

PIC16F62X

PIC16F62X Rev. C Silicon/Data Sheet Errata

The PIC16F62X (Rev. C) parts you have received conform functionally to the Device Data Sheet (DS40300**C**), except for the anomalies described below.

Microchip intends to address all issues listed here in future revisions of the PIC16F62X silicon.

1. Module: I/O Ports

A read of the PORTB Data Direction Register (TRISB) returns the Data Direction state on the port pins themselves and not the contents of the TRISB register latch.

FIGURE 5-8: BLOCK DIAGRAM OF RB0/INT PIN

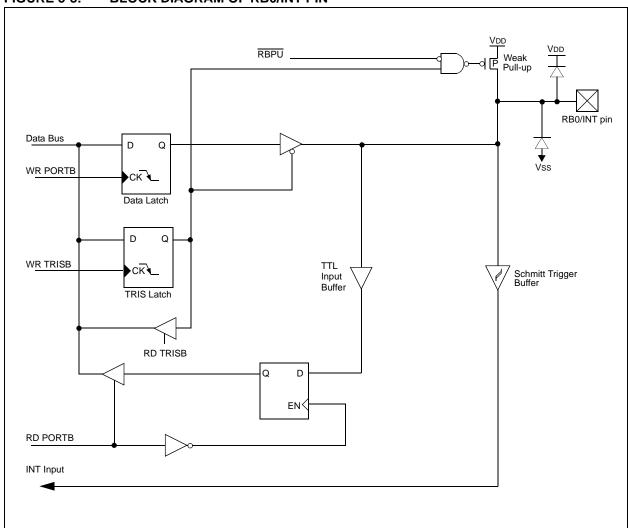
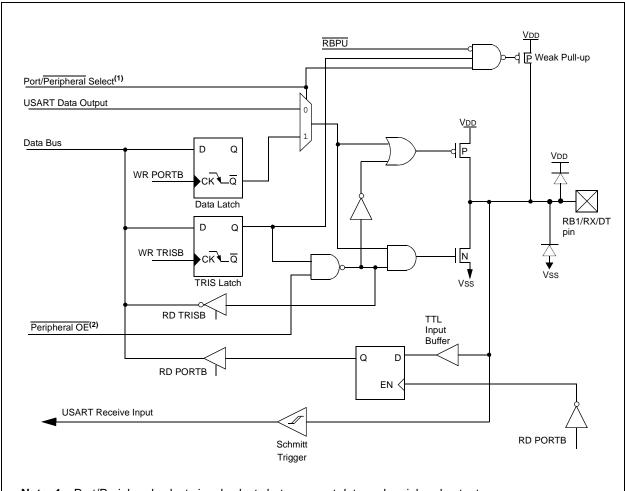



FIGURE 5-9: BLOCK DIAGRAM OF RB1/RX/DT PIN

- Note 1: Port/Peripheral select signal selects between port data and peripheral output.
 - 2: Peripheral OE (output enable) is only active if peripheral select is active.

FIGURE 5-10: BLOCK DIAGRAM OF RB2/TX/CK PIN RBPU Weak Pull-up Port/Peripheral Select(1) USART TX/CK Output V<u>dd</u> RB2/TX/CK Data Bus D Q pin WR PORTB ck LQ Data Latch Q WR TRISB Ν ск₹⊑⊽ **▼** Vss TRIS Latch RD TRISB TTL Peripheral OE(2) Input Buffer D RD PORTB EN< USART Slave Clock In RD PORTB Schmitt

Trigger

Note 1: Port/Peripheral select signal selects between port data and peripheral output. 2: Peripheral OE (output enable) is only active if peripheral select is active.

