
October 2016 DocID028202 Rev 4 1/33

1

STM32F469xx and STM32F479xx
Errata sheet

STM32F469xx and STM32F479xx line limitations

Silicon identification

This errata sheet applies to the revision A of STMicroelectronics STM32F469xx and
STM32F479xx microcontrollers.

The STM32F469xx and STM32F479xx devices feature an ARM® 32-bit Cortex®-M4 core
with FPU, for which an errata notice is also available (see Section 1 for details).

The full list of part numbers is shown in Table 2. The products are identifiable as shown in
Table 1:

• by the revision code marked below the order code on the device package

• by the last three digits of the Internal order code printed on the box label

Table 1. Device identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the RM0386
STM32F4xx reference manual for details on how to find the revision code).

Order code Revision code marked on device(2)

2. Refer to the device datasheets for details on how to identify the revision code and the date code on the
different packages.

STM32F469xx, STM32F479xx “A”

Table 2. Device summary

Reference Part numbers

STM32F469xx

STM32F469AE, STM32F469AG, STM32F469AI
STM32F469BE, STM32F469BG, STM32F469BI

STM32F469IE, STM32F469IG, STM32F469II
STM32F469NE, STM32F469NG, STM32F469NI

STM32F479xx

STM32F479AI, STM32F479AG
STM32F479BI, STM32F479BG
STM32F479II, STM32F479IG

STM32F479NI, STM32F479NG

www.st.com

http://www.st.com

Contents STM32F469xx and STM32F479xx

2/33 DocID028202 Rev 4

Contents

1 ARM® 32-bit Cortex®-M4 with FPU limitations . 6

1.1 Cortex®-M4 interrupted loads to stack pointer can cause
erroneous behavior . 6

1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used . 7

2 STM32F469xx and STM32F479xx silicon limitations 8

2.1 System limitations .11

2.1.1 Debugging Stop mode and system tick timer . 11

2.1.2 Debugging Sleep/Stop mode with WFE/WFI entry 11

2.1.3 Full JTAG configuration without NJTRST pin cannot be used 11

2.1.4 MPU attribute to RTC and IWDG registers could be managed
incorrectly . 12

2.1.5 Delay after an RCC peripheral clock enabling . 12

2.1.6 Internal noise impacting the ADC accuracy . 12

2.1.7 Wakeup from Standby mode with RTC . 13

2.1.8 Data Cache might be corrupted during Flash Read While Write
operation . 13

2.2 RTC limitations . 14

2.2.1 Spurious tamper detection when disabling the tamper channel 14

2.2.2 Detection of a tamper event occurring before enabling the tamper
detection is not supported in edge detection mode 14

2.3 IWDG peripheral limitation . 15

2.3.1 RVU and PVU flags are not reset in STOP mode 15

2.4 I2C peripheral limitations . 15

2.4.1 SMBus standard not fully supported . 15

2.4.2 Start cannot be generated after a misplaced Stop 15

2.4.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter . 16

2.4.4 Data valid time (tVD;DAT) violated without the OVR flag being set 16

2.4.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C
bus is higher than ((VDD+0.3) / 0.7) V . 17

2.4.6 Spurious Bus Error detection in master mode . 17

2.5 SPI peripheral limitations . 17

2.5.1 BSY bit may stay high at the end of a data transfer in slave mode 17

DocID028202 Rev 4 3/33

STM32F469xx and STM32F479xx Contents

4

2.5.2 The last transacted bit of data or CRC calculation can be corrupted
for the received data in master mode depending on the timing of the
feedback communication clock respect to the APB clock (SPI or I2S) . 18

2.5.3 Wrong CRC calculation when the polynomial is even. 19

2.6 I2S peripheral limitation . 19

2.6.1 In I2S slave mode WS level must be set by the external master
when enabling the I2S . 19

2.7 USART peripheral limitations . 19

2.7.1 Idle frame is not detected if receiver clock speed is deviated 19

2.7.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register . 20

2.7.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection . 20

2.7.4 Break frame is transmitted regardless of nCTS input line status 20

2.7.5 nRTS signal abnormally driven low after a protocol violation 20

2.7.6 Start bit detected too soon when sampling for NACK signal
from the smartcard . 21

2.7.7 Break request can prevent the Transmission Complete
flag (TC) from being set . 21

2.7.8 Guard time is not respected when data are sent on TXE events 22

2.7.9 nRTS is active while RE or UE = 0 . 22

2.8 bxCAN limitation . 22

2.8.1 bxCAN time triggered communication mode not supported 22

2.9 Ethernet peripheral limitations . 22

2.9.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6
packets without TCP, UDP or ICMP payloads . 22

2.9.2 The Ethernet MAC processes invalid extension headers in the
received IPv6 frames . 23

2.9.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes 23

2.9.4 Transmit frame data corruption . 24

2.9.5 Successive write operations to the same register might not be fully
taken into account . 24

2.10 FMC peripheral limitation . 27

2.10.1 Dummy read cycles inserted when reading synchronous memories . . . 27

2.11 QUADSPI peripheral limitation . 27

2.11.1 Extra data written in the FIFO at the end of a read transfer 27

2.11.2 First nibble of data is not written after dummy phase 27

2.11.3 Wrong data can be read in memory-mapped after an indirect
mode operation . 28

Contents STM32F469xx and STM32F479xx

4/33 DocID028202 Rev 4

2.12 SDIO peripheral limitations . 28

2.12.1 Wrong CCRCFAIL status after a response without CRC is received . . . 28

2.12.2 No underrun detection with wrong data transmission 29

2.13 ADC peripheral limitation . 29

2.13.1 ADC sequencer modification during conversion 29

2.14 DAC peripheral limitations . 29

2.14.1 DMA underrun flag management . 29

2.14.2 DMA request not automatically cleared by DMAEN=0 30

2.15 DSI Host peripheral limitations . 30

2.15.1 When used over the DSI link, the Tearing Effect Interrupt Flag is set
when an Acknowledge Trigger is received from the display 30

2.15.2 The time to activate the clock between HS transmissions is not
calculated correctly . 31

2.15.3 The immediate update procedure may fail . 31

3 Revision history . 32

DocID028202 Rev 4 5/33

STM32F469xx and STM32F479xx List of tables

5

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior 6
Table 4. Summary of silicon limitations . 8
Table 5. Maximum APB frequency vs. GPIOx_OSPEEDR setting. 19
Table 6. Impacted registers and bits. 24
Table 7. Document revision history . 32

ARM® 32-bit Cortex®-M4 with FPU limitations STM32F469xx and STM32F479xx

6/33 DocID028202 Rev 4

1 ARM® 32-bit Cortex®-M4 with FPU limitations

An errata notice of the STM32F469xx and STM32F479xx core is available from
http://infocenter.arm.com.

