[’i life.augmented

STM8S007xx STM8S20xxx
Errata sheet

STM8S007xx and STM8S20xxx device limitations

Silicon identification

This errata sheet applies to revisions X, Y/6, V and W/7 of the STMicroelectronics
STM8S007xx and STM8S20xxx products.

A full list of part numbers is shown in Table 1.

The products can be identified as shown in Table 2:
e By the revision code marked below the sales type on the device package
e By the last three digits of the Internal sales type printed on the box label

Table 1. Device summary

Reference Part number

STM8S007xx STM8S007C8

STM8S207MB, STM8S207M8, STM8S207RB, STM8S207R8,
STM8S207xx STM8S207R6, STM8S207CB, STM8S207C8, STM8S207C86,

STM8S207SB, STM8S207S8, STM8S207S6, STM8S207KS8,

STM8S207K6

STM8S208MB, STM8S208M8, STM8S208RB, STM8S208R8,
STM8S208xx STM8S208R6, STM8S208CB, STM8S208C8, STM8S208C6,

STM8S208SB, STM8S208S8, STM8S208S6

Table 2. Device identification

Sales type Revision code(!) marked on device
STM8S007xx V, W/7
STM8S207xx
X, Y/l6,V, W/7

STM8S208xx

1. Refer to Appendix A: Revision code on device marking for details on how to identify the revision code on

the different packages.

December 2013

DocID16125 Rev 6 1/28

www.st.com

http://www.st.com

Contents STM8S007xx STM8S20xxx
Contents
1 Productevolutiont 4
2 Siliconlimitations i i 7
21 Corelimitations e 7
21.1 Activation level (AL) bit not functional in Haltmode 7
21.2 JRIL and JRIH instructions not available 7
21.3 Main CPU execution is not resumed after an ISR resets the AL bit7
214 Unexpected DIV/DIVW instructionresult in ISR 8
21.5 Interrupt service routine (ISR) executed with priority of main process . .. 8
2.2 System limitations 9
2.2.1 HSI RC oscillator cannot be switched offin Runmode 9
222 LSI oscillator remains on in Active-halt mode when the AWU unit uses
the HSE asinputclock 9
223 Failure in CAN communication during bootloader 9
224 RAM modified after reset by embedded bootloader 9
225 Flash / EEPROM memory is read incorrectly after wakeup from power
dOWN MOAE . ..o e 10
2.3 Timer peripheral limitations 11
2.31 Corruption of read sequence for the 16-bit counter registers 11
24 UART peripheral limitations 11
2.4.1 PE testingissuein UARTmode 1"
242 LIN mode: LIN header error when automatic resynchronization
isenabled 12
243 LIN mode: framing error with data byte 0x00 12
244 LIN mode: framing error when receiving an identifier (ID) 12
245 LIN mode: parity error when receiving an identifier (ID) 12
246 LIN mode: OR flag not correctly setin LIN mastermode 13
2.5 12C peripheral IMitationso.uuue 14
251 12C event management 14
252 Corrupted last received data in I2C Master Receiver mode 14
253 Wrong behavior of 1°C peripheral in Master mode after
misplaced STOP e 15
254 Violation of 12C “setup time for repeated START condition” parameter . 16
255 In 12C slave “NOSTRETCH” mode, underrun errors may not be detected

2/28

and may generate buserrors 16
DoclD16125 Rev 6 1S7;

STM8S007xx STM8S20xxx Contents

256 IPCPUISE MISSE\ttt 17

2.6 SPI peripheral limitations 18

261 Last bit sent is too short if the SPI is disabled during communication .. 18

2.6.2 Busy flag is not reliable when the SPI is a master simplex receiver ... 18

2.7 beCAN peripheral limitations 19
2.7.1 beCAN transmission error when Sleep mode is entered during

transmissionorreception 19

2.7.2 beCAN woken up from Sleep mode with automatic wakeup interrupt . . 19

273 beCAN time triggered communication mode not supported 19
274 beCAN transmitted data corruption 20
27.5 beCANreaderrorinslowmode 20
2.7.6 Write in beCAN paged registersignored 20
2.8 Miscellaneous 23
2.8.1 PWM output available on two different ports (PC4 and PD7) when
TIM1_CH4 useroptionisset 23
Appendix A Revision code ondevicemarking 24
3 Revision history i i i e 27

3

DocID16125 Rev 6 3/28

Product evolution

STM8S007xx STM8S20xxx

4/28

Product evolution

Table 3 gives a summary of the fix status.

Legend for Table 3: A = workaround available; N = no workaround available; P = partial

workaround available,

> and grayed = fixed.