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

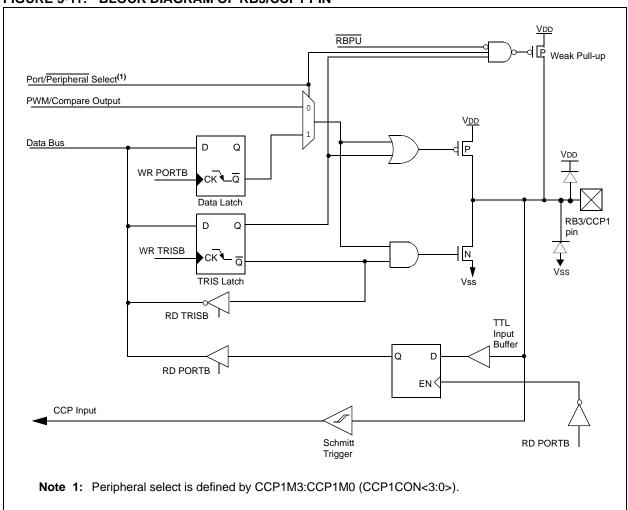


FIGURE 5-12: BLOCK DIAGRAM OF RB4/PGM PIN

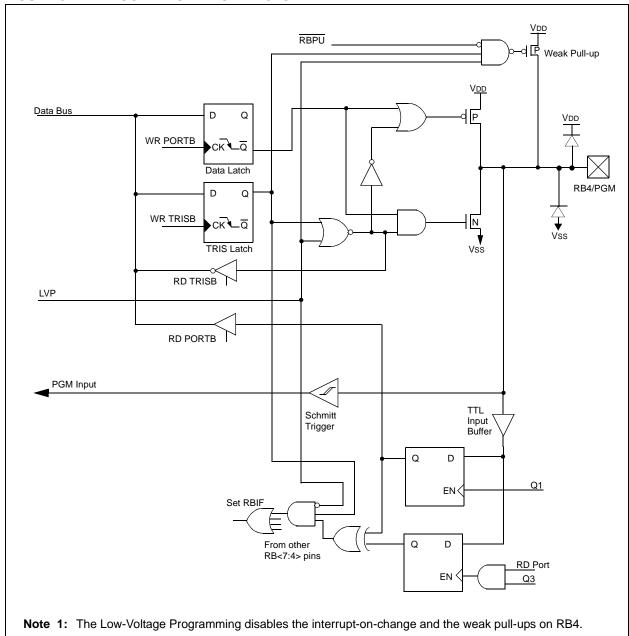
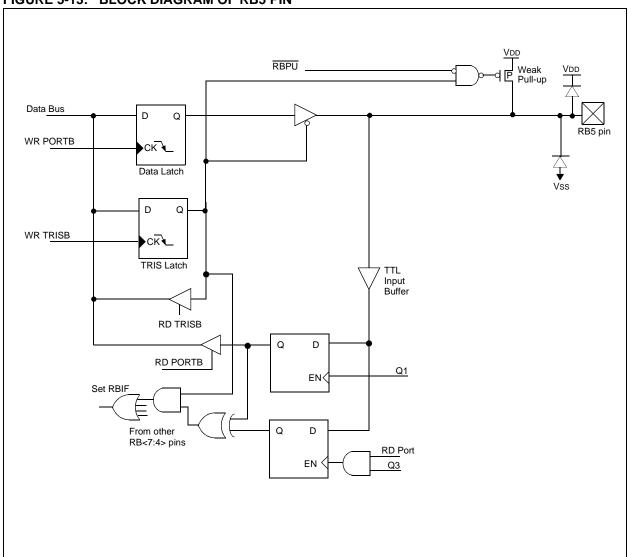