All the described limitations are minor and related to the revision r0p1-v1 of the Cortex®-M4
core. Table 3 summarizes these limitations and their implications on the behavior of
STM32F469xx and STM32F479xx devices.

1.1 Cortex®-M4 interrupted loads to stack pointer can cause
erroneous behavior

Description

An interrupt occurring during the data-phase of a single word load to the stack pointer
(SP/R13) can cause an erroneous behavior of the device. In addition, returning from the
interrupt results in the load instruction being executed an additional time.

For all the instructions performing an update of the base register, the base register is
erroneously updated on each execution, resulting in the stack pointer being loaded from an
incorrect memory location.

The instructions affected by this limitation are the following:

• LDR SP, [Rn],#imm

• LDR SP, [Rn,#imm]!

• LDR SP, [Rn,#imm]

• LDR SP, [Rn]

• LDR SP, [Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only
occur with hand-written assembly code.

Both limitations can be solved by replacing the direct load to the stack pointer by an
intermediate load to a general-purpose register followed by a move to the stack pointer.

Example:

Replace LDR SP, [R0] by

LDR R2,[R0]

MOV SP,R2

Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior

ARM ID
ARM

category
ARM summary of errata

Impact on STM32F469xx
and STM32F479xx

752770 Cat B
Interrupted loads to SP can cause erroneous
behavior

Minor

776924 Cat B
VDIV or VSQRT instructions might not complete
correctly when very short ISRs are used

Minor

DocID028202 Rev 4 7/33

STM32F469xx and STM32F479xx ARM® 32-bit Cortex®-M4 with FPU limitations

32

1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used

Description

On Cortex®-M4 with FPU core, 14 cycles are required to execute a VDIV or VSQRT
instruction.

This limitation is present when the following conditions are met:

• A VDIV or VSQRT is executed

• The destination register for VDIV or VSQRT is one of s0 - s15

• An interrupt occurs and is taken

• The ISR being executed does not contain a floating point instruction

• 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed

In this case, if there are only one or two instructions inside the interrupt service routine, then
the VDIV or VQSRT instruction does not complete correctly and the register bank and
FPSCR are not updated, meaning that these registers hold incorrect out-of-date data.

Workaround

Two workarounds are applicable:

• Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address 0xE000EF34).

• Ensure that every ISR contains more than 2 instructions in addition to the exception
return instruction.

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

8/33 DocID028202 Rev 4

2 STM32F469xx and STM32F479xx silicon limitations

Table 4 gives quick references to all documented limitations.

Legend for Table 4: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ and grayed = fixed.

Table 4. Summary of silicon limitations

Links to silicon limitations Revision A

Section 2.1:
System
limitations

Section 2.1.1: Debugging Stop mode and system tick timer A

Section 2.1.2: Debugging Sleep/Stop mode with WFE/WFI entry A

Section 2.1.3: Full JTAG configuration without NJTRST pin cannot
be used

A

Section 2.1.4: MPU attribute to RTC and IWDG registers could be
managed incorrectly

A

Section 2.1.5: Delay after an RCC peripheral clock enabling A

Section 2.1.6: Internal noise impacting the ADC accuracy A

Section 2.1.7: Wakeup from Standby mode with RTC A

Section 2.1.8: Data Cache might be corrupted during Flash Read
While Write operation

A

Section 2.2: RTC
limitations

Section 2.2.1: Spurious tamper detection when disabling the
tamper channel

A

Section 2.2.2: Detection of a tamper event occurring before
enabling the tamper detection is not supported in edge detection
mode

A

Section 2.3:
IWDG peripheral
limitation

Section 2.3.1: RVU and PVU flags are not reset in STOP mode A

Section 2.4: I2C
peripheral
limitations

Section 2.4.1: SMBus standard not fully supported A

Section 2.4.2: Start cannot be generated after a misplaced Stop A

Section 2.4.3: Mismatch on the “Setup time for a repeated Start
condition” timing parameter

A

Section 2.4.4: Data valid time (tVD;DAT) violated without the OVR
flag being set

A

Section 2.4.5: Both SDA and SCL maximum rise time (tr) violated
when VDD_I2C bus is higher than ((VDD+0.3) / 0.7) V

A

Section 2.4.6: Spurious Bus Error detection in master mode A

DocID028202 Rev 4 9/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

Section 2.5: SPI
peripheral
limitations

Section 2.5.1: BSY bit may stay high at the end of a data transfer in
slave mode

A

Section 2.5.2: The last transacted bit of data or CRC calculation
can be corrupted for the received data in master mode depending
on the timing of the feedback communication clock respect to the
APB clock (SPI or I2S)

A

Section 2.5.3: Wrong CRC calculation when the polynomial is even. A

Section 2.6: I2S
peripheral
limitation

Section 2.6.1: In I2S slave mode WS level must be set by the
external master when enabling the I2S

A

Section 2.7:
USART
peripheral
limitations

Section 2.7.1: Idle frame is not detected if receiver clock speed is
deviated

N

Section 2.7.2: In full duplex mode, the Parity Error (PE) flag can be
cleared by writing to the data register

A

Section 2.7.3: Parity Error (PE) flag is not set when receiving in
Mute mode using address mark detection

N

Section 2.7.4: Break frame is transmitted regardless of nCTS input
line status

N

Section 2.7.5: nRTS signal abnormally driven low after a protocol
violation

A

Section 2.7.6: Start bit detected too soon when sampling for NACK
signal from the smartcard

N

Section 2.7.7: Break request can prevent the Transmission
Complete flag (TC) from being set