Table 3. Product evolution summary

. L RevY/6,V,
Section Limitation Rev X
w/7
Section 2.1.1: Activation level (AL) bit not
; . N N
functional in Halt mode
Section 2.1.2: JRIL and JRIH instructions
. N N
not available
) . Section 2.1.3: Main CPU execution is not
Sect!oq 2‘.1' Core resumed after an ISR resets the AL bit . A
limitations
Section 2.1.4: Unexpected DIV/DIVW
; .) A A
instruction result in ISR
Section 2.1.5: Interrupt service routine
(ISR) executed with priority of main A A
process
Section 2.2.1: HSI RC oscillator cannot N N
be switched off in Run mode
Section 2.2.2: LSl oscillator remains on in
Active-halt mode when the AWU unit uses N N
Section 2.1.5: Interrupt the HSE as input clock
service routine (ISR) | Section 2.2.3: Failure in CAN N)
executed with priority | communication during bootloader
of main process Section 2.2.4: RAM modified after reset N)
by embedded bootloader
Section 2.2.5: Flash / EEPROM memory
is read incorrectly after wakeup from A A
power down mode
Section 2.3: Timer | Section 2.3.1: Corruption of read N N
peripheral limitations | sequence for the 16-bit counter registers
DoclD16125 Rev 6 Kys

STM8S007xx STM8S20xxx

Product evolution

3

Table 3. Product evolution summary (continued)

. o RevY/6,V,
Section Limitation Rev X
wr7
Section 2.4.1: PE testing issue in UART N N
mode
Section 2.4.2: LIN mode: LIN header error
when automatic resynchronization is N -
enabled
] . Section 2.4.3: LIN mode: framing error A A
Section 2.3: Timer | with data byte 0x00
peripheral limitations
Section 2.4.4: LIN mode: framing error A A
when receiving an identifier (ID)
Section 2.4.5: LIN mode: parity error A A
when receiving an identifier (ID)
Section 2.4.6: LIN mode: OR flag not A A
correctly set in LIN master mode
Section 2.5.1: °C event management A A
Section 2.5.2: Corrupted last received A A
data in PC Master Receiver mode
Section 2.5.3: Wrong behavior of PC
peripheral in Master mode after A A
misplaced STOP
Section 2.5: PC
peripheral limitations | Section 2.5.4. Violation of PC “setup time A A
for repeated START condition” parameter
Section 2.5.5: In IPC slave
“‘NOSTRETCH” mode, underrun errors
A A
may not be detected and may generate
bus errors
Section 2.5.6: PC pulse missed A -
Section 2.6.1: Last bit sent is too short if
o . o A A
Section 2.6: SPI the SPI is disabled during communication
peripheral limitations | section 2.6.2: Busy flag is not reliable N N
when the SPI is a master simplex receiver
DocID16125 Rev 6 5/28

Product evolution

STM8S007xx STM8S20xxx

6/28

Table 3. Product evolution summary (continued)

. L RevY/6,V,
Section Limitation Rev X
wr7

Section 2.7.1: beCAN transmission error
when Sleep mode is entered during A A
transmission or reception
Section 2.7.2: beCAN woken up from
Sleep mode with automatic wakeup A A
interrupt

Section 2.7: beCAN | Section 2.7.3: beCAN time triggered N N

peripheral limitations | communication mode not supported
Section 2.7.4: beCAN transmitted data A)
corruption
Section 2.7.5: beCAN read error in slow A A
mode
Section 2.7.6: Write in beCAN paged A A
registers ignored

Section 2.8: Section 2.8.1: PWM output available on
. - two different ports (PC4 and PD7) when N N
Miscellaneous

TIM1_CH4 user option is set

DocID16125 Rev 6

3

STM8S007xx STM8S20xxx Silicon limitations

2

2.1

2141

21.2

213

3

Silicon limitations

Core limitations

Activation level (AL) bit not functional in Halt mode

Description

The AL bit is not supported in Halt mode. In particular, when the AL bit of the CFG_GCR
register is set, the CPU does not return to Halt mode after exiting an interrupt service routine
(ISR). It returns to the main program and executes the next instruction after the HALT
instruction. The AL bit is supported correctly in WFI mode.

Workaround

No workaround available.

No fix is planned for this limitation.

JRIL and JRIH instructions not available

Description

The JRIL (jump if port INT pin = 0) and JRIH (jump if port INT pin = 1) instructions are not
supported by the devices covered by this errata sheet. These instructions perform
conditional jumps: JRIL and JRIH jump if one of the external interrupt lines is low or high
respectively.

In the devices covered by this errata sheet, JRIL is equivalent to an unconditional jump and
JRIH is equivalent to NOP. For further details on these instructions, see the STM8 CPU
programming manual (PM0044).

Workaround

No workaround available.

No fix is planned for this limitation.

Main CPU execution is not resumed after an ISR resets the AL bit

Description

If the CPU is in wait for interrupt state and the AL bit is set, the CPU returns to wait for
interrupt state after executing an ISR. To continue executing the main program, the AL bit
must be reset by the ISR. When AL is reset just before exiting the ISR, the CPU may remain
stalled.

Workaround

Reset the AL bit at least two instructions before the IRET instruction.

No fix is planned for this limitation.

DocID16125 Rev 6 7/28

Silicon limitations STM8S007xx STM8S20xxx

21.4

21.5

8/28

Unexpected DIV/DIVW instruction result in ISR

Description

In very specific conditions, a DIV/DIVW instruction may return a false result when executed
inside an interrupt service routine (ISR). This error occurs when the DIV/DIVW instruction is
interrupted and a second interrupt is generated during the execution of the IRET instruction
of the first ISR. Under these conditions, the DIV/DIVW instruction executed inside the
second ISR, including function calls, may return an unexpected result.

