### **Bi-CDMOS LSI** # ON Semiconductor® http://onsemi.com # For Car Audio Systems Multi-Power Supply IC ### Overview The LV56841PVD is a power supply IC suitable for CD receiver system for car audio system. This IC integrates 5 systems of regulator output, 2 systems of high side power switch, over-current protector, overvoltage protector and over-heat protector . Supply for SW33V outputs is low voltage specification, which enables drastic reduction of power dissipation compared to the existing model. (the package is HZIP15). ### **Function** - Low consumption current: 50μA (typ, only V<sub>DD</sub> output is in operation) - •5 systems of regulator output V<sub>DD</sub> for microcontroller: output voltage: 3.3V, maximum output current: 350mA Reverse current protection implemented. For system: output voltage: 3.3V, maximum output current: 350mA For audio: output voltage: 5 to 12V (set by external resistors), maximum output current: 300mA For illumination: output voltage: 5 to 12V (set by external resistors), maximum output current: 300mA For CD: output voltage: 6V, maximum output current: 1500mA • 2 lines of high side switch with interlock V<sub>CC</sub> EXT: Maximum output current: 500mA, voltage difference between input and output: 0.75V ANT: Maximum output current: 300mA, voltage difference between input and output: 0.5V • Supply input V6IN: 6V for system (SW33V) V<sub>CC</sub>1: For internal reference voltage, control circuits, and V<sub>DD</sub> output. VCC2: For AUDIO, illumination, CD, EXT/ANT - Over-current protector - Overvoltage protector(OVP): V<sub>CC</sub>1,V<sub>CC</sub>2 Typ 21V (All outputs except V<sub>DD</sub> are turned off) Overvoltage shutdown(OVS): V6IN Typ 21V (All outputs except V<sub>DD</sub> are turned off) - Overheat protector: Typ 175°C - Pch-LDMOS is used in power output block (Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under over-current protection range, thermal shutdown state or V6IN OVS condition may degrade the IC's reliability and eventually damage the IC. HZIP15 ### **ORDERING INFORMATION** See detailed ordering and shipping information on page 15 of this data sheet. **Absolute Maximum Ratings** at Ta = 25°C | Parameter | Symbol | Conditions | | Ratings | Unit | |-------------------------------|----------------------|--------------------------------------|--------------------------------|-------------|------| | Supply voltage | V <sub>CC</sub> max | V <sub>CC</sub> 1, V <sub>CC</sub> 2 | | 36 | V | | | V6IN max | V6IN (*) | | 7 | V | | Input voltage | V <sub>IN</sub> max | CTRL1, CTRL2 | | 7 | V | | Allowable power dissipation | Pd max | -Independent IC | Ta ≤ 25°C | 1.3 | W | | | | Al heat sink * | | 5.3 | W | | | | -Size of heatsink: infinite | | 26 | W | | Peak supply voltage | V <sub>CC</sub> peak | See the appendix for wavefo | See the appendix for waveform. | | V | | Operating ambient temperature | Topr | | | -40 to +85 | °C | | Storage temperature | Tstg | | | -55 to +150 | °C | | Junction temperature | Tj max | | | 150 | °C | <sup>\* :</sup> When the Aluminum heat sink (50mm $\times$ 50mm $\times$ 1.5mm) is used Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ### **Recommended Operating range** at Ta = 25°C SW33V output $V_{CC1}$ Operating supply voltage 6 | . CC- | | | | |----------------------------|-----------------------------------|------------|------| | Parameter | Conditions | Ratings | Unit | | Operating supply voltage 1 | V <sub>DD</sub> output | 7 to 16 | V | | VCC2 | | | | | Parameter | Conditions | Ratings | Unit | | Operating supply voltage 2 | ILM output (10V) | 12 to 16 | V | | | ILM output (8V) | 10 to 16 | V | | Operating supply voltage 3 | AUDIO output (9V) | 10 to 16 | V | | | AUDIO output (5V) | 8 to 16 | ٧ | | Operating supply voltage 4 | CD output (I <sub>O</sub> = 1.3A) | 10.5 to 16 | V | | | CD output ( $I_O \le 1A$ ) | 10 to 16 | V | | Operating supply voltage 5 | EXT output, ANT output | 10 to 16 | V | | V6IN | | | | | Parameter | Conditions | Ratings | Unit | | | <del>- </del> | <u> </u> | | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 5.5 to 6.5 **Electrical Characteristics**: $V_{CC}1 = V_{CC}2 = 14.4V$ , $V_{CI}N = 6V$ at $T_{CI}N = 25$ °C (\*1) | Parameter | Symbol | Symbol Conditions | | Ratings | | Unit | |-------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|-------|---------|-------|------| | | | | min | typ | max | | | Quiescent current | Icc | V <sub>DD</sub> w/out load, CTRL1/2 = "L/L" | | 50 | 100 | μА | | CTRL1 input (ANT/EXT/ILM) | V 1 | | 1 01 | | 0.5 | | | Low input voltage | V <sub>IL</sub> 1 | | 0 | 4.4 | 0.5 | V | | M1 input voltage | V <sub>IM1</sub> 1 | | 0.8 | 1.1 | 1.4 | V | | M2 input voltage | V <sub>IM2</sub> 1 | | 1.9 | 2.2 | 2.5 | V | | High input voltage | V <sub>IH</sub> 1 | | 2.9 | 3.3 | 5.5 | V | | Input impedance | R <sub>IN</sub> 1 | input voltage ≤ 3.3V | 280 | 400 | 480 | kΩ | | CTRL2 input (CD/AUDIO/SW3 | 1 | | 1 | 1 | | | | Low input voltage | V <sub>IL</sub> 2 | | 0 | | 0.5 | V | | M1 input voltage | V <sub>IM1</sub> 2 | | 0.8 | 1.1 | 1.4 | V | | M2 input voltage | V <sub>IM2</sub> 2 | | 1.9 | 2.2 | 2.5 | V | | High input voltage | V <sub>IH</sub> 2 | | 2.9 | 3.3 | 5.5 | V | | Input impedance | R <sub>IN</sub> 2 | input voltage ≤ 3.3V | 280 | 400 | 480 | kΩ | | V <sub>DD</sub> output (3.3V) (reverse cu | rrent prevention | diode implemented) | T T | T- | | | | Output voltage | V <sub>O</sub> 1 | I <sub>O</sub> 1 = 200mA | 3.13 | 3.3 | 3.47 | V | | Output current | I <sub>0</sub> 1 | V <sub>O</sub> 1 ≥ 3.1V | 350 | | | mA | | Line regulation | ∆V <sub>OLN</sub> 1 | 7.5V < V <sub>CC</sub> 1 < 16V, I <sub>O</sub> 1 = 200mA | | 30 | 90 | mV | | Load regulation | ∆V <sub>OLD</sub> 1 | 1mA < I <sub>O</sub> 1 < 200mA | | 70 | 150 | mV | | Dropout voltage1 | V <sub>DROP</sub> 11 | I <sub>O</sub> 1 = 100mA | | 2.6 | 3.1 | V | | Dropout voltage2 | V <sub>DROP</sub> 12 | I <sub>O</sub> 1 = 200mA | | 2.8 | 3.5 | V | | Ripple rejection (*2) | R <sub>REJ</sub> 1 | f = 120Hz, V <sub>CC</sub> 1 = 0.5Vpp<br>I <sub>O</sub> 1 = 200mA | 40 | 50 | | dB | | Reverse current | Irev | V <sub>O</sub> 1 = 3.3V, V <sub>CC</sub> 1 = V6IN = 0V | | 1 | 50 | μΑ | | SW33V output (3.3V) ; CTRL2 | = "M2 or H" | | | | | | | Output voltage | V <sub>O</sub> 2 | I <sub>O</sub> 2 = 200mA | 3.13 | 3.3 | 3.47 | V | | Output current | I <sub>O</sub> 2 | $V_O 2 \ge 3.1V$ | 350 | | | mA | | Line regulation | ΔV <sub>OLN</sub> 2 | 5.7V < V6IN < 6.5V, I <sub>O</sub> 2 = 200mA | | 30 | 90 | mV | | Load regulation | ΔV <sub>OLD</sub> 2 | 1mA < I <sub>O</sub> 2 < 200mA | | 70 | 150 | mV | | Dropout voltage | V <sub>DROP</sub> 2 | I <sub>O</sub> 2 = 200mA | | 0.25 | 0.5 | V | | Ripple rejection (*2) | R <sub>REJ</sub> 2 | $f = 120$ Hz, V6IN or $V_{CC}1 = 0.5$ Vpp $I_{O}2 = 200$ mA | 40 | 50 | | dB | | AUDIO (5-12V)output ; CTRL2 | = " H" | - | | | | | | AUDIO_F voltage | V <sub>I</sub> 3 | | 1.212 | 1.25 | 1.288 | V | | AUDIO_F input current | I <sub>IN</sub> 3 | | -1 | | 1 | μΑ | | AUDIO output voltage 1 | V <sub>O</sub> 3 | $I_{O}3$ = 200mA, R3 = 30kΩ, R4 = 5.6kΩ (*3) | 7.65 | 8.0 | 8.35 | V | | AUDIO output voltage 2 | V <sub>O</sub> 3' | $I_{O}3 = 200$ mA, R3 = 27k $\Omega$ , R4 = 4.7k $\Omega$ (*3) | 8.13 | 8.5 | 8.87 | V | | AUDIO output voltage 3 | V <sub>O</sub> 3'' | $I_{O}3 = 200$ mA, R3 = $24$ k $\Omega$ , R4 = $3.9$ k $\Omega$ (*3) | 8.6 | 9.0 | 9.4 | V | | AUDIO output voltage 4 | V <sub>O</sub> 3''' | $I_{O}3 = 200$ mA, R3 = $30$ k $\Omega$ , R4 = $10$ k $\Omega$ (*3) | 4.75 | 5.0 | 5.25 | V | | AUDIO output current | I <sub>O</sub> 3 | | 300 | | | mA | | Line regulation | ΔV <sub>OLN</sub> 3 | 10V < V <sub>CC</sub> 2 < 16V, I <sub>O</sub> 3 = 200mA | | 30 | 90 | mV | | Load regulation | ΔV <sub>OLD</sub> 3 | 1mA < I <sub>O</sub> 3 < 200mA | | 70 | 150 | mV | | Dropout voltage 1 | V <sub>DROP</sub> 3 | I <sub>O</sub> 3 = 200mA | | 0.4 | 0.6 | V | | Ripple rejection (*2) | R <sub>REJ</sub> 3 | f = 120Hz, I <sub>O</sub> 3 = 200mA | 40 | 50 | | dB | | ILM (5-12V) output ; CTRL2 = | "M1 or H" | - | l l | | | | | ILM_F voltage | V <sub>I</sub> 4 | | 1.212 | 1.25 | 1.288 | V | | ILM_F input current | I <sub>IN</sub> 4 | | -1 | | 1 | μΑ | | ILM output voltage 1 | V <sub>O</sub> 4 | $I_{O}4 = 200$ mA, R1 = $43$ k $\Omega$ , R2 = $5.1$ k $\Omega$ (*3) | 11.21 | 11.8 | 12.39 | V | | ILM output voltage 2 | V <sub>O</sub> 4' | $I_{\Omega}4 = 200 \text{mA}, R1 = 56 \text{k}\Omega, R2 = 7.5 \text{k}\Omega \text{ (*3)}$ | 9.97 | 10.5 | 11.03 | V | | ILM output voltage 3 | V <sub>O</sub> 4" | $I_{O}4 = 200 \text{mA}, R1 = 30 \text{k}\Omega, R2 = 5.6 \text{k}\Omega \text{ (*3)}$ | 7.6 | 8.0 | 8.4 | V | | ILM output voltage 4 | V <sub>O</sub> 4''' | $I_04 = 200$ mA, R1 = 30k $\Omega$ , R2 = 10k $\Omega$ (*3) | 4.75 | 5.0 | 5.25 | V | | | 0. | 0 , | 1 | | | | Continued on next page. Continued from preceding page. | D | 0 | Conditions | | Ratings | | 11.2 | |-----------------------------|----------------------|-----------------------------------------------------------------------|-----------------------|------------------------|------|------| | Parameter | Symbol | Conditions | min | typ | max | Unit | | Line regulation | ∆V <sub>OLN</sub> 4 | $10V < V_{CC}2 < 16V, I_{O}4 = 200$ mA<br>R1 = $30$ kΩ, R2 = $5.6$ kΩ | | 30 | 90 | mV | | Load regulation | ΔV <sub>OLD</sub> 4 | 1mA < I <sub>O</sub> 4 < 200mA | | 70 | 150 | mV | | Dropout voltage 1 | V <sub>DROP</sub> 4 | I <sub>O</sub> 4 = 200mA | | 0.7 | 1.05 | V | | Dropout voltage 2 | V <sub>DROP</sub> 4' | I <sub>O</sub> 4 = 100mA | | 0.35 | 0.53 | V | | Ripple rejection (*2) | R <sub>REJ</sub> 4 | f = 120Hz, I <sub>O</sub> 4 = 200mA | 40 | 50 | | dB | | CD (6V output) ; CTRL2 = "I | M1 or M2 or H" | | | | | | | Output voltage | V <sub>O</sub> 5 | I <sub>O</sub> 5 = 1000mA | 5.7 | 6.0 | 6.3 | V | | Output current | I <sub>O</sub> 5 | $V_O 5 \ge 5.6V$ | 1500 | | | mA | | Limit current(*4) | llim5 | $V_O 5 \ge 5.5V$ | 1700 | | | mV | | Line regulation | ΔV <sub>OLN</sub> 5 | $10.5V < V_{CC}2 < 16V, I_{O}5 = 1000 \text{mA}$ | | 50 | 100 | mV | | Load regulation | ΔV <sub>OLD</sub> 5 | 10mA < I <sub>O</sub> 5 < 1000mA | | 100 | 200 | mV | | Dropout voltage 1 | V <sub>DROP</sub> 5 | I <sub>O</sub> 5 = 1000mA | | 1.0 | 1.5 | V | | Dropout voltage 2 | V <sub>DROP</sub> 5' | I <sub>O</sub> 5 = 500mA | | 0.5 | 0.75 | V | | Ripple rejection (*2) | R <sub>REJ</sub> 5 | f = 120Hz, I <sub>O</sub> 5 = 1000mA | 40 | 50 | | dB | | EXT_HS-SW; CTRL1 = "M1 | or M2 or H" | | | | | | | Output voltage | V <sub>O</sub> 6 | I <sub>O</sub> 6 = 500mA | V <sub>CC</sub> 2-2.5 | V <sub>CC</sub> 2-0.75 | | V | | Output current | I <sub>O</sub> 6 | $V_O6 \ge V_{CC}2-2.5$ | 500 | | | mA | | ANT_HS-SW; CTRL1 = "H" | <u> </u> | | <u> </u> | | | | | Output voltage | V <sub>O</sub> 7 | I <sub>O</sub> 7 = 300mA | V <sub>CC</sub> 2-1.0 | V <sub>CC</sub> 2-0.5 | | V | | Output current | I <sub>O</sub> 7 | V <sub>O</sub> 7 ≥ V <sub>CC</sub> 2-1.0 | 300 | | | mA | <sup>\*1 :</sup> All the specification is defined based on the tests performed under the conditions where Tj and Ta (= 25°C) are almost equal. These tests were performed with pulse load to minimize the increase of junction temperature (Tj). Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. <sup>\*2 :</sup> guaranteed by design <sup>\*3 :</sup> Using resistors of tolerance within 1%. <sup>\*4 :</sup> When the output current is over "Ilim5", the over-current protector circuit operates. The over-current protector circuit is "fold-back" type, and it limits the output current and voltage when it's operating. The output current should be usually limited below lomax that is "min of lo5". ### CTRL logic truth table | CTRL1 | ANT | ILM | EXT | |-------|-----|-----|-----| | Н | ON | ON | ON | | M2 | ON | OFF | ON | | M1 | OFF | ON | ON | | L | OFF | OFF | OFF | | CTRL2 | AUDIO | SW33V | CD | |-------|-------|-------|-----| | Н | ON | ON | ON | | M2 | OFF | ON | ON | | M1 | OFF | OFF | ON | | L | OFF | OFF | OFF | (Warning) Usage of CTRL pin When CTRL pin transits between L and M2, since it passes M1, ILM is turned on for a moment. Likewise, when CTRL pin transits between H and M1, since it passes M2, ILM is turned off for a moment. To avoid operation failure by the above factors, please refer (1) and (2) as shown below for precaution.dd - Do not connect parasitic capacitor to CTRL as much as possible. - If use of capacitor for CTRL is required, keep the resistance value as low as possible. - Make sure that the output load capacitor has enough margin against the voltage fluctuation due to instantaneous ON/OFF. - (1) The time until a reaction occurs in output after from CTLR ON to OFF (typ) | OFF→ON time | 27°C | |-------------|---------| | CTRL1→ILM | 6.0µsec | Due to quality fluctuation of ICs in manufacturing process, the above-mentioned time can be shorted by 10 to 20%. (2)The time until output starts to react shifting from CTRL ON $\rightarrow$ OFF control : | ON→OFF time | 27°C | |-------------|---------| | CTRL1→ILM | 2.3µsec | ### CTRL1/2 voltage range and threshold ### **Package Dimensions** unit: mm (typ) **HZIP15** CASE 945AB ISSUE A ### **SOLDERING FOOTPRINT\*** NOTE: The measurements are not to guarantee but for reference only. ## GENERIC MARKING DIAGRAM\* XXXXX = Specific Device Code Y = Year M = Month DDD = Additional Traceability Data <sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. <sup>\*</sup>This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present. ### • Allowable power dissipation derating curve ### **Application Circuit Example** ### Peripheral parts | Part name | Description | Recommended value | Note | |----------------------|--------------------------------------------|---------------------------------------------|--------------------------------------| | C1, C3, C5, C13, C14 | output stabilization capacitor | greater than10μF (*1) | | | C2, C4 | output stabilization capacitor | 0pF | Ceramic capacitor | | C8, C10, C12 | Capacitor for bypass power supply | C8: greater than 100μF | Make sure to implement close to | | | | C10,C12: greater than 47μF | V <sub>CC</sub> and GND. | | C7, C9, C11 | Capacitor for oscillation protector | greater than 0.22μF | | | C15, C16 | Capacitor for EXT/ANT output stabilization | greater than 2.2μF | | | | | R1/R2 | Use resistors of tolerance within 1% | | | | 43kΩ/5.1kΩ : V <sub>O</sub> = 12V | | | R1, R2 | ILM voltage setting | $56kΩ/7.5kΩ : V_O = 10.5V$ | | | | | $30k\Omega/5.6k\Omega$ : $V_O = 8V$ | | | | | $30k\Omega/10k\Omega : V_O = 5V$ | | | | | R3/R4 | Use resistors of tolerance within 1% | | | | $30k\Omega/10k\Omega$ : V <sub>O</sub> = 5V | | | R3, R4 | AUDIO voltage setting | 30kΩ/ $5.6$ kΩ : V <sub>O</sub> = $8.0$ V | | | | | $27kΩ/4.7kΩ : V_O = 8.5V$ | | | | | $24k\Omega/3.9k\Omega$ : $V_O = 9V$ | | | D1, D2, D3, D4 | Internal device protector diode | ON Semiconductor | | | | | SB1003M3 | | <sup>(\*1)</sup> Make sure that output capacitors are greater than 10uF and meets the condition of ESR = 0.001 to $10\Omega$ , in which voltage/ temperature dependence and unit differences are taken into consideration. Moreover, in case of electrolytic capacitor, high-frequency characteristics should be sufficiently good. ### **Block Diagram** ### **Pin Function** | Pin No. | Pin name | Description | Equivalent Circuit | |---------|-------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------| | 1 | ILM | ILM output When CTRL1 = M1, H, ILM is ON | 7 Vcc2 Vcc2 Vcc2 Vcc2 | | 2 | ILM_F | ILM voltage adjust | $ \begin{array}{c c} \hline 2 & \downarrow \\ \hline 1 & \downarrow \\ \hline 10 & \downarrow \\ \hline GND \end{array} $ | | 3 | CD | CD output When CTRL2 = M1, M2, H, CD is ON 6V/1.5A | $\begin{array}{c} 7 \\ \hline \\ 3 \\ \hline \\ 45 \text{k} \Omega \end{array}$ | | 4 | AUDIO_F | AUDIO voltage adjust | 7 Vcc <sup>2</sup> Vcc <sup>2</sup> Vcc <sup>2</sup> | | 5 | AUDIO | AUDIO output When CTRL2 = H AUDIO is ON | $ \begin{array}{c c} 4 & \downarrow \\ 1 & \downarrow \\ 1 & \downarrow \\ \hline $ | | 6 | CTRL2 | CTRL2 input 4-value input | $ \begin{array}{c c} \hline 9 & V_{CC1} \\ \hline 6 & W_{85k\Omega} \\ \hline 185k\Omega \\ \hline 75k\Omega \end{array} $ | | 7 | V <sub>CC</sub> 2 | Power supply | | Continued on next page. Continued from preceding page. Pin No. Pin name Description **Equivalent Circuit** CTRL1 8 CTRL1 input V<sub>CC</sub>1 4-value input $\frac{10k\Omega}{10}$ ₹85kΩ **≱**185kΩ 0.5V **≨**45kΩ 計 ₹ ₹75kΩ GND 9 V<sub>CC</sub>1 Power supply $V_{CC^2}$ V6IN V<sub>CC</sub>1 (7)(9) (11) GND 10 GND 太 11 V6IN Power supply (10) GND 12 $V_{\text{DD}}$ V<sub>DD</sub> output V<sub>C</sub>C1 3.3V/0.35A (11) \(\frac{\dagger}{\dagger}\) (12) ≸230kΩ 本 ≹2kΩ ≸140kΩ (10) GND 13 SW33V SW33V output (11) -V6IN When CTRL2 = M2, H SW33V is ON 3.3V/0.35A (13) **≨**230kΩ **\$140kΩ \$1kΩ** (10) GND ANT 14 ANT output 7 V<sub>CC</sub>2 When CTRL1 = M2, H ≸100kΩ ANT is ON V<sub>CC</sub>-0.5V/300mA (14) (10) GND Continued on next page. | Continued fr | Continued from preceding