A

Section 2.7.8: Guard time is not respected when data are sent on
TXE events

A

Section 2.7.9: nRTS is active while RE or UE = 0 A

Section 2.8:
bxCAN limitation

Section 2.8.1: bxCAN time triggered communication mode not
supported

N

Section 2.9:
Ethernet
peripheral
limitations

Section 2.9.1: Incorrect layer 3 (L3) checksum is inserted in
transmitted IPv6 packets without TCP, UDP or ICMP payloads

A

Section 2.9.2: The Ethernet MAC processes invalid extension
headers in the received IPv6 frames

N

Section 2.9.3: MAC stuck in the Idle state on receiving the TxFIFO
flush command exactly 1 clock cycle after a transmission completes

A

Section 2.9.4: Transmit frame data corruption A

Section 2.9.5: Successive write operations to the same register
might not be fully taken into account

A

Section 2.10:
FMC peripheral
limitation

Section 2.10.1: Dummy read cycles inserted when reading
synchronous memories

N

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations Revision A

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

10/33 DocID028202 Rev 4

Section 2.11:
QUADSPI
peripheral
limitation

Section 2.11.1: Extra data written in the FIFO at the end of a read
transfer

A

Section 2.11.2: First nibble of data is not written after dummy phase A

Section 2.11.3: Wrong data can be read in memory-mapped after
an indirect mode operation

A

Section 2.12:
SDIO peripheral
limitations

Section 2.12.1: Wrong CCRCFAIL status after a response without
CRC is received

A

Section 2.12.2: No underrun detection with wrong data
transmission

A

Section 2.13:
ADC peripheral
limitation

Section 2.13.1: ADC sequencer modification during conversion A

Section 2.14:
DAC peripheral
limitations

Section 2.14.1: DMA underrun flag management A

Section 2.14.2: DMA request not automatically cleared by
DMAEN=0

A

Section 2.15: DSI
Host peripheral
limitations

Section 2.15.1: When used over the DSI link, the Tearing Effect
Interrupt Flag is set when an Acknowledge Trigger is received from
the display

A

Section 2.15.2: The time to activate the clock between HS
transmissions is not calculated correctly

A

Section 2.15.3: The immediate update procedure may fail A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations Revision A

DocID028202 Rev 4 11/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

2.1 System limitations

2.1.1 Debugging Stop mode and system tick timer

Description

If the system tick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set
in the DBGMCU_CR register), it will wake up the system from Stop mode.

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

2.1.2 Debugging Sleep/Stop mode with WFE/WFI entry

Description

When the Sleep debug or Stop debug mode is enabled (DBG_SLEEP bit or DBG_STOP bit
are set in the DBGMCU_CR register), this allows software debugging during Sleep or Stop
mode. After wakeup some unreachable instructions could be executed if the following
conditions are met:

• The application software disables the Prefetch queue

• The number of wait state configured on Flash interface is higher than 0

• Linker place WFE or WFI instructions on 4-bytes aligned addresses (0x080xx_xxx4)

Workaround

Three workarounds are possible:

• Add three NOPs after WFI/WFE instruction

• Keep one AHB master active during sleep (example keep DMA1 or DMA2 RCC clock
enable bit set)

• Execute WFI/WFE instruction from routines inside the SRAM. To debug Stop mode
with WFE entry, the WFE instruction must be inside a dedicated function with one
instruction (NOP) between the execution of the WFE and the Bx LR.

2.1.3 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in debug mode, the connection with the debugger is lost if
the NJTRST pin (PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is
impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

12/33 DocID028202 Rev 4

2.1.4 MPU attribute to RTC and IWDG registers could be managed
incorrectly

Description

If the MPU is used and the non bufferable attribute is set to the RTC or IWDG memory map
region, the CPU access to the RTC or IWDG registers could be treated as bufferable,
provided that there is no APB prescaler configured (AHB/APB prescaler is equal to 1).

Workaround

If the non bufferable attribute is required for these registers, the software could perform a
read after the write to guaranty the completion of the write access.

2.1.5 Delay after an RCC peripheral clock enabling

Description

A delay between an RCC peripheral clock enable and the effective peripheral enabling
should be taken into account in order to manage the peripheral read/write to registers.

This delay depends on the peripheral’s mapping:

• If the peripheral is mapped on AHB: the delay should be equal to 2 AHB cycles.

• If the peripheral is mapped on APB: the delay should be equal to 1 + (AHB/APB
prescaler) cycles.

Workarounds

1. Use the DSB instruction to stall the Cortex®-M4 CPU pipeline until the instruction is
completed.

2. Insert “n” NOPs between the RCC enable bit write and the peripheral register writes
(n = 2 for AHB peripherals, n = 1 + AHB/APB prescaler in case of APB peripherals).

3. Or simply insert a dummy read operation to the corresponding register just after
enabling the peripheral clock.

2.1.6 Internal noise impacting the ADC accuracy

Description

An internal noise generated on VDD supplies and propagated internally may impact the ADC
accuracy.

This noise is always active whatever the power mode of the MCU (RUN or Sleep).

Workarounds

To adapt the accuracy level to the application requirements, set one of the following options:

• Option1

Set the ADCDC1 bit in the PWR_CR register.

• Option2

Set the corresponding ADCxDC2 bit in the SYSCFG_PMC register.

Only one option can be set at a time.

DocID028202 Rev 4 13/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

For more details on option 1 and option2 mechanisms, refer to AN4073.

2.1.7 Wakeup from Standby mode with RTC

Description

After wakeup from Standby mode with one of the following events

• RTC alarm

• RTC TAMPER

• RTC TimeStamp

• RTC wake up timer

the wakeup flag WUPF in the PWR_CSR register will be kept pending even if the wakeup
flag is cleared by setting the CWUPF bit in the PWR_CR register. This prevents the system
from entering in Standby mode.

The wakeup from Standby mode with WKUP pin is not impacted.

Workaround

After wakeup from Standby when using RTC wakeup events:

• Check if the SBF flag was set, then clear it by setting the CSBF bit in the PWR_CR
register.

• Generate a system reset in order to clear the pending wakeup flag, and allow the
system to enter Standby mode next time and to wakeup by RTC.

