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Driving a Stepper Motor Based on 
the MC9S08QD4 and Other 8-bit 
Families
Using Input Signals to Determine the Position of the Stepper Motor
by: Francisco Ramirez

Mexico
1 Introduction
This application note describes how to control a low 
current stepper motor using the MC9S08QD4. It also 
shows how to change the position of a stepper motor 
using the duty cycle variations from an external PWM by 
using an external reference voltage or an external 
modulated signal. It shows the reader an easy example of 
how to drive a low current stepper motor using a simple 
input signal with a low end S08 MCU.

The MC9S08QD4 is a low cost automotive 
microcontroller and can be applied to several 
applications using different input signals.

This application note briefly describes operating a 
stepper motor, how it works, and what is required to 
drive it. The document also establishes how the input 
signal is managed, implemented and used. An 
explanation of code compatibility with the MC9S08SG8 
(automotive device) or to the MC9S08QG8 (consumer 
and industrial device) is in this application note. 
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Stepper Motor Management
Available with this document is the software for this application note, AN3602SW.zip.

Figure 1. DEMO9S08QD4 Evaluation Board

Section 5, “How to Port the Code and Use Other Devices,” explains the structure of the code and how it 
can be ported to other similar MCUs, for example the MC9S08QG8 and the MC9S08SG8. The code 
described in this application note has been developed based on the DEMO9S08QD4 evaluation board 
shown in Figure 1.

2 Stepper Motor Management
A stepper motor is a small brushless synchronous electric motor that can divide a full rotation into a large 
number of steps. If this motor is electronically commutated, the motor's position can be controlled with 
precision without any feedback mechanism.

Steppers exhibit more vibration than other motor types. The discrete step tends to snap the rotor from one 
position to another. This vibration can cause the motor to lose torque at some speeds. The effect can be 
mitigated by accelerating quickly through the problem speed range, physically dampening the system, or 
using a micro-stepping driver. Motors with a greater number of phases have a smoother operation than 
those with fewer phases.

There are two basic arrangements for the electromagnetic coils: bipolar and unipolar. This application note 
focuses on a bipolar motor.

A bipolar motor is built with two different coils named in this document as coil A and coil B. This is why 
this stepper motor has four different wires. Bipolar stepper motors operate differently from traditional DC 
motors. Stepper motors have multiple toothed electromagnets arranged around a central metal gear. The 
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Stepper Motor Management
electromagnets are energized by an external control circuit, such as a microcontroller. To make the motor 
turn, the following steps are required:

1. Coil A is connected to the power that makes the gear's teeth magnetically attracted to the 
electromagnet's teeth (Figure 2).

2. The gear's teeth are aligned to the first electromagnet. Next, they are aligned to the second 
electromagnet.(Figure 2).

3. Coil B is then turned on and coil A is turned off (Figure 3).
4. The gear then rotates to be aligned with the next gear Figure 3.
5. Repeat process described in previous steps

.

Figure 2. Stepper Motor Coil A

Each of these rotations is called a step. This is how the motor can be turned with a precise angle.

Figure 3. Stepper Motor Coil B

The main characteristics of the stepper motor used to implement this application is a maximum current 
consumption of 20 mA. The torque provided by the motor is small. The maximum static torque = 4 mNm, 
maximum dynamic torque = 1.3, mNm which is strong enough to move standard gauges. The S08 
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Controlling the Stepper Based on an Input Signal (PWM)
microcontrollers can drive up to 25 mA. The motor is connected directly to the microcontroller using 
port A. The PWM input signal is also connected directly to the microcontroller through an input pin. Based 
on the previous conditions, the electronic circuitry is minimal. See Figure 4. The system requires VCC, 
GND, and the input signal. No external or extra electronics in the design are required.

3 Controlling the Stepper Based on an Input Signal 
(PWM)

To set the basis, the steps of the motor is managed by the duty cycle of a PWM input signal. The percentage 
of the duty cycle allows the microcontroller to communicate the specific position. Figure 4 is an example 
of the implemented system.