The applications that do not use the DIV/DIVW instruction within ISRs are not impacted.

Workaround 1

If an ISR or a function called by this routine contains a division operation, the following
assembly code should be added inside the ISR before the DIV/DIVW instruction:
push cc

pop a

and a, #$BF

push a

pop cc

This sequence should be placed by C compilers at the beginning of the ISR using
DIV/DIVW. Refer to your compiler documentation for details on the implementation and
control of automatic or manual code insertion.

Workaround 2

To optimize the number of cycles added by workaround 1, you can use this workaround
instead. Workaround 2 can be used in applications with fixed interrupt priorities, identified at
the program compilation phase:

push #value
pop cc

where bits 5 and 3 of #value have to be configured according to interrupt priority given by 11
and 10, and bit 6 kept cleared.

In this case, compiler workaround 1 has to be disabled by using compiler directives.

No fix is planned for this limitation.

Interrupt service routine (ISR) executed with priority of main process

Description

If an interrupt is cleared or masked when the context saving has already started, the
corresponding ISR is executed with the priority of the main process. The next interrupt
request can interrupt execution of the service routine

Workaround

At the beginning of the interrupt routine, change the current priority level in the CCR register
by software.

3

DocID16125 Rev 6

STM8S007xx STM8S20xxx Silicon limitations

2.2

2.21

2.2.2

2.2.3

2.2.4

3

System limitations

HSI RC oscillator cannot be switched off in Run mode

Description

The internal 16 MHz RC oscillator cannot be switched off in run mode, even if the HSIEN bit
is programmed to 0.

Workaround

No workaround available. No fix planned.

LSI oscillator remains on in Active-halt mode when the AWU unit uses
the HSE as input clock

Description

When the auto wake-up unit (AWU) uses the high speed external clock (HSE) divided by the
prescaler (clock source enabled by setting the CKAWUSEL option bit), the LSI RC oscillator
is not switched off when the device operates in Active Halt mode with the main voltage
regulator (MVR) on. This causes negligible extra power consumption compared to the total
consumption of the MCU in Active Halt mode with the MVR on.

Workaround

No workaround available. No fix planned.

Failure in CAN communication during bootloader

Description

The CAN filter registers are not initialized by the bootloader. This can lead to failure during
communication with the bootloader.

Workaround

No workaround available.

RAM modified after reset by embedded bootloader

Description

After each reset, the byte located at RAM address 0x99 is modified by the embedded
bootloader even if the bootloader is disabled by option byte. So the RAM content at address
0x99 is not maintained after reset. The limitation is present only in device revision X.

Workaround

No workaround available. Do not use byte in RAM at address 0x99 to store variables which
should be unchanged after device reset.

DocID16125 Rev 6 9/28

Silicon limitations STM8S007xx STM8S20xxx

2.2.5

Note:

10/28

Flash / EEPROM memory is read incorrectly after wakeup from power
down mode

Description

If Flash/EEPROM memory has been put in power down mode (Ippq), the first read access
after wakeup could return incorrect content when fopy is greater than 250 kHz + 5% and the
number of wait states is configured to 0.

By default, the Flash/EEPROM memory is put in Ippq mode when the MCU enters Halt
mode and depending on the FLASH_CR1 register settings made by software, the
Flash/EEPROM may be forced to Ippq mode during active halt mode.

As a consequence, the following behavior may be seen on some devices:

e After wakeup from Low power mode, with Flash memory in Ippq mode, program
execution gets lost due to an incorrect read of the vector table.

e Code reads an incorrect value from Flash/EEPROM memory, when forced in Ippq
mode.

e Reset could be forced by an illegal opcode execution due to incorrect read of
instruction.

The use of the watchdog helps the application to recover in case of failure.

Workaround 1

Keep the Flash/EEPROM in operating mode when MCU is put in Halt mode or Active-halt
mode. This is done by configuring both the HALT and AHALT bits in the FLASH_CR1
register before executing a HALT instruction to prevent the Flash/EEPROM entering Ippq
mode.

Set HALT (bit 3) to “1”:
0: Flash in power-down mode when MCU is in Halt mode
1: Flash in operating mode when MCU is in Halt mode
Keep AHALT (bit 2) at ‘0’
0: Flash in operating mode when MCU is in Active-halt mode
1: Flash in power-down when MCU is in Active-halt mode

Please refer to the datasheet for details on the impact on current consumption and wakeup
time.

Workaround 2

Reduce fcpy frequency to 250 kHz or lower before entering Low power mode to ensure
correct Flash memory wakeup. This may be done using the clock divider (CPUDIV[2:0] bits
in the CLK_CKDIVR register). The clock divider can be reconfigured back to its previous
state by software after wakeup.

This is illustrated by the following code example, assuming no divider is used in the
application by default.
CLK_CKDIVR = 0x06;
_asm("HALT") ;
CLK_CKDIVR = 0x00;

3

DocID16125 Rev 6

STM8S007xx STM8S20xxx Silicon limitations

2.3

2.31

24

241

3

The interrupt service routine executed after wakeup could either stay at the slower clock
speed, or reconfigure the clock setting. Care has to be taken to restore the previous clock
divider setting at the end of interrupt routines when modifying the clock divider.