2.1.8 Data Cache might be corrupted during Flash Read While Write
operation

Description

When a write to the internal Flash memory is done, the Data Cache is normally updated to
reflect the data value update. During this Data Cache update, a read to the other memory
bank may occur; this read can corrupt the Data Cache content, and subsequent read
operations at the same address (Cache hits) will be corrupted.

This limitation occurs only in dual bank mode, when reading (data access or code
execution) from one Flash Bank while writing to the other Flash Bank with Data Cache
enabled.

Workaround

When the application is performing data accesses in both Flash memory banks, the Data
Cache must be disabled by resetting the DCEN bit before any write to the Flash. Before
enabling the Data Cache again, it must be reset by setting and then resetting the DCRST
bit.

Example of code

 /* Disable data cache */

 __HAL_FLASH_DATA_CACHE_DISABLE();

 /* Set PG bit */

 SET_BIT(FLASH->CR, FLASH_CR_PG);

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

14/33 DocID028202 Rev 4

 /* Program the Flash word */

WriteFlash(Address, Data);

 /* Reset data cache */

 __HAL_FLASH_DATA_CACHE_RESET();

 /* Enable data cache */

 __HAL_FLASH_DATA_CACHE_ENABLE();

2.2 RTC limitations

2.2.1 Spurious tamper detection when disabling the tamper channel

Description

If the tamper detection is configured for detection on the falling edge event (TAMPFLT=00
and TAMPxTRG=1) and if the tamper event detection is disabled when the tamper pin is at
high level, a false tamper event is detected.

Workaround

The false tamper event detection cannot be avoided, but the backup registers erase can be
avoided by setting TAMPxNOERASE bit before clearing TAMPxE bit. The two bits must be
written in two separate RTC_TAMPCR write accesses.

2.2.2 Detection of a tamper event occurring before enabling the tamper
detection is not supported in edge detection mode

Description

When the tamper detection is enabled in edge detection mode (TAMPFLT=00):

• When TAMPxTRG=0 (rising edge detection): if the tamper input is already high before
enabling the tamper detection, the tamper event may or may not be detected when
enabling the tamper detection. The probability to detect it increases with the APB
frequency.

• When TAMPxTRG=1 (falling edge detection): if the tamper input is already low before
enabling the tamper detection, the tamper event is not detected when enabling the
tamper detection.

Workaround

The I/O state should be checked by software in the GPIO registers, just after enabling the
tamper detection and before writing sensitive values in the backup registers, in order to
ensure that no active edge occurred before enabling the tamper event detection.

DocID028202 Rev 4 15/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

2.3 IWDG peripheral limitation

2.3.1 RVU and PVU flags are not reset in STOP mode

Description

The RVU and PVU flags of the IWDG_SR register are set by hardware after a write access
to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is entered
immediately after the write access, the RVU and PVU flags are not reset by hardware.

Before performing a second write operation to the IWDG_RLR or the IWDG_PR register,
the application software must wait for the RVU or PVU flag to be reset. However, since the
RVU/PVU bit is not reset after exiting the Stop mode, the software goes into an infinite loop
and the independent watchdog (IWDG) generates a reset after the programmed timeout
period.

Workaround

Wait until the RVU or PVU flag of the IWDG_SR register is reset before entering the Stop
mode.

2.4 I2C peripheral limitations

2.4.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

1. Using the SMBAL pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.4.2 Start cannot be generated after a misplaced Stop

Description

If a master generates a misplaced Stop on the bus (bus error), while the peripheral tries to
switch to master mode by setting the START bit, the Start condition is not properly
generated.

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

16/33 DocID028202 Rev 4

A software workaround consists in asserting the software reset using the SWRST bit in the
I2C_CR1 control register.

2.4.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in
the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

The limitation can occur only in the following configuration:

• in Master mode

• in Standard mode at a frequency between 88 kHz and 100 kHz (no limitation in Fast-
mode)

• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns, the limitation cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode, if supported by the slave.

2.4.4 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as well
as the maximum data hold time of the current data (tHD;DAT)) under the conditions described
below. This violation cannot be detected because the OVR flag is not set (no transmit buffer
underrun is detected).

This limitation can occur only under the following conditions:

• in Slave transmit mode

• with clock stretching disabled (NOSTRETCH=1)

• if the software is late to write the DR data register, but not late enough to set the OVR
flag (the data register is written before)

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not allow it, ensure that the software is fast enough when polling
the TXE or ADDR flag to immediately write to the DR data register. For instance, use an
interrupt on the TXE or ADDR flag and boost its priority to the higher level.

DocID028202 Rev 4 17/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

2.4.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C
bus is higher than ((VDD+0.3) / 0.7) V

Description

When an external legacy I2C bus voltage (VDD_I2C) is set to 5 V while the MCU is powered
from VDD, the internal 5-Volt tolerant circuitry is activated as soon the input voltage (VIN)
reaches the VDD + diode threshold level. An additional internal large capacitance then
prevents the external pull-up resistor (RP) from rising the SDA and SCL signals within the
maximum timing (tr) which is 300 ns in fast mode and 1000 ns in Standard mode.

The rise time (tr) is measured from VIL and VIH with levels set at 0.3 VDD_I2C and
0.7 VDD_I2C.

Workaround

The external VDD_I2C bus voltage should be limited to a maximum value of
((VDD+0.3) / 0.7) V. As a result, when the MCU is powered from VDD=3.3 V, VDD_I2C
should not exceed 5.14 V to be compliant with I2C specifications.

2.4.6 Spurious Bus Error detection in master mode

Description

In master mode, a bus error can be detected by mistake, so the BERR flag can be wrongly
raised in the status register. This will generate a spurious Bus Error interrupt if the interrupt
is enabled. A bus error detection has no effect on the transfer in master mode, therefore the
I2C transfer can continue normally.

Workaround

If a bus error interrupt is generated in master mode, the BERR flag must be cleared by
software. No other action is required and the on-going transfer can be handled normally.

2.5 SPI peripheral limitations

2.5.1 BSY bit may stay high at the end of a data transfer in slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in slave mode. The
issue appears when an accidental synchronization happens between internal CPU clock
and external SCK clock provided by master.