Figure 4. Complete Implemented System

In the automotive industry, there are several sensors or applications with a PWM signal as an output and 
a result of a particular action or event. For example, there are complex temperature sensors that generate 
a PWM signal as output. Another example is an electronic central unit (ECU) that measures the speed of 
a vehicle and has an output pin where you can read a PWM signal. The variations of this PWM signal can 
be translated into positions to indicate temperature or speed like the application described in this 
document.
Driving a Stepper Motor Based on the MC9S08QD4 and Other 8-bit Families, Rev. 0
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Controlling the Stepper Based on an Input Signal (PWM)
Figure 5. Stepper Motor with Gauge

To define how many steps complete a cycle, establish how many positions are available. In this example 
there are 100 different positions. In case of a temperature sensor, this could be from 0 °C to 100 °C. In case 
of speed this could be 0 kph to 100 kph. This means that 1% of the duty cycle is associated as one step of 
the stepper motor, one centigrade or one kph. See Figure 5 and Figure 6.

Figure 6. Stepper Motor Gauges at Different Duty Cycles

The position of the gauge depends on the duty cycle of the PWM signal. There are different ways to 
translate duty cycles to steps. For example, the average voltage can be measured during one period of time 
using the ADC of the microcontroller. This document explains how to use the timer/pulse width modulator 
(TPM) module.
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Controlling the Stepper Based on an Input Signal (PWM)
The code can take samples of the duty cycle and determine the percentage of the duty. As shown in 
Figure 7, PTA5 can be used with the TPM module configured as input capture. In this mode, the 
TPM2CH0I detects in rising-edge and falling-edge of all the changes of the input signal (Figure 8). These 
changes are stored as variables and then are calculated to produce the duty cycle. For details see the 
MC9S08QD4 Data Sheet.

Figure 7. MC9S08QD4 8-Pin Package

Below are the pin definitions described in code:
/*********** Pin definitions *************
 *****************************************
 *  PWM_INPUT              PTAD5 - Pin 1 *
 *  COIL_A1                PTAD0 - Pin 8 *
 *  COIL_A2                PTAD1 - Pin 7 *
 *  COIL_B1                PTAD2 - Pin 6 *
 *  COIL_B2                PTAD3 - Pin 5 *
 *****************************************/

Figure 8. Input Signal Data Measurements
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Controlling the Stepper Based on an Input Signal (PWM)
The measured time between point 1 and point 2 is called a Frequency. The measured time between point 2 
and point 3 is called Duty_Cycle_H. To find the duty cycle of the signal calculate:

Eqn. 1

After the duty cycle is calculated, the coils of the motor are controlled through port A, channels 0 to 3. As 
established previously there are one hundred positions available. This means that the required position is 
equal to the duty cycle.

Eqn. 2

If the microcontroller detects a change in the value of the duty cycle, it moves the stepper to the required 
position. Each time the duty cycle varies, channels are strictly toggled in a specific sequence:

In Table 1 are values that obtain the step by step movement of the stepper motor. Each transition of port A 
is equal to one mechanical step. Therefore, to create an image of port A behavior in time, an example is 
shown as in Figure 9.

Table 1. Stepper Motor Transitions

Forward COIL 
A1

COIL 
A2

COIL 
B1

COIL 
B2 Backward COIL 

A1
COIL 
A2

COIL 
B1

COIL 
B2

PORT A

0x0A 1 0 1 0

PORT A

0x0A 1 0 1 0
0x09 1 0 0 1 0x06 0 1 1 0
0x05 0 1 0 1 0x05 0 1 0 1
0x06 0 1 1 0 0x09 1 0 0 1
0x0A 1 0 1 0 0x0A 1 0 1 0
0x09 1 0 0 1 0x06 0 1 1 0
0x05 0 1 0 1 0x05 0 1 0 1

0x06 0 1 1 0 0x09 1 0 0 1

( )
Frequency

HCycleDutyCycleDuty 100___ =

Required_position = Duty_Cycle
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Describing the Code
Figure 9. Port A Outputs

To see how to move a stepper motor applying voltages to its coils see Figure 4. The process of 
synchronized signals moves the motor step by step while coil A and coil B are driven at different moments. 
When working with input voltages, frequency is similar to voltage reference height (VREFH) and the duty 
cycle is similiar to voltage variations measured in the ADC.