Workaround 3
Set the number of wait states to 1.
This may be done by setting OPT7 to 0x01.

Timer peripheral limitations

Corruption of read sequence for the 16-bit counter registers

Description

An 8-bit buffer is implemented for reading the 16-bit counter registers. Software must read
the MS byte first, after which the LS byte value is buffered automatically (see Figure 7). This
buffered value remains unchanged until the 16-bit read sequence is completed.

When any multi-cycle instruction precedes the read of the LSB, the content of the buffer is
lost and the second read returns the immediate content of the counter directly.

Figure 1. 16-bit read sequence for the counter (TIMx_CNTR)

Beginning of the sequence

Read LS byte
Atto MS byte > is buffered
I
r Other '
Linstructions |
v
Read Returns the buffered

At10+Dt| LS byte T |LS byte value at 0

Sequence completed

Workaround
Do not use multi-cycle instructions before reading the LSB.

No fix is planned for this limitation.

UART peripheral limitations

PE testing issue in UART mode

Description

When the RXNE flag is not polled, the device is in overrun condition and the PE flag does
not rise in case of a parity error. The flag rises only for the last data which have been
correctly received.

DocID16125 Rev 6 11/28

Silicon limitations STM8S007xx STM8S20xxx

2.4.2

243

24.4

2.4.5

12/28

Workaround

No workaround available.

No fix is planned for this limitation.

LIN mode: LIN header error when automatic resynchronization
is enabled
Description

If UART3 is configured in LIN slave mode (LSLV bit set in UART3_CRG6 register) and the
automatic resynchronization is enabled (LASE bit set in UART3_CR®6), the LHE flag may be
set instead of LHDF flag when receiving a valid header.

Workaround

No workaround available.

LIN mode: framing error with data byte 0x00

Description

If the UART3 interface is configured in LIN slave mode, and the active mode with break
detection length is set to 11 (LBDL bit of UART3_CRA4 register set to 1), FE and RXNE flags
are not set when receiving a 0x00 data byte with a framing error, followed by a recessive
state. This occurs only if the dominant state length is between 9.56 and 10.56 times the
baud rate.

Workaround

The LIN software driver can handle this exceptional case by implementing frame timeouts to
comply with the LIN standard. This method has been implemented in ST LIN 2.1 driver
package which passed the LIN compliance tests.

LIN mode: framing error when receiving an identifier (ID)

Description

If an ID framing error occurs when the UARTS3, configured in LIN mode, is in active mode,
both the LHE and LHDF flags are set at the end of the LIN header with an ID framing error.

Workaround

The LIN software driver can handle this case by checking both the LHE and LHDF flags
upon header reception.

No fix is planned for this limitation.

LIN mode: parity error when receiving an identifier (ID)

Description

If an ID parity error occurs, the UART3, configured in LIN mode, wakes up from mute mode
and both LHE and LHDF are set at the end of the LIN header with parity error. The PE flag is
also set.

DoclD16125 Rev 6 KYI

STM8S007xx STM8S20xxx Silicon limitations

2.4.6

3

Workaround

The LIN software driver can handle this case by checking all flags upon header reception.

No fix is planned for this limitation.

LIN mode: OR flag not correctly set in LIN master mode

Description

When the UART operates in LIN master mode, the OR flag is not set if an overrun condition
occurs. This is valid for all UARTs (1 to 3).

Workaround

The LIN software driver can detect this case through a LIN protocol error.

No fix is planned for this limitation.

DocID16125 Rev 6 13/28

Silicon limitations STM8S007xx STM8S20xxx

2.5

2.5.1

2.5.2

14/28

12Cc peripheral limitations

I2C event management

Description

As described in the 12C section of the STM8S and STM8A microcontroller reference manual
(RMO0016), the application firmware has to manage several software events before the
current byte is transferred. If the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events
are not managed before the current byte is transferred, problems may occur such as
receiving an extra byte, reading the same data twice, or missing data.

Workaround

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events cannot be managed
before the current byte transfer, and before the acknowledge pulse when the ACK control bit
changes, it is recommended to use 12c interrupts in nested mode and to make them
uninterruptible by increasing their priority to the highest priority in the application.

No fix is planned for this limitation.

Corrupted last received data in I2C Master Receiver mode

Conditions

In Master Receiver mode, when the communication is closed using method 2, the content of
the last read data may be corrupted. The following two sequences are concerned by the
limitation:
e Sequence 1: transfer sequence for master receiver when N = 2

a) BTF =1 (Data N-1in DR and Data N in shift register)

b) Program STOP =1

c) Read DR twice (Read Data N-1 and Data N) just after programming the STOP bit.
e Sequence 2: transfer sequence for master receiver when N > 2

a) BTF =1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK=0

c¢) Read Data N-2in DR

d) Program STOP bit to 1

e) Read Data N-1.

3

DocID16125 Rev 6

STM8S007xx STM8S20xxx Silicon limitations

2.5.3

3

Description

The content of the shift register (data N) is corrupted (data N is shifted 1 bit to the left) if the
user software is not able to read data N-1 before the STOP condition is generated on the
bus. In this case, reading data N returns a wrong value.