This is related to the end of data transfer detection while the SPI is enabled in slave mode.

As a consequence, the end of data transaction may be not recognized when software needs
to monitor it (e.g. at the end of session before entering the low power mode or before
direction of data line has to be changed at half duplex bidirectional mode). The BSY flag is
unreliable to detect the end of any data sequence transaction.

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

18/33 DocID028202 Rev 4

Workaround

When NSS hardware management is applied and NSS signal is provided by master, the end
of a transaction can be detected by the NSS polling by slave.

• If SPI receiving mode is enabled, the end of a transaction with master can be detected
by the corresponding RXNE event signalizing the last data transfer completion.

• In SPI transmit mode, user can check the BSY under timeout corresponding to the time
necessary to complete the last data frame transaction. The timeout should be
measured from TXE event signalizing the last data frame transaction start (it is raised
once the second bit transaction is ongoing). Either BSY becomes low normally or the
timeout expires when the synchronization issue happens.

When upper workarounds are not applicable, the following sequence can be used to
prevent the synchronization issue at SPI transmit mode.

1. Write last data to data register

2. Poll TXE until it becomes high to ensure the data transfer has started

3. Disable SPI by clearing SPE while the last data transfer is still ongoing

4. Poll the BSY bit until it becomes low

5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This workaround can be used only when CPU has enough performance to disable SPI after
TXE event is detected while the data frame transfer is still ongoing. It is impossible to
achieve it when ratio between CPU and SPI clock is low and data frame is short especially.
In this specific case timeout can be measured from TXE, while calculating fixed number of
CPU clock periods corresponding to the time necessary to complete the data frame
transaction.

2.5.2 The last transacted bit of data or CRC calculation can be corrupted
for the received data in master mode depending on the timing of the
feedback communication clock respect to the APB clock (SPI or I2S)

Description

When the SPI or I2S is configured in master mode (in full duplex or receiver mode, reading
back the data register or CRC enabled), the data received may have the last transacted bit
corrupted if delay of internal feedback derived from SCK pin is comparable with APB clock
period. The last bit value is strobed too late into the shift register, while its content has been
already either copied into the data register or compared with CRC pattern calculated
internally. In case of data corruption, the bit position in the data register contains the value of
the last bit received during the previous data transfer and CRCERR flag is asserted in spite
of all the data being received correctly.

The main factors that contribute negatively to the delay are decreased VDD level, high
temperature, high SPI bus capacity load and low SCK IO output speed. SPI communication
speed has no impact.

Workaround

• Decrease the APB clock.

• Set the IO pad configuration for the SCK pin to be faster.

Table 5 gives an overview about maximum APB frequency vs. GPIOx_OSPEEDR output
speed register setting for the SCK pin with a maximum load 30 pF.

DocID028202 Rev 4 19/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

2.5.3 Wrong CRC calculation when the polynomial is even.

Description

When the CRC is enabled, the CRC calculation will be wrong if the polynomial is even.

Workaround

Use odd polynomial.

2.6 I2S peripheral limitation

2.6.1 In I2S slave mode WS level must be set by the external master
when enabling the I2S

Description

In slave mode, the WS signal level is used only to start the communication. If the I2S (in
slave mode) is enabled while the master is already sending the clock and the WS signal
level is low (for I2S protocol) or is high (for the LSB or MSB-justified mode), the slave starts
communicating data immediately. In this case, the master and slave will be desynchronized
throughout the whole communication.

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:

• High level when the I2S protocol is selected.

• Low level when the LSB or MSB-justified mode is selected.

2.7 USART peripheral limitations

2.7.1 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

Table 5. Maximum APB frequency vs. GPIOx_OSPEEDR setting

OSPEEDR bits [1:0] for the SCK pin
Maximum APB frequency

For SPI For I2S

High (10) and Very high (11) 90 MHz 45 MHz

Medium (01) 75 MHz 35 MHz

Low (00) 26 MHz 12 MHz

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

20/33 DocID028202 Rev 4

Workaround

None.

2.7.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register

Description

In full duplex mode, when the Parity Error flag is set by the receiver at the end of a
reception, it may be cleared while transmitting by reading the USART_SR register to check
the TXE or TC flags and writing data to the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.7.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.7.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of the current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

Workaround

None.

2.7.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when data is
received. If this data was not read and new data is sent to the USART (protocol violation),
the nRTS signal goes back to low level at the end of this new data.

DocID028202 Rev 4 21/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

Consequently, the sender gets the wrong information that the USART is ready to receive
further data.

On USART side, an overrun is detected, which indicates that data has been lost.

Workaround

Workarounds are required only if the other USART device violates the communication
protocol, which is not the case in most applications.

Two workarounds can be used:

• After data reception and before reading the data in the data register, the software takes
over the control of the nRTS signal as a GPIO and holds it high as long as needed. If
the USART device is not ready, the software holds the nRTS pin high, and releases it
when the device is ready to receive new data.

• The time required by the software to read the received data must always be lower than
the duration of the second data reception. For example, this can be ensured by treating
all the receptions by DMA mode.

2.7.6 Start bit detected too soon when sampling for NACK signal
from the smartcard

Description

In the ISO7816, when a character parity error is incorrect, the Smartcard receiver shall
transmit a NACK error signal at (10.5 +/- 0.2) etu after the character START bit falling edge.
In this case, the USART transmitter should be able to detect correctly the NACK signal by
sampling at (11.0 +/-0.2) etu after the character START bit falling edge.

The USART peripheral used in Smartcard mode doesn't respect the (11 +/-0.2) etu timing,
and when the NACK falling edge arrives at 10.68 etu or later, the USART might misinterpret
this transition as a START bit even if the NACK is correctly detected.

Workaround

None.

2.7.7 Break request can prevent the Transmission Complete
flag (TC) from being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be
set in the following conditions: - CTS hardware flow control is enabled. - D1 is being
transmitted - A break transfer is requested before the end of D1 transfer - nCTS is de-
asserted before the end of transfer of D1

Workaround

If the application needs to detect the end of transfer of the data, the break request should be
done after making sure that the TC flag is set.