FIGURE 5-13: BLOCK DIAGRAM OF RB5 PIN

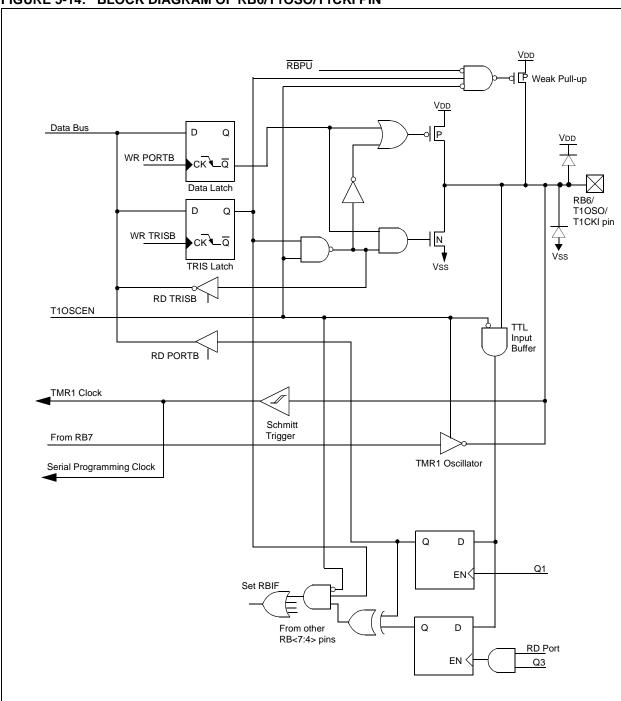


FIGURE 5-14: BLOCK DIAGRAM OF RB6/T10S0/T1CKI PIN

RBPU TMR1 Oscillator P Weak Pull-up To RB6 T10SCEN Data Bus D WR PORTB RB7/T1OSI ck \∟a pin Data Latch Q WR TRISB •CK****_Q TRIS Latch RD TRISB T10SCEN RD PORTB Input Buffer Serial Programming Input Schmitt Trigger Q D Q1 EN< Set RBIF Q From other D RB<7:4> pins RD Port EN< Q3

FIGURE 5-15: BLOCK DIAGRAM OF RB7/T10SI PIN

2. Module: Comparator Mode 1

Mode 1 allows AN2 to drive the (+) inputs of both comparators. AN1 continues to drive the (-) input of Comparator 2, but AN0 and AN3 can be switched into the (-) input of Comparator 1. The state of the CIS bit chooses which input is to be connected to the comparator. When CIS = 0, AN0 is attached and the comparator functions correctly. When CIS = 1, AN3 is not completely connected to the comparator, resulting in incorrect behavior.

Mode 2 is also a Multiplex mode using the CIS bit. This mode functions correctly.

All other modes are unaffected by this Errata.

3. Module: Low-Voltage Programming Mode

The high-voltage override for low-voltage programming does not operate as specified in the programming specification. In the Low-Voltage Programming (LVP) mode, the device can be programmed without using 12V on VPP (pin 4). However, when high-voltage programming is used while the part has low-voltage programming enabled, the Low-Voltage mode is not overridden. If RB4 goes high for any reason during high-voltage programming with LVP enabled, the programming will be interrupted.

Work around

Pull RB4 (pin 10) to ground during the initial programming to prevent programming interruptions. Once LVP has been disabled, it remedies this issue with RB4.

4. Module: CCP (Compare Mode)

The CCP1 output latch, observed on RB3/CCP1/P1A, can change unexpectedly when the CCP module is changed from a set output on match (CCP1CON<3:0> = "1000") to clear output on match (CCP1CON<3:0> = "1000"), or vice versa. This condition will occur following a CCP Reset at the beginning of the third iteration of the following sequence.

- CCPR1<3:0> is changed from "1001" to "1000" or vice versa
- The TMR1H:TMR1L register pair matches the CCP1R1H:CCPR1L register pair

Step 1 of the third iteration will cause the CCP1 output latch to immediately and erroneously change to the inverse of the CCPR1<0> bit. This gives the appearance of an inverted CCP response to the third and subsequent compare match events.

The apparent inverted response will persist until the CCP1CON<3> bit is cleared (exiting Compare mode). Interrupts always occur correctly on the match condition. The error is only in the state of the CCP1 output latch.

Work around

Option 1

Use the CCP toggle output on Compare Match mode (CCP1CON<3.0> = "0010").

Option 2

Since the problem occurs after two changes to the Compare and Match modes, it is only necessary to reset the CCP1CON register before the third change is made. To remain backwards compatible with earlier versions of the CCP module, always reset the CCP1CON register when changing from the clear output on Match mode to the set output on Match mode, as described in the following steps.

- 1. Ensure the RB3 data latch is set to '0'.
- Clear the CCP1CON register (clrf CCP1CON).
- 3. Set the CCP1CON<3:0> bits to "1000" for set output on match.

5. Module: MCLR/RA5 in LVP Mode

 $\frac{When}{MCLR}$ the PIC16F62X device has LVP enabled, MCLR is always enabled, regardless of the CONFIG register settings.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS40300**C**), the following clarifications and corrections should be noted.

1. Module: Special Function Registers (T1SYNC, Register T1CON)

In Table 3-1, "Special Function Registers Summary Bank 0", bit T1SYNC, in Register T1CON (address 10h), should be asserted logic low (i.e., T1SYNC) as shown in bold below.