Workarounds

e Workaround 1
— Sequence 1
When sequence 1 is used to close communication using method 2, mask all active
interrupts between STOP bit programming and Read data N-1.
— Sequence 2
When sequence 2 is used to close communication using method 2, mask all active
interrupts between Read data N-2, STOP bit programming and Read data N-1.
e Workaround 2

Manage 12C RxNE and TxE events with interrupts of the highest priority level, so that
the condition BTF = 1 never occurs.

Wrong behavior of I2C peripheral in Master mode after
misplaced STOP

Description

The I2C peripheral does not enter Master mode properly if a misplaced STOP is generated
on the bus. This can happen in the following conditions:

e If a void message is received (START condition immediately followed by a STOP): the
BERR (bus error) flag is not set, and the 12C peripheral is not able to send a START
condition on the bus after writing to the START bit in the 12C_CR2 register.

e Inthe other cases of a misplaced STOP, the BERR flag is set in the IC2_CR2 register.

If the START bit is already set in 12C_CR2, the START condition is not correctly
generated on the bus and can create bus errors.

Workaround

In the 12C standard, it is not allowed to send a STOP before the full byte is transmitted (8 bits
+ acknowledge). Other derived protocols like CBUS allow it, but they are not supported by
the I12C peripheral.

In case of noisy environment in which unwanted bus errors can occur, it is recommended to
implement a timeout to ensure that the SB (start bit) flag is set after the START control bit is
set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST bit
in the 12C_CR2 control register. The 12C peripheral should be reset in the same way if a
BERR is detected while the START bit is set in 12C_CR2.

No fix is planned for this limitation.

DocID16125 Rev 6 15/28

Silicon limitations STM8S007xx STM8S20xxx

2.5.4

2.5.5

16/28

Violation of 1°C “setup time for repeated START condition” parameter

Description

In case of a repeated Start, the “setup time for repeated START condition” parameter
(named tgy(sTa) in the datasheet and Tsu:sta in the 12C specifications) may be slightly
violated when the 12C operates in Master Standard mode at a frequency ranging from 88 to
100 kHz. tgy(sTa) Minimum value may be 4 ps instead of 4.7 ys.

The issue occurs under the following conditions:

1. Thel?C peripheral operates in Master Standard mode at a frequency ranging from 88
to 100 kHz (no issue in Fast mode)

2. and the SCL rise time meets one of the following conditions:

— The slave does not stretch the clock and the SCL rise time is more than 300 ns
(the issue cannot occur when the SCL rise time is less than 300 ns).

— orthe slave stretches the clock.

Workaround

Reduce the frequency down to 88 kHz or use the I2C Fast mode if it is supported by the
slave.

In IC slave “NOSTRETCH” mode, underrun errors may not be detected
and may generate bus errors

Description

The data valid time (typ.paT; tvp:ack) described by the I°C specifications may be violated as
well as the maximum current data hold time (typ.pat) under the conditions described below.
In addition, if the data register is written too late and close to the SCL rising edge, an error
may be generated on the bus: SDA toggles while SCL is high. These violations cannot be
detected because the OVR flag is not set (no transmit buffer underrun is detected).

This issue occurs under the following conditions:

1. The I°C peripheral operates In Slave transmit mode with clock stretching disabled
(NOSTRETCH=1)

2. and the application is late to write the DR data register, but not late enough to set the
OVR flag (the data register is written before the SCL rising edge).

Workaround

If the master device supports it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the 12C_CR1 register.

If the master device does not support it, ensure that the write operation to the data register
is performed just after TXE or ADDR events. You can use an interrupt on the TXE or ADDR
flag and boost its priority to the higher level.

Using the “NOSTRETCH” mode with a slow 12C bus speed can prevent the application from
being late to write the DR register (second condition).

3

DocID16125 Rev 6

STM8S007xx STM8S20xxx Silicon limitations

Note:

2.5.6

3

The first data to be transmitted must be written into the data register after the ADDR flag is
cleared, and before the next SCL rising edge, so that the time window to write the first data
into the data register is less than t; gy,

If this is not possible, a possible workaround can be the following:

1. Clear the ADDR flag

2. Wait for the OVR flag to be set

3. Clear OVR and write the first data.

The time window for writing the next data is then the time to transfer one byte. In that case,
the master must discard the first received data.

I2C pulse missed

Description

When the I2C interface is used for long transmit/receive transactions, the MCU may return a
NACK somewhere during the transaction instead of returning an ACK for all data. The
received data may also be corrupted. In Master mode the 12C may not detect an incoming
ACK. This is due to a weakness in the noise filter of the I/O pad which in certain conditions
may cause the STM8 12C to miss a pulse.

The workaround described below is not a clean solution. However, the limitation is fixed in
revision Y/6 and W/7.

Workaround

Since data corruption is caused by noise generated by the CPU, CPU activity should be
minimized during data reception and/or transmission. This is done by performing physical
data transmission (Master mode) and reception (slave mode) in WFI state (wait for
interrupt).

To allow the device to be woken up from WFI, I2C transmission and reception routines must
be implemented through interrupt routines instead of polling mechanisms. Receive and
transmit interrupts (received data processing) must be triggered only by the BTF bit flag
(byte transfer finished) in the 12C_SR1 register. This flag indicates that the 12C is in
stretched state (data transfers are stretched on the bus).

