TEH100 Series # 100 Watt Thick Film Power Resistors for High Frequency and Pulse Loading Applications | STAN | DARD PART NUMBER | S FOR TEH SERIES | |------------------------------------|---|---| | Ohms | 5% tolerance | 1% tolerance | | 0.05
0.075
0.1
0.2
0.5 | TEH100MR050JE
TEH100MR075JE
TEH100MR100JE
TEH100MR200JE
TEH100MR500JE | | | 1
2
2.5
3
5 | TEH100M1R00JE
TEH100M2R00JE
TEH100M2R50JE
TEH100M3R00JE
TEH100M5R00JE | TEH100M1R00FE
TEH100M2R00FE
TEH100M2R50FE
TEH100M3R00FE
TEH100M5R00FE | | 7.5
10
15
20
25 | TEH100M7R50JE
TEH100M10R0JE
TEH100M15R0JE
TEH100M20R0JE
TEH100M25R0JE | TEH100M7R50FE
TEH100M10R0FE
TEH100M15R0FE
TEH100M20R0FE
TEH100M25R0FE | | 50
100
470
750
1K | TEH100M50R0JE
TEH100M100RJE
TEH100M470RJE
TEH100M750RJE
TEH100M1K00JE | TEH100M50R0FE
TEH100M100RFE | Check product availability using the Worldwide Inventory Search at ohmite.com Ohmite offers the totally encapsulated and insulated TO-247 package for low ohmic value and non-inductive design for high-frequency and pulsing applications. Ideal use is for power supplies. This series is rated at 100 Watts mounted to a heat sink. ### FEATURES - 100 Watt power rating at 25°C case temperature - Non-inductive performance - · Low thermal resistance - · RoHS compliant design - TO-247 package configuration - Single screw mounting simplifies attach-ment to the heat sink - A totally molded housing for environmental protection - · Non-Inductive design - Resistor package totally insulated from heat sink ## **SPECIFICATIONS** #### Material Resistor: thick film on alumina Case: high temperature plastic Lead Material: Tinned Copper Installation, max. Torque: 0.9 Nm using an M3 screw and a compression washer #### **Electrical** **Derating:** linear, 100% at 25°C to 0% at 175°C Resistance range: 0.05Ω to $1M\Omega$, other values on request **Resistance tol.:** ±1%, ±2%, ±5%, ±10% Max. working voltage: 350V Temperature Coefficient: ± 50 ppm/°C for >10 Ω , referenced to 25°C, Δ R taken at +105°C; others on request Insulation Resistance: $10G\Omega$ min. Dielectric Strength: 1,800 VAC | _ | | _ | | - | | |---|-----|---|------|----|-----| | | ь с | T | - 11 | м. | г л | | | - | | | 14 | 4.4 | | Test | Conditions Of Test | Performance | |--------------------------|--|--| | Load life | MIL-R-39009D 4.8.13 , 2,000 hours at rated power | $\Delta R \le \pm (1.0\% + 0.0005\Omega)$ | | Moisture resistance | -10°C - +65°C, RH>90%, cycle 240 h | $\Delta R \le \pm (0.50\% + 0.0005\Omega)$ | | Short time overload | 1.5 times rated power and V(DC) ≤1.5Vmax for 5 seconds | $\Delta R \le \pm (0.50\% + 0.0005\Omega)$ | | Thermal shock | GJB360A-96 method 107, Cond. F | $\Delta R \le \pm (0.50\% + 0.0005\Omega)$ | | Dielectric
strength | GJB360A-96 method 301, (1,800V AC, 60s) | $\Delta R \le \pm (0.15\% + 0.0005\Omega)$ | | Terminal strength | GJB360A-96 method 211, Cond. A (Pull Test) 2.4N | $\Delta R \le \pm (0.20\% + 0.0005\Omega)$ | | High frequency vibration | GJB360A-96 method 204, Cond. D | $\Delta R \le \pm (0.40\% + 0.0005\Omega)$ | ### DERATING Derating (thermal resistance): 0.666W/°K (1.5K/W). Without a heatsink, when in free air at 25°C, the TEH100 is rated for 3.5W. Derating for temp. above 25°C is 0.0234W/°K Graphed value is only valid when using a thermal conduction to the heatsink Rthcs<0.025°K/W. This value can be reached by using thermal transfer compound with a heat conductivity of 1W/mK. The flatness of the cooling plate must be better than 0.05mm overall. The roughness of the surface should not exceed 6.4µm. The case temperature is to be used for the definitiion of the applied power limit. The case temperature measurement must be made with a thermocouple contacting the center of the component mounted on the designed heat sink. Thermal grease should be applied properly # THIS PRODUCT IS DESIGNED FOR USE WITH PROPER HEATSINKING. Maximum base plate tempera- ture of the resistor must be monitored and kept within specified limits to establish the power rating. Best technique is to attach a thermocouple to the side of the base plate of the resistor. Temperature of plastic housing or heat sink cannot be used to establish rating of the resistor.