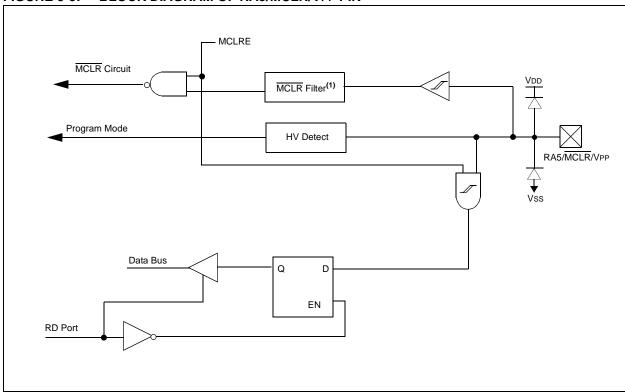
2. Module: Special Function Registers (ADEN, Register RCSTA)

In Table 3-1, "Special Function Registers Summary Bank 0", bit ADEN, in Register RCSTA (address 18h), is misspelled. The correct spelling should be ADDEN, as shown in bold below.

This misspelling also appears in Register 12-2. Tables 12-2, 12-6, 12-7, 12-8, 12-9, 12-10, 12-11 and 12-12. Figures 12-8, 12-9, 12-10 and 12-11. Sections 12.2.2, 12.3.1 and 12.3.1.1.

TABLE 3-1: SPECIAL REGISTERS SUMMARY BANK 0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other Resets ⁽¹⁾
Bank 0											
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu


Legend: x = unknown, u = unchanged, - = unimplemented locations, read as '0', <math>q = value depends on condition, shaded = unimplemented

Note 1: Other (non power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

3. Module: I/O Ports (RA5/MCLR/VPP)

Figure 5-5, "Block Diagram of the RA5/MCLR/VPP Pin", is incorrect. The following diagram should be used instead.

FIGURE 5-5: BLOCK DIAGRAM OF RA5/MCLR/VPP PIN

4. Module: Comparator

Example 9-1, "Initializing Comparator Module", is incorrect. The following code example should be used instead.

EXAMPLE 1: INITIALIZING COMPARATOR MODULE

```
BCF
                    INTCON, GIE
                                   ; Turn OFF Global Interrupts
                    INTCON, PEIE
       BCF
                                    ; Turn OFF Peripheral Interrupts
       CLRF
                   PORTA
                                    ; Init Port A
                                    ; Init comparator mode
       MOVLW
                   0X03
                                     ; CM < 2:0 > = 011
       MOVWF
                   CMCON
       BSF
                   STATUS, RPO
                                     ; Select BANK 1
                                     ; Initialize Port A Direction
       MOVLW
                   0 \times 0.7
       MOVWF
                   TRISA
                                     ; Set RA<2:0> as Inputs
                                     ; RA<4:3> as outputs
                                     ; TRIS<5> always reads '0'
                   STATUS, RPO
       BCF
                                    ; Select BANK 0
       CALL
                   DELAY10
                                    ; Wait 10us for comparator output to become valid
                                     ; See Table 17-1 Parameter 301
                                     ; Read CMCON to end change condition
       MOVF
                   CMCON, F
                                    ; Clear pending interrupts
       BCF
                   PIR1,CMIF
                                     ; Select BANK 1
       BSF
                   STATUS, RPO
                   PIE1, CMIE
                                     ; Enable Comparator Interrupts
       BSF
       BCF
                  STATUS, RPO
                                    ; Select BANK 0
                  INTCON, PEIE ; Enable Peripheral Inter:
INTCON, GIE ; Global Interrupt Enable
       BSF
                                    ; Enable Peripheral Interrupts
       BSF
       ; Insert Your code....
       ; Helper function is the Delay for 10us routine show below.
DELAY10
                    ; burns 8 cycles + the call for 10 cycles or 10us at 4Mhz
                   ; goto the next instruction and burn 2 cycles
       qoto $+1
       call retlbl ; goto the next instruction and burn 2 more cycles
retlblreturn; go back and burn 2 cycles (actually done 2x for 4 cycles consumed)
```

5. Module: Data EEPROM Memory

Examples 13-1, "Data EEPROM Read", 13-2, "Data EEPROM Write", and 13-3, "Write Verify", are incorrect. The EEPROM registers are all located in Bank 1. The examples show the registers in Bank 0 and Bank 1. The following code examples should be used instead.