Clock stretching must be enabled to allow data transfers from the slave to be stopped and to
allow the CPU to be woken up to read the received byte.

To recover from possible errors, periodically check if the I2C does not remain in busy state
for too long (BUSY bit set in 12C_SR3 register). If so, it should be reinitialized.

Example of 12C slave code:
/]

void main ()

{

Init_I2C(); // init I2C to use interrupts: ITBUFEN=0, ITEVTEN=1,
ITERREN=1
while (1)
DoclD16125 Rev 6 17/28

Silicon limitations STM8S007xx STM8S20xxx

2.6

2.6.1

2.6.2

Note:

18/28

SPI peripheral limitations

Last bit sent is too short if the SPI is disabled during communication

Description

When the SPI interface operates in master mode and the baud rate generator prescaler is
equal to 2, the SPI is disabled during ongoing communications, and the data and clock
output signals are switched off at the last strobing edge of the SPI clock.

Consequently, the length of the last bit is out of range and its reception on the bus is not
ensured.

Workaround

Check if a communication is ongoing before disabling the SPI interface. This can be done
by monitoring the BSY bit in the SPI_SR register.

No fix is planned for this limitation.

Busy flag is not reliable when the SPI is a master simplex receiver

Description

When the master is receiver only, it provides the clock immediately after setting the SPE bit
in the SPI_CR1 register. In this case, the clock is provided until the SPE bit is disabled,
meaning that the SPI is always busy because it is in receiver mode only and continuously
receives data from the clock. There is no need to read the BUSY bit to know the SPI status
because as soon the SPI is enabled, it is BUSY.

The SPE bit has no meaning when the SPI is in master receiver only mode.
Workaround

No workaround available.

No fix is planned for this limitation.

3

DocID16125 Rev 6

STM8S007xx STM8S20xxx Silicon limitations

2.7

2.71

2.7.2

2.7.3

3

beCAN peripheral limitations

beCAN transmission error when Sleep mode is entered during
transmission or reception
Description

If beCAN Sleep operating mode entry is requested while a transmission or reception is
ongoing, or a transmission request is pending, the CAN_TX pin may have a spurious
behavior, incompliant with the CAN protocol in case an error occurs on the bus.

No error frame will be sent and the device will enter Sleep mode.

Workaround
Before requesting Sleep mode, request Initialization mode and wait until Initialization mode
is entered.

beCAN woken up from Sleep mode with automatic wakeup interrupt

Description

Waking up the beCAN from Sleep mode using the automatic wakeup interrupt triggers an
interrupt on each CAN RXx falling edge until the bus is idle.

Workaround

To have a wakeup interrupt triggered only on the first falling edge of the CAN Rx pin,
perform the following actions:

1. Disable the automatic wakeup interrupt
2. Clear the WKUI flag
3. Disable the Sleep mode in the ISR

No fix planned.

beCAN time triggered communication mode not supported

Description

The time triggered communication mode described in the STM8A reference manual
(RMO0016) is not supported.

TTCM bit must be kept at 0 in the CAN_MCR register (time triggered communication mode
disabled), and TGT bit in CAN_MDLCR must be initialized to 0 (CAN_MTSRH and
CAN_MTSRL registers not sent).

Workaround

No workaround available.

No fix is planned for this limitation.

DocID16125 Rev 6 19/28

Silicon limitations STM8S007xx STM8S20xxx

2.7.4

2.7.5

2.7.6

Note:

20/28

beCAN transmitted data corruption

Description

The TGT bit can be set to 1 (CAN_MTSRH and CAN_MTSRL registers sent) even if the
device is not in time triggered communication mode (TTCM set to 1). This is due to the fact
that the CAN_MDLCR register reset value is undefined, causing the TGT bit to be set to 1
whatever the value of TTCM. This leads to the corruption of last two data bytes sent.

Workaround

TGT bitin CAN_MDLCR must be initialized to 0 (CAN_MTSRH and CAN_MTSRL registers
not sent).

beCAN read error in slow mode

Description

The read byte may be corrupted when the beCAN is in slow mode and a read operation is
performed while a transmission is ongoing. This happens because the transmission
mailboxes and the receive FIFOs share the same address/data lines for read and write
operations.

Workaround

To prevent this problem from occurring, the CPU clock must be the master clock
(CLK_CKDIVR[2:0] = 000b) when the user application starts reading the FIFO (CPU clock
divider changed to /1). After the FIFO read operation is complete, the CPU clock divider
(slow mode) should be applied again.

No fix is planned for this limitation.

Write in beCAN paged registers ignored

Description

In very specific conditions, a write to the beCAN paged registers may be ignored. This
occurs when the CPU is writing twice or more into beCAN paged registers in consecutive
master clock cycles, and during the second or further writes, the CAN 2.0B active core is
accessing (read or write) one of the paged registers.

A typical case is when the CPU is writing constants into paged registers (typically a mailbox
for transmission) while the CAN 2.0B active core is reading the filters during a frame
reception, or writing the FIFO after a frame reception. The beCAN paged registers range is
from address 0x5428 to address 0x5437.