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

22/33 DocID028202 Rev 4

2.7.8 Guard time is not respected when data are sent on TXE events

Description

In smartcard mode, when sending a data on TXE event, the programmed guard time is not
respected i.e. the data written in the data register is transferred on the bus without waiting
the completion of the guardtime duration corresponding to the previous transmitted data.

Workaround

Write the data after TC is set because in smartcard mode, the TC flag is set at the end of the
guard time duration.

2.7.9 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as RTSE bit is set even if the USART is disabled
(UE = 0) or the receiver is disabled (RE=0) i.e. not ready to receive data.

Workaround

Configure the I/O used for nRTS as alternate function after setting the UE and RE bits.

2.8 bxCAN limitation

2.8.1 bxCAN time triggered communication mode not supported

Description

The time triggered communication mode described in the reference manual is not
supported. As a result timestamp values are not available. TTCM bit must be kept cleared in
the CAN_MCR register (time triggered communication mode disabled).

Workaround

None.

2.9 Ethernet peripheral limitations

2.9.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6
packets without TCP, UDP or ICMP payloads

Description

The application provides the per-frame control to instruct the MAC to insert the L3
checksums for TCP, UDP and ICMP packets. When automatic checksum insertion is
enabled and the input packet is an IPv6 packet without the TCP, UDP or ICMP payload, then
the MAC may incorrectly insert a checksum into the packet. For IPv6 packets without a TCP,
UDP or ICMP payload, the MAC core considers the next header (NH) field as the extension
header and continues to parse the extension header. Sometimes, the payload data in such

DocID028202 Rev 4 23/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

packets matches the NH field for TCP, UDP or ICMP and, as a result, the MAC core inserts
a checksum.

Workaround

When the IPv6 packets have a TCP, UDP or ICMP payload, enable checksum insertion for
transmit frames, or bypass checksum insertion by using the CIC (checksum insertion
control) bits in TDES0 (bits 23:22).

2.9.2 The Ethernet MAC processes invalid extension headers in the
received IPv6 frames

Description

In IPv6 frames, there can be zero or some extension headers preceding the actual IP
payload. The Ethernet MAC processes the following extension headers defined in the IPv6
protocol: Hop-by-Hop Options header, Routing header and Destination Options header.
All extension headers, except the Hop-by-Hop extension header, can be present multiple
times and in any order before the actual IP payload. The Hop-by-Hop extension header, if
present, has to come immediately after the IPv6’s main header.

The Ethernet MAC processes all (valid or invalid) extension headers including the Hop-by-
Hop extension headers that are present after the first extension header. For this reason, the
GMAC core will accept IPv6 frames with invalid Hop-by-Hop extension headers. As a
consequence, it will accept any IP payload as valid IPv6 frames with TCP, UDP or ICMP
payload, and then incorrectly update the Receive status of the corresponding frame.

Workaround

None.

2.9.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes

Description

When the software issues a TxFIFO flush command, the transfer of frame data stops (even
in the middle of a frame transfer). The TxFIFO read controller goes into the Idle state
(TFRS=00 in ETH_MACDBGR) and then resumes its normal operation.

However, if the TxFIFO read controller receives the TxFIFO flush command exactly one
clock cycle after receiving the status from the MAC, the controller remains stuck in the Idle
state and stops transmitting frames from the TxFIFO. The system can recover from this
state only with a reset (e.g. a soft reset).

Workaround

Do not use the TxFIFO flush feature.

If TXFIFO flush is really needed, wait until the TxFIFO is empty prior to using the TxFIFO
flush command.

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

24/33 DocID028202 Rev 4

2.9.4 Transmit frame data corruption

Frame data corrupted when the TxFIFO is repeatedly transitioning from non-empty to empty
and then back to non-empty.

Description

Frame data may get corrupted when the TxFIFO is repeatedly transitioning from non-empty
to empty for a very short period, and then from empty to non-empty, without causing an
underflow.

This transitioning from non-empty to empty and back to non-empty happens when the rate
at which the data is being written to the TxFIFO is almost equal to or a little less than the
rate at which the data is being read.

This corruption cannot be detected by the receiver when the CRC is inserted by the MAC,
as the corrupted data is used for the CRC computation.

Workaround

Use the Store-and-Forward mode: TSF=1 (bit 21 in ETH_DMAOMR). In this mode, the data
is transmitted only when the whole packet is available in the TxFIFO.

2.9.5 Successive write operations to the same register might not be fully
taken into account

Description

A write to a register might not be fully taken into account if a previous write to the same
register is performed within a time period of four TX_CLK/RX_CLK clock cycles. When this
error occurs, reading the register returns the most recently written value, but the Ethernet
MAC continues to operate as if the latest write operation never occurred.

See Table 6 for registers and bits impacted by this limitation.

Table 6. Impacted registers and bits

Register name Bit number Bit name

DMA registers

ETH_DMABMR 7 EDFE

ETH_DMAOMR

26 DTCEFD

25 RSF

20 FTF

7 FEF

6 FUGF

4:3 RTC

GMAC registers

DocID028202 Rev 4 25/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

ETH_MACCR

25 CSTF

23 WD

22 JD

19:17 IFG

16 CSD

14 FES

13 ROD

12 LM

11 DM

10 IPCO

9 RD

7 APCS

6:5 BL

4 DC

3 TE

2 RE

ETH_MACFFR - MAC frame filter register

ETH_MACHTHR 31:0 Hash Table High Register

ETH_MACHTLR 31:0 Hash Table Low Register

ETH_MACFCR

31:16 PT

7 ZQPD

5:4 PLT

3 UPFD

2 RFCE

1 TFCE

0 FCB/BPA

ETH_MACVLANTR
16 VLANTC

15:0 VLANTI

ETH_MACRWUFFR - all remote wakeup registers

ETH_MACPMTCSR

31 WFFRPR

9 GU

2 WFE

1 MPE

0 PD

ETH_MACA0HR - MAC address 0 high register

Table 6. Impacted registers and bits (continued)

Register name Bit number Bit name

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

26/33 DocID028202 Rev 4

Workaround

Two workarounds are applicable:

• Ensure a delay of four TX_CLK/RX_CLK clock cycles between the successive write
operations to the same register.