EXAMPLE 13-1: DATA EEPROM READ

```
BSF STATUS, RPO ; Bank 1
MOVLW CONFIG_ADDR ;
MOVWF EEADR ; Address to write
BSF EECON1, RD ; EE Read
MOVF EEDATA, W ; W = EEDATA
BCF STATUS, RPO ; Bank 0
```

EXAMPLE 13-2: DATA EEPROM WRITE

```
; set up the data and the address
BSF
     STATUS, RPO ; Bank 1
MOVLW CONFIG_ADDR ;
MOVWF EEADR
                  ; Address to write
MOVLW CONFIG DATA ;
MOVWF EEDATA
                ; Data to write
                 ; perform the write
                   operation
BSF
      EECON1, WREN ; Enable Write
      INTCON, GIE ; Disable INTs
BCF
MOVLW 055h
                 ;
; Write 55
MOVWF EECON2
MOVLW 0AAh
MOVWF EECON2
                ; Write AA
BSF EECON1, WR ; Set WR bit
BCF STATUS, RPO ; Bank 0
```

EXAMPLE 13-3: WRITE VERIFY

```
after the write in complete (i.e. in the
write interrupt)
BSF STATUS, RPO; Bank 1
MOVF
     EEDATA, W ; load the last
                    written value into W
BSF
       EECON1, RD ; start a read
Is the value written (in W Reg) and
read (in EEDATA) the same?
SUBWF EEDATA, W \,; the EEDATA has fresh
                    data
BTFSS STATUS, Z ; Is the Zero flag set?
GOTO
       WRITE ERR ; NO, Write Error
                   ; YES, Good Write
                   ; continue program
```

6. Module: Timer1 Module

In **Section 7.0, "Timer1 Module"**, in Register 7-1, bit TMR1ON, "Timer1 On" should read as shown in bold below:

REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N
bit 7		•	•			•	bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 T1CKPS1/T1CKPS0: Timer1 Input Clock Prescale Select bits

11 = 1:8 prescale value 10 = 1:4 prescale value 01 = 1:2 prescale value 11 = 1:1 prescale value

bit 3 T10SCEN: Timer1 Oscillator Enable Control bit

1 = Oscillator is enabled 0 = Oscillator is shut off⁽¹⁾

bit 2 T1SYNC: Timer1 External Clock Input Synchronization Control bit

 $\underline{\mathsf{TMR1CS}} = 1$

1 = Do not synchronize external clock input

0 = Synchronize external clock input

TMR1CS = 0

This bit is ignored. Timer1 uses the internal clock when TRM1CS = 0.

bit 1 TMR1CS: Timer1 Clock Source Select bit

1 = External clock from pin RB6/T1OSO/T1CKI (on the rising edge)

0 = Internal clock (Fosc/4)

bit 0 TMR1ON: Timer1 On bit

1 = Enables Timer1

0 = Disables Timer1

Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REVISION HISTORY

Rev A Document (6/00)

Original errata document.

Rev B Document (11/00)

Issue 3 (CCP Compare Mode), Table 1 and 2 were added (page 2).

Under the Clarifications/Corrections Section, Item 1, Table 15-12 was updated with additional information (page 3).

Rev C Document (6/01)

Issues 2 and 3 were added.

Under Clarifications/Corrections, Items 2 and 3 were changed and Item numbers were renumbered accordingly.

Rev D Document (9/01)

Item 3 was rewritten (page 9).

Under the Clarifications/Corrections to the Data Sheet Section, the following items were changed:

Item 2, Tables 17.1 and 17.2, were updated with minor changes.

Item 6 was added.

Rev E Document (2/02)

Under Clarifications/Corrections to the Data Sheet, added Module 3: I/O Ports (RA5/MCLR/VPP).

Rev G Document (05/19/05)

Under Clarifications/Corrections to the Data Sheet, Added Module 6: Timer1 Module.

Rev H Document (06/12)

Corrected Silicon Revision.

PIC16F62X

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2000-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620763193

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588

Fax: 86-23-8980-9500 **China - Hangzhou** Tel: 86-571-2819-3187

Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300

Fax: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 **Spain - Madrid** Tel: 34-91-708-08-90

Fax: 34-91-708-08-91 **UK - Wokingham**Tel: 44-118-921-5869

Fax: 44-118-921-5820

11/29/11