CAN 2.0B active core does not access the paged registers as long as the beCAN is in
initialization mode. Therefore the issue cannot occur while the software is writing into the
paged registers to initialize the be CAN (filter configuration, for example).

The CPU write into two paged registers in two consecutive master clock cycles may only
happen in case of consecutive single-cycle load and transfer instructions or single-cycle bit
operation instructions, when the destination is an address within the range 0x5428 to
0x5437 inside the beCAN peripheral. The instructions are single-cycle if the source is a
constant (embedded in instruction opcode) or in the A accumulator (when the same value
has to be stored in two or more CAN registers).

DoclD16125 Rev 6 KYI

STM8S007xx STM8S20xxx Silicon limitations

3

List of instructions:
MOV longmem, #byte ; LD longmem, A ; CLR longmem

Examples:

e Consecutive MOV instructions with immediate addressing mode
MOV 0x5429, #0x08

MOV 0x542a, #0x0d

MOV 0x542b, #0x40

e Consecutive LD instructions with A register as source

LD 0x542d, A

LD 0x542e, A

e CLRinstruction followed by another single-cycle instruction
CLR 0x542d

MOV 0x542e, #0x40

e Mix of single-cycle instructions

LD 0x5429, A

MOV 0x542a, #0x0d

Consecutive single-cycle bit instruction BSET, BRST, BCPL might also generate the case.
List of instructions:
BSET longmem, n ; BRES longmem, n ; BCPL longmem, n

Another very unlikely case is indirect or indexed addressing with beCAN address loaded in
X orY registers, which also generates single-cycle instructions.
List of instructions:

LD (X), A ; LD (shortoff,X),A ; LD (longoff,X),A ; LD (Y), A ; LD (shortoff,
Y) ; LD (longoff, Y) ; CLR (X) ; CLR (shortoff,X) ; CLR (longoff,X) ; CLR
(Y) ; CLR (shortoff,Y) ; CLR (longoff,Y) ; CLR (shortoff, SP)

This can also happen with a single 2-cycle LDW instruction, if two consecutive registers are
written with a 16-bit data, with X or Y register as source.

List of instructions:
LDW longmem, X ; LDW longmem, Y

Example:
LDW 0x542a, X ; with X containing 0x0d40.

DocID16125 Rev 6 21/28

Silicon limitations STM8S007xx STM8S20xxx

22/28

The issue may happen typically if the software is filling paged registers with constants.

Example:

#define MY_ID (unsigned int) 0x0350
[...]

CAN_MDLCR = 0x08;

CAN_MIDR1l = (MY_ID >> 6) & Ox1F;
CAN MIDR2 = (MY_ID << 2) & OxFC;

This generates the following code:

35085429 mov 0x5429, #8
350d542a mov 0x542a, #13
3540542b mov 0x542b, #64

If the beCAN paged registers are not written with constants, and if beCAN paged registers
are written with the value of an 8-bit variable, this is very unlikely to fall into one of these
cases, as either 2-cycle instructions are generated by the compiler or an additional
instruction is inserted between two beCAN accesses (loading the variable into the A
accumulator).

Impact on application

When all the specific conditions are met, a corrupted frame may be sent to the CAN bus.

Workaround

In case you need to write consecutively into paged registers, insert a NOP instruction in
between each write. You can make use of inline assembly in C code.

Example:

#define MY_ID (unsigned int) 0x0350

[..]
CAN_P1 = 0x08;

_asm(nop") ;
CAN_P2 = (MY_ID >> 6) & Ox1F;
_asm(nop") ;
CAN_P3 = (MY_ID << 2) & OXFC;

No fix is planned for this limitation.

3

DocID16125 Rev 6

STM8S007xx STM8S20xxx Silicon limitations

2.8 Miscellaneous

2.8.1 PWM output available on two different ports (PC4 and PD7) when
TIM1_CH4 user option is set
Description

When the TIM1_CH4 alternate function remapping option is set (via option byte AFR4 bit),
pulse-width modulation (PWM) output is available on both PC4 and PD7.

The TIM1_CH4 option is reserved only for 44 pin packages where PC4 is not present.

Workaround

No workaround available.

No fix is planned for this limitation.

DocID16125 Rev 6 23/28

3

Revision code on device marking STM8S007xx STM8S20xxx

Appendix A Revision code on device marking

The following figures show the standard marking compositions for the device packages.
Only the Additional information field containing the revision code is shown.