4 Describing the Code
The code is based on the state machine diagram in Figure 10. Four main processes are described. Global 
constants and global variables are mentioned in this process. Constants are used to generalize the code and 
make changes faster. Variables are used to make specific calculations while the code is running and getting 
data from the ADC. They also track program stages.

Below are the constants and variables declared in the code:
/* Global constants */
#define SWITCH_ON              100      /* To know the steps to be in the first position */
#define START_POSITION       0       /* Since it is limited to 100 degrees */
#define CHECKED                 1       /* To know if the frequency and duty cycle been checked */
#define NOT_CHECKED             0       /* To know if the frequency and duty cycle been checked */
#define Idle_DONE             5000      /* To know if the frequency and duty cycle been checked */

/* Global variables */
unsigned int    Current_position;          /* Used to know the previous position of the stepper */
unsigned int    Required_Position;      /* Used to know the new position of the stepper */
unsigned int    Frequency;              /* Used to know the frequency of the PWM */
unsigned int    Duty_Cycle;             /* Used to know the duty cycle of the PWM */
unsigned int    Duty_Cycle_100;         /* Used to know the duty cycle of the PWM */
unsigned int    Duty_Cycle_H;           /* Used to know the duty cycle of the PWM */
unsigned int    Check;                  /* Used to know the process status */
unsigned int    SWITCH, i;              /* general use variable */

To help you understand the process below, there is a state diagram that represents the main loop of the 
system. See Figure 10:

1. Initialization
2. Check mode
3. If (Required_position == Current_position)

0x0A 0x06 0x05 0x09 0x0A 0x06 0x05 0x09

1

0

0 0 1

011

1 1 0 0

0 0 1 1

Coil A1

Coil A2

Coil B1

Coil B2

Bus
Frequency Cycle

n
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Describing the Code
4. If (Required_position != Current_position)
5. If (Required_position > Current_position) Then move Forward
6. If (Required_position < Current_position) Then move Backward
7. Unchecked

Figure 10. State Machine Diagram: Code Structure

This is a further explanation of the stages:
1. Initialization — This mode moves the stepper motor to the reference or initial position. In this case, the 

stepper motor has a limit of motion, the code moves the motor backwards SWITCH_ON times. SWITCH_ON 
is the maximum number of steps. Current_position stores the instant position of the motor. At the 
end of initialization, Current_position is assigned to START_POSITION.

2. Check Mode — This mode calculates the duty cycle of the input signal. The status of this routine is 
determined by monitoring the Check variable. Avoid using a previously calculated duty cycle. Interrupts are 
disabled and the TPM2CH0I is configured as input capture with a rising edge. When the code detects the 
first rising edge it waits for the second rising edge. See Figure 8. After the first rising edge is detected, the 
TPM2 counter begins counting. When the second rising edge is detected the counter stops and the value is 
read. The Frequency variable is stored and the counter is reset to zero. Counting then begins again. Next, 
the TPM2CH0I is configured as input capture and falling edge while waiting for the third point. See 
Figure 8. When the third point is detected, the counter stops. This value is read and then stored in 
Duty_Cycle_H variable.

Using values Duty_Cycle_H and Frequency, the duty cycle and the required position of the motor is 
determined as shown below: 

Duty_Cycle=Duty_Cycle_H-Frequency;
Duty_Cycle_100=Duty_Cycle_H*100;
Required_Position=Duty_Cycle_100/Frequency;
Driving a Stepper Motor Based on the MC9S08QD4 and Other 8-bit Families, Rev. 0
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Describing the Code
At the end of the subroutine, the flag Check is set.
3. If the Required_Position is equal to the Current_position, the code goes to idle until Idle_DONE is set.
4. If the Required_Position is different than the Current_position, it is important to check if the difference 

is bigger or smaller. This indicates if it needs to move forward or backwards.
5. If the Required_Position is bigger than the Current_position, then the motor moves forward until both 

variables are equal.
— MOVE_STEPPER_FORWARD subroutine: When the Check flag is set as CHECKED, port A is set to:
          PTAD=0x0A;
              StateIdle();
          PTAD=0x09;
              StateIdle();
          PTAD=0x05;
              StateIdle();
          PTAD=0x06;
              StateIdle();

          PTAD=0x00;    
              StateIdle();
          Current_position++;

StateIdle routine is a counter to do a delay.