page. | | | | | | | | |--------------|--------------------------------|--------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--| | Pin No. | Pin name | Description | Equivalent Circuit | | | | | | | 15 | EXT | EXT output When CTRL1 = M1, M2, H, EXT is ON V <sub>CC</sub> -0.5V/500mA | 7 V <sub>CC</sub> 2 100kΩ 100kΩ 100kΩ (SND) | | | | | | | | | | (10) | | | | | | ### **Timing Chart** Caution: The above values are obtained when typ. • How to set AUDIO output voltage AUDIO\_F is determined by internal band-gap reference voltage (typ = 1.25V). AUDIO output voltage expression $$AUDIO = (\frac{R_1}{R_2} + 1) \times 1.25[V]$$ $$\frac{R_1}{R_2} = \frac{AUDIO}{1.25} - 1$$ Set the ratio of R1 and R2 to satisfy above expression. (ex) AUDIO = 9V setting $$\frac{R_1}{R_2} = \frac{9}{1.25} - 1 = 6.2$$ $$\frac{R_1}{R_2} = \frac{24k\Omega}{3.9k\Omega} \cong 6.15$$ $$\frac{R_1}{R_2} = \frac{24k\Omega}{3.9k\Omega} \cong 6.15$$ $$AUDIO = (6.15+1) \times 1.25V \cong 8.94V$$ • ILM output voltage is similarly calculated as AUDIO output. (ex) $$ILM = 10.5V$$ setting $$\frac{R_1}{R_2} = \frac{10.5}{1.25} - 1 = 7.4$$ $$\frac{R_1}{R_2} = \frac{56k\Omega}{7.5k\Omega} \cong 7.46$$ $$ILM = (7.46 + 1) \times 1.25V \cong \boxed{10.575V}$$ Note: The above values are typical values. These values have variation among the range of their tolerances. ### HZIP15 Heat sink attachment Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat. a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs. ### b. Heat sink attachment - Use flat-head screws to attach heat sinks. - Use also washer to protect the package. - Use tightening torques in the ranges 39-59Ncm (4-6kgcm). - If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself. - Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink. - Take care a position of via hole. - Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink. - Verify that there are no press burrs or screw-hole burrs on the heat sink. - Warping in heat sinks and printed circuit boards must be no more than 0.05 mm between screw holes, for either concave or convex warping. - Twisting must be limited to under 0.05 mm. - Heat sink and semiconductor device are mounted in parallel. Take care of electric or compressed air drivers - The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm. # Heat sink gap Via hole mashine screv ### c. Silicone grease - Spread the silicone grease evenly when mounting heat sinks. - Recommends YG-6260 (Momentive Performance Materials Japan LLC) ### d. Mount - First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board. - When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang. - e. When mounting the semiconductor device to the heat sink using jigs, etc., - Take care not to allow the device to ride onto the jig or positioning dowel. - Design the jig so that no unreasonable mechanical stress is applied to the semiconductor device. ### f. Heat sink screw holes - Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used. - When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable. - When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable. - g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration. ### ORDERING INFORMATION | Device | Package | Shipping (Qty / Packing) | |---------------|------------------------------------|--------------------------| | LV56841PVD-XH | HZIP15<br>(Pb-Free / Halogen Free) | 20 / Fan-Fold | ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent reg