Figure 2. LQFP32 top package view

PACKAGE TOP SIDE LEGEND

- Unmarkable surface

|:| Marking composition field

Additional information

/ including the revision code
|

o O

Figure 3. LQFP44 top package view

MS18678v1

PACKAGE TOP SIDE LEGEND

O

- Unmarkable surface

|:| Marking composition field

Additional information

/ including the revision code

O

MS18679v1

3

24/28 DocID16125 Rev 6

STM8S007xx STM8S20xxx Revision code on device marking

Figure 4. LQFP48 top package view

PACKAGE TOP SIDE LEGEND

- Unmarkable surface

|:| Marking composition field

Additional information
including the revision code

MS18680v1

Figure 5. LQFP64 10x10 top package view

PACKAGE TOP SIDE LEGEND

- Unmarkable surface

|:| Marking composition field

Additional information
including the revision code

MS18681v1

3

DocID16125 Rev 6 25/28

Revision code on device marking STM8S007xx STM8S20xxx

Figure 6. LQFP64 14x14 top package view

PACKAGE TOP SIDE LEGEND

- Unmarkable surface

|:| Marking composition field

O

Additional information
including the revision code

MS18682v1

_____________7/{_________

Figure 7. LQFP80 top package view

PACKAGE TOP SIDE LEGEND

- Unmarkable surface

O

|:| Marking composition field

Additional information
including the revision code

MS18683v1

_____________7/{_________

3

26/28 DocID16125 Rev 6

STM8S007xx STM8S20xxx

Revision history

3

4

Revision history

Table 4. Document revision history

Date

Revision

Changes

07-Jul-2010

1

Initial release

07-Mar-2011

Added revision Y/6.

Added Section 2.1.4: Unexpected DIV/DIVW instruction result in ISR
and Section 2.4.3: LIN mode: framing error with data byte 0x00.

Updated Section 2.5: ’c peripheral limitations and Appendix A:
Revision code on device marking.

Removed all references to UART2.
Restructured document and changed layout of Table 3.

04-Jul-2011

Added revision W/7.

Updated Section 2.5.6: ’c pulse missed and Section 2.7.4: beCAN
transmitted data corruption.

19-Mar-2012

Added reference STM8S007xx throughout the document.
Added Section 2.7.6: Write in beCAN paged registers ignored.

14-Mar-2013

Updated Table 1: Device summary.

Modified Section 2.7.1: beCAN transmission error when Sleep mode
is entered during transmission or reception.

06-Dec-2013

Added Section 2.1.5: Interrupt service routine (ISR) executed with
priority of main process

Added Section 2.2.4: RAM modified after reset by embedded
bootloader

Added Section 2.2.5: Flash / EEPROM memory is read incorrectly
after wakeup from power down mode.

Added Section 2.3.1: Corruption of read sequence for the 16-bit
counter registers

DocID16125 Rev 6 27/28

STM8S007xx STM8S20xxx

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

3

28/28 DocID16125 Rev 6

	Table 1. Device summary
	Table 2. Device identification
	1 Product evolution
	Table 3. Product evolution summary

	2 Silicon limitations
	2.1 Core limitations
	2.1.1 Activation level (AL) bit not functional in Halt mode
	2.1.2 JRIL and JRIH instructions not available
	2.1.3 Main CPU execution is not resumed after an ISR resets the AL bit
	2.1.4 Unexpected DIV/DIVW instruction result in ISR
	2.1.5 Interrupt service routine (ISR) executed with priority of main process

	2.2 System limitations
	2.2.1 HSI RC oscillator cannot be switched off in Run mode
	2.2.2 LSI oscillator remains on in Active-halt mode when the AWU unit uses the HSE as input clock
	2.2.3 Failure in CAN communication during bootloader
	2.2.4 RAM modified after reset by embedded bootloader
	2.2.5 Flash / EEPROM memory is read incorrectly after wakeup from power down mode

	2.3 Timer peripheral limitations
	2.3.1 Corruption of read sequence for the 16-bit counter registers
	Figure 1. 16-bit read sequence for the counter (TIMx_CNTR)

	2.4 UART peripheral limitations
	2.4.1 PE testing issue in UART mode
	2.4.2 LIN mode: LIN header error when automatic resynchronization is enabled
	2.4.3 LIN mode: framing error with data byte 0x00
	2.4.4 LIN mode: framing error when receiving an identifier (ID)
	2.4.5 LIN mode: parity error when receiving an identifier (ID)
	2.4.6 LIN mode: OR flag not correctly set in LIN master mode

	2.5 I2C peripheral limitations
	2.5.1 I2C event management
	2.5.2 Corrupted last received data in I2C Master Receiver mode
	2.5.3 Wrong behavior of I2C peripheral in Master mode after misplaced STOP
	2.5.4 Violation of I2C “setup time for repeated START condition” parameter
	2.5.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected and may generate bus errors
	2.5.6 I2C pulse missed

	2.6 SPI peripheral limitations
	2.6.1 Last bit sent is too short if the SPI is disabled during communication
	2.6.2 Busy flag is not reliable when the SPI is a master simplex receiver

	2.7 beCAN peripheral limitations
	2.7.1 beCAN transmission error when Sleep mode is entered during transmission or reception
	2.7.2 beCAN woken up from Sleep mode with automatic wakeup interrupt
	2.7.3 beCAN time triggered communication mode not supported
	2.7.4 beCAN transmitted data corruption
	2.7.5 beCAN read error in slow mode
	2.7.6 Write in beCAN paged registers ignored

	2.8 Miscellaneous
	2.8.1 PWM output available on two different ports (PC4 and PD7) when TIM1_CH4 user option is set

	Appendix A Revision code on device marking
	Figure 2. LQFP32 top package view
	Figure 3. LQFP44 top package view
	Figure 4. LQFP48 top package view
	Figure 5. LQFP64 10x10 top package view
	Figure 6. LQFP64 14x14 top package view
	Figure 7. LQFP80 top package view

	3 Revision history
	Table 4. Document revision history