• Make several successive write operations without delay, then read the register when all
the operations are complete, and finally reprogram it after a delay of four
TX_CLK/RX_CLK clock cycles.

ETH_MACA0LR - MAC address 0 low register

ETH_MACA1HR - MAC address 1 high register

ETH_MACA1LR - MAC address 1 low register

ETH_MACA2HR - MAC address 2 high register

ETH_MACA2LR - MAC address 2 low register

ETH_MACA3HR - MAC address 3 high register

ETH_MACA3LR - MAC address 3 low register

IEEE 1588 time stamp registers

ETH_PTPTSCR

18 TSPFFMAE

17:16 TSCNT

15 TSSMRME

14 TSSEME

13 TSSIPV4FE

12 TSSIPV6FE

11 TSSPTPOEFE

10 TSPTPPSV2E

9 TSSSR

8 TSSARFE

5 TSARU

3 TSSTU

2 TSSTI

1 TSFCU

0 TSE

Table 6. Impacted registers and bits (continued)

Register name Bit number Bit name

DocID028202 Rev 4 27/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

2.10 FMC peripheral limitation

2.10.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access to a synchronous memory, two dummy read accesses
are performed at the end of the burst cycle whatever the type of AHB burst access.
However, the extra data values which are read are not used by the FSMC and there is no
functional failure.

Workaround

None.

2.11 QUADSPI peripheral limitation

2.11.1 Extra data written in the FIFO at the end of a read transfer

Description

When all the conditions listed below are gathered:

• QUADSPI is used in indirect mode

• QUADSPI clock is AHB/2 (PRESCALER = 0x01 in the QUADSPI_CR)

• QUADSPI is in quad mode (DMODE = 0b11 in the QUADSPI_CCR)

• QUADSPI is in DDR mode (DDRM = 0b1 in the QUADSPI_CCR)

an extra data is incorrectly written in the FIFO when a data is read at the same time that the
FIFO gets full at the end of a read transfer.

Workaround

One of the two workarounds listed below can be used:

• Read out the extra data until the BUSY flag goes low and discard it.

• Request an abort after reading out all the correct received data from FIFO in order to
flush FIFO and have the busy low. Abort will keep the last register configuration (set the
ABORT bit in the QUADSPI_CR).

2.11.2 First nibble of data is not written after dummy phase

Description

The first nibble of data to be written to the external Flash memory is lost when both following
conditions are met:

• QUADSPI is used in indirect write mode

• At least one dummy cycle is used

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

28/33 DocID028202 Rev 4

Workaround

Use alternate bytes instead of dummy phases to add latency between address phase and
data phase. This works only if the number of dummy cycles corresponds to a multiple of 8
bits of data.

Example: to generate

• one dummy cycle: send one alternate byte, possible only in four data lines DDR mode
or Dual-flash SDR mode

• two dummy cycles: send one alternate byte in four data lines SDR mode

• four dummy cycles: send two alternate bytes in four data lines SDR mode, or send one
alternate byte in two data lines SDR mode

• eight dummy cycles: send one alternate byte in one data line SDR mode.

2.11.3 Wrong data can be read in memory-mapped after an indirect
mode operation

Description

Wrong data can be read with the first memory-mapped read request when Quad-SPI
peripheral entered memory-mapped mode with both LSB bits in the address register
QUADSPI_AR[1:0] not reset.

Workaround

QUADSPI_AR register must be reset just before entering memory-mapped mode.

This can be done in two different ways, depending on the current Quad-SPI operating
mode:

1. Indirect read mode:

a) Reset address register

b) Do an abort request to stop reading and clear busy bit

c) Enter memory-mapped mode.

Note: User should take care not to read QUADSPI_DR register after resetting address register.

2. Indirect write mode: reset the address register then enter to memory-mapped mode

Note: User should take care not to write to QUADSPI_DR register after resetting address register.

2.12 SDIO peripheral limitations

2.12.1 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.
As a consequence, after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the
CCRCFAIL bit of the SDIO_STA register is set.

DocID028202 Rev 4 29/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

Workaround

The CCRCFAIL bit in the SDIO_STA register shall be ignored by the software. CCRCFAIL
must be cleared by setting CCRCFAILC bit of the SDIO_ICR register after reception of the
response to the CMD5 command.

2.12.2 No underrun detection with wrong data transmission

Description

In case there is an ongoing data transfer from the SDIO host to the SD card and the
hardware flow control is disabled (bit 14 of the SDIO_CLKCR is not set), if an underrun
condition occurs, the controller may transmit a corrupted data block (with wrong data word)
without detecting the underrun condition when the clock frequencies are such that:

[3 x period(PCLK2) + 3 x period(SDIOCLK)] ≥ (32 / (BusWidth)) x period(SDIO_CK).

Workaround

Avoid the above-mentioned clock frequency relationship, by:

• incrementing the APB frequency;

• or decreasing the transfer bandwidth;

• or reducing SDIO_CK frequency.

2.13 ADC peripheral limitation

2.13.1 ADC sequencer modification during conversion

Description

If an ADC conversion is started by software (writing the SWSTART bit), and if the
ADC_SQRx or ADC_JSQRx registers are modified during the conversion, the current
conversion is reset and the ADC does not restart a new conversion sequence automatically.

If an ADC conversion is started by hardware trigger, this limitation does not apply. The ADC
restarts a new conversion sequence automatically.

Workaround

When an ADC conversion sequence is started by software, a new conversion sequence can
be restarted only by setting the SWSTART bit in the ADC_CR2 register.

2.14 DAC peripheral limitations

2.14.1 DMA underrun flag management

Description

If the DMA is not fast enough to input the next digital data to the DAC, as a consequence,
the same digital data is converted twice. In these conditions, the DMAUDR flag is set, which
usually leads to disable the DMA data transfers. This is not the case: the DMA is not
disabled by DMAUDR=1, and it keeps servicing the DAC.

STM32F469xx and STM32F479xx silicon limitations STM32F469xx and STM32F479xx

30/33 DocID028202 Rev 4

Workaround

To disable the DAC DMA stream, reset the EN bit (corresponding to the DAC DMA stream)
in the DMA_SxCR register.

