range that Arduinos can use for the
analogWrite function. This creates a pulsing light effect on all of the LEDs.

[REsRR Rk Rk Rk kx| foht LEDS based on frequencies ikttt
***/

void Graph_Frequencies(){
for(i= 0; i<7; i++)
{
if(Frequencies_Two[i] > Frequencies_One[i]){
analogWrite(LED[i], Frequencies_Two[i]/4);
¥
elseq{
analogWrite(LED[i], Frequencies_One[i]/4);

Keep in mind to use this example, you must have your LEDs hooked up to
pins that are capable of PWM. You can find more information about which
pins have this functionality on the Arduino boards here.

Additional Examples

There are plenty of projects out there using the Spectrum Shield, so do a bit
of searching if you need some more inspiration! Bliptronics, the collaborator
on the Spectrum Shield wrote a great Arduino example that works with the
Spectrum Shield and an LED matrix. The sketch is included here for
reference, but you can also find it in the GitHub repository.

Page 8 of 12

#include <LEDPixels.h>

//Example to control RGB LED Modules with Spectrum Analyzer
//Bliptronics.com

//Ben Moyes 2010

//Use this as you wish, but please give credit, or at least bu
y some of my LEDs!

//

LEDPixels LP; //Our LEDPixels library - see http://www.bliptr
onics.com/ArduinoCode/LEDPixels.zip

//For spectrum analyzer shield, these three pins are used.
//You can move pinds 4 and 5, but you must cut the trace on th
e shield and re-route from the 2 jumpers.

int spectrumReset=5;

int spectrumStrobe=4;

int spectrumAnalog=0; //@ for left channel, 1 for right.

//This holds the 15 bit RGB values for each LED.

//You'll need one for each LED, we're using 25 LEDs here.
//Note you've only got limited memory, so you can only contro
1

//Several hundred LEDs on a normal arduino. Double that on a D
uemilanove.

int MyDisplay[25];

// Spectrum analyzer read values will be kept here.
int Spectrum[7];

void setup() {
byte Counter;

//Initialize the LEDPixels library.

// refresh delay, address of data, number of LED
s, clock pin, data pin.

LP.initialize(25, &MyDisplay[0],25, 12, 11);

//Setup pins to drive the spectrum analyzer.
pinMode(spectrumReset, OUTPUT);
pinMode(spectrumStrobe, OUTPUT);

//Init spectrum analyzer
digitalWrite(spectrumStrobe,LOW);
delay(1);
digitalWrite(spectrumReset,HIGH);
delay(1);
digitalWrite(spectrumStrobe,HIGH);
delay(1);
digitalWrite(spectrumStrobe,LOW);
delay(1);
digitalWrite(spectrumReset,LOW);
delay(5);
// Reading the analyzer now will read the lowest frequency.

// Turn all LEDs off.

LP.setRange(@,24,LP.color(0,0,0));

LP.show(); //Write out display t
o LEDs

Page 9 of 12

void loop() {
int Counter, Counter2, Counter3;

showSpectrum();
delay(15); //We wait here for a little while until all the
values to the LEDs are written out.
//This is being done in the background by an int
errupt.

}

// Read 7 band equalizer.
void readSpectrum()

{
// Band @ = Lowest Frequencies.
byte Band;
for(Band=0;Band <7; Band++)
{

Spectrum[Band] = (analogRead(spectrumAnalog) + analogRead
(spectrumAnalog)) >>1; //Read twice and take the average by d
ividing by 2

digitalWrite(spectrumStrobe,HIGH);

digitalWrite(spectrumStrobe, LOW);

}

void showSpectrum()
{
//Not I don;t use any floating point numbers - all integers
to keep it zippy.
readSpectrum();
byte Band, BarSize, MaxLevel;
static unsigned int Divisor = 80, ChangeTimer=0; //, Remin
derDivisor,
unsigned int works, Remainder;

MaxLevel = 0;

for(Band=0;Band<5;Band++)//We only graph the lowest 5 bands
here, there is 2 more unused!
{
//1f value is @, we don;t show anything on graph
works = Spectrum[Band]/Divisor; //Bands are read in a
s 10 bit values. Scale them down to be © - 5
if(works > MaxLevel) //Check if this value is the larges
t so far.
MaxLevel = works;
for(BarSize=1;BarSize <=5; BarSize++)
{
if(works > BarSize) LP.setLEDFast(LP.Translate(Band,
BarSize-1),BarSize*6,31-(BarSize*5),0);
else if (works == BarSize) LP.setLEDFast(LP.Tra
nslate(Band,BarSize-1),BarSize*6,31-(BarSize*5),0); //Was rema
inder
else LP.setLEDFast(LP.Translate(Band,BarSize-1),
5,0,5);

}

LP.show();

// Adjust the Divisor if levels are too high/low.
// If below 4 happens 20 times, then very slowly turn up.
if (MaxLevel >= 5)

{

Page 10 of 12

Divisor=Divisor+1;
ChangeTimer=0;
¥
else
if(MaxLevel < 4)
{

if(Divisor > 65)
if(ChangeTimer++ > 20)
{
Divisor--;
ChangeTimer=0;
¥
}

else

{

ChangeTimer=0;
}
}

You will need to install the LEDPixels library in order to use the original
designer example. The most up-to-date library is available here, or you can
download the zip here.

If you need a reminder as to how to install an Arduino library, please check
out our tutorial here.

Resources and Going Further

Going Further

Now that you've successfully analyzed the spectrum using your shield, it's
time to build your own project!

Try interfacing the Spectrum Shield with an RGB LED Panel, or a MEMS
Microphone Breakout, and see what awesome displays you can create!

If you have any feedback, please visit the comments or contact our
technical support team at TechSupport@sparkfun.com.

Additional Resources

Check out these additional resources for more information and other project
ideas.

* MSGEQ7 Datasheet

» Spectrum Shield GitHub Repository

» Sound and Motion Reactivity for Wearables
* The Harmonic Skew Zoetrope

* The ElectricBone

« Interactive Hanging LED Array

Also worth checking out is this edition of Engineering Roundtable, which
details how to use the Spectrum Shield to control fire!

SparkFun Engineering

ol

Page 11 of 12

Spectrum Shield Hookup Guide - learn.sparkfun.com Page 12 of 12

https://learn.sparkfun.com/tutorials/spectrum-shield-hookup-guide? ¢a=1.5987187.19394... 11/10/2015