Established in Table 1 and Figure 9, the stepper motor moves forward (Required_Position - 
Current_position) times. Each time the motor moves, the movement is composed of four small steps of 
the stepper motor. Positions are multiplied by four steps in this example. This can be customized in the 
code as needed. 

NOTE
If requiring fewer then four steps, obey Table 1 and Figure 9 sequences. To 
not miss the sequence, remember to store the last value in port A. Use the 
last used value as the last step to generate the next step.

6. If the Required_Position is smaller than the Current_position, the motor moves backwards until both 
variables are equal.
— MOVE_STEPPER_BACKWARDS subroutine: When the Check flag is set as CHECKED port A is set to:
          PTAD=0x0A;
              StateIdle();
          PTAD=0x06;
              StateIdle();
          PTAD=0x05;
              StateIdle();
          PTAD=0x09;
              StateIdle();

          PTAD=0x00;    
              StateIdle();
          Current_position--;

As established in Table 1 and Figure 9 the stepper motor moves backwards (Current_position - 
Required_Position) times.
Driving a Stepper Motor Based on the MC9S08QD4 and Other 8-bit Families, Rev. 0

Freescale Semiconductor10



How to Port the Code and Use Other Devices
NOTE
If requiring fewer then four steps, obey Table 1 and Figure 9 sequences. To 
not miss the sequence, remember to store the last value in port A. Use this 
value as the last step to generate the next step.

7. Unchecked — When stages 5 and 6 are done and the Check flag is set as NOT_CHECKED the process 
goes into an infinite-loop from stages 3 to 7.

5 How to Port the Code and Use Other Devices
Below is a comparison of the MC9S08QG4, the MC9S08QG8, and the MC9S08QD4 pinouts and their 
subtle differences. These must be considered when migrating between these devices.
Driving a Stepper Motor Based on the MC9S08QD4 and Other 8-bit Families, Rev. 0
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How to Port the Code and Use Other Devices
Figure 11. Comparison of the MC9S08QD4, MC9S08QG4, and MC9S08QG8 Devices
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Conclusions
• For the MC9S08QG4, change the derivative file before compiling. There is no TPM2 module. The 
code for all TPM2 statements must be changed to reflect TPM. For example:

      TPM2C0SC = 0x04;  /*input capture rising edge*/
      TPM2SC = 0x0F;    /*interrupts disabled, counts each 32us*/
            while(TPM2C0SC_CH0F!=1)
            /*to wait the flag for rising edge*/
            {
              ;
            }

It must be changed to:
      TPMC0SC = 0x04;  /*input capture rising edge*/
      TPMSC = 0x0F;    /*interrupts disabled, counts each 32us*/
            while(TPMC0SC_CH0F!=1)
            /*to wait the flag for rising edge*/
            {
              ;
            }

• The values for coil A and coil B are the same, therefore Table 1 does not change. The values for 
port A and the pinout change. Replace PTA1, PTA2, PTA3 and PTA5, for PTA0, PTA1, PTA2, and 
PTA3. See Figure 11. The values previously used for port A now change:

          PTAD=0x0A; 0x0A;

          PTAD=0x09; 0x28;

          PTAD=0x05; 0x24;

          PTAD=0x06; 0x06;

The same changes apply if using the MC9S08QG8 device.

6 Conclusions
This is a description using the frequency and the duty cycle to know the position of a stepper motor in the 
MC9S08QD4 and its PWM. This document allows reuse of the code between the MC9S08QD and the 
MC9S08QG families with minimal hardware changes.

Besides using a PWM signal to control a stepper motor, this motor control technique can be applied to the 
output of temperature sensors or pressure sensors.

This application note teaches how to drive a low current stepper motor. The code presented here can also 
be ported to other 8-bit devices. For more information go to AN3325 — Designing for Migration among 
8-pin, 8-bit MCUs.
Driving a Stepper Motor Based on the MC9S08QD4 and Other 8-bit Families, Rev. 0
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