2.14.2 DMA request not automatically cleared by DMAEN=0

Description

if the application wants to stop the current DMA-to-DAC transfer, the DMA request is not
automatically cleared by DMAEN=0, or by DACEN=0.

If the application stops the DAC operation while the DMA request is high, the DMA request
will be pending while the DAC is reinitialized and restarted; with the risk that a spurious
unwanted DMA request is serviced as soon as the DAC is re-enabled.

Workaround

To stop the current DMA-to-DAC transfer and restart, the following sequence should be
applied:

1. Check if DMAUDR is set.

2. Clear the DAC/DMAEN bit.

3. Clear the EN bit of the DAC DMA/Stream

4. Reconfigure by software the DAC, DMA, triggers etc.

5. Restart the application.

2.15 DSI Host peripheral limitations

2.15.1 When used over the DSI link, the Tearing Effect Interrupt Flag is set
when an Acknowledge Trigger is received from the display

Description

In Adapted Command Mode, when the Tearing Effect mechanism is used over the DSI link,
the Tearing Effect Interrupt Flag (TEIF) of the DSI Wrapper Interrupt Status Register
(DSI_WISR) is asserted when an Acknowledge Trigger is received from the display.

Acknowledges Trigger can be received from the display:

• for each packet when the Acknowledge Request Enable (ARE) bit of the DSI Host
Command Mode Configuration Register (DSI_CMCR) is set

• when a response is awaited from the display

Workaround

Do not use the Tearing Effect over the link but use the dedicated TE pin.

When using the Tearing Effect over the link, do not use the Tearing Effect interrupt nor
Automatic Refresh Mode, but launch the display refresh immediately after a set_tear_on or
a set_scanline DCS command (as the display is driving the DSI link until the Tearing Effect
occurs, the refresh will be automatically stalled until the Tearing Effect).

DocID028202 Rev 4 31/33

STM32F469xx and STM32F479xx STM32F469xx and STM32F479xx silicon limitations

32

2.15.2 The time to activate the clock between HS transmissions is not
calculated correctly

Description

In Automatic Clock Lane control mode, the DSI Host can turn off the clock lane between two
High-Speed transmissions.

To do so, the DSI Host calculates the time required for the clock lane to change from
High-Speed to Low-Power and from Low-Power to High-Speed.

This timings are configured by the HS2LP_TIME and LP2HS_TIME in the DSI Host Clock
Lane Timer Configuration Register (DSI_CLTCR). DSI Host is not calculating LP2HS_TIME
+ HS2LP_TIME but 2 x HS2LP_TIME instead.

Workaround

Configure HS2LP_TIME and LP2HS_TIME with the same value as the max between
HS2LP_TIME and LP2HS_TIME.

As an example, if HS2LP_TIMER = 44 and LP2HS_TIME = 113 configure the register fields
as follows:

• HS2LP_TIME = 113

• LP2HS_TIME =113

2.15.3 The immediate update procedure may fail

Description

The immediate update procedure implies that both the Update Register (UR) and the
Enable (EN) bits of the DSI Host Video Shadow Control Register (DSI_VSCR) are initially
cleared, and are set by the same instruction.

Because of a race condition between the two signals, this immediate update procedure may
fail in few cases, leading the DSI Host to wait until the next frame end before updating the
configuration.

Workaround

After an “Immediate update” procedure, verify if the configuration is updated by reading the
auto-cleared bit UR.

If the UR bit is not cleared, repeat the process by writing first 0x0000 then 0x0101 in
DSIHOST_VSCR.

Revision history STM32F469xx and STM32F479xx

32/33 DocID028202 Rev 4

3 Revision history

Table 7. Document revision history

Date Revision Changes

27-Aug-2015 1 Initial release.

26-Oct-2015 2

Updated Table 4: Summary of silicon limitations.

Updated Section 2.11.1: Extra data written in the FIFO at the end of a
read transfer.

Added Section 2.15: DSI Host peripheral limitations and its subsections.

14-Jan-2016 3
Updated Table 4: Summary of silicon limitations.

Added Section 2.1.7: Wakeup from Standby mode with RTC.

13-Oct-2016 4

Updated Table 4: Summary of silicon limitations.

Updated Section 2.1.5: Delay after an RCC peripheral clock enabling,
Section 2.4.2: Start cannot be generated after a misplaced Stop,
Section 2.5.1: BSY bit may stay high at the end of a data transfer in
slave mode and Section 2.5.2: The last transacted bit of data or CRC
calculation can be corrupted for the received data in master mode
depending on the timing of the feedback communication clock respect
to the APB clock (SPI or I2S).

Added Section 2.1.8: Data Cache might be corrupted during Flash Read
While Write operation, Section 2.5.3: Wrong CRC calculation when the
polynomial is even., Section 2.11.2: First nibble of data is not written
after dummy phase and Section 2.11.3: Wrong data can be read in
memory-mapped after an indirect mode operation.

DocID028202 Rev 4 33/33

STM32F469xx and STM32F479xx

33

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 ARM® 32-bit Cortex®-M4 with FPU limitations
	Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior
	1.1 Cortex®-M4 interrupted loads to stack pointer can cause erroneous behavior
	1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used

	2 STM32F469xx and STM32F479xx silicon limitations
	Table 4. Summary of silicon limitations
	2.1 System limitations
	2.1.1 Debugging Stop mode and system tick timer
	2.1.2 Debugging Sleep/Stop mode with WFE/WFI entry
	2.1.3 Full JTAG configuration without NJTRST pin cannot be used
	2.1.4 MPU attribute to RTC and IWDG registers could be managed incorrectly
	2.1.5 Delay after an RCC peripheral clock enabling
	2.1.6 Internal noise impacting the ADC accuracy
	2.1.7 Wakeup from Standby mode with RTC
	2.1.8 Data Cache might be corrupted during Flash Read While Write operation

	2.2 RTC limitations
	2.2.1 Spurious tamper detection when disabling the tamper channel
	2.2.2 Detection of a tamper event occurring before enabling the tamper detection is not supported in edge detection mode

	2.3 IWDG peripheral limitation
	2.3.1 RVU and PVU flags are not reset in STOP mode

	2.4 I2C peripheral limitations
	2.4.1 SMBus standard not fully supported
	2.4.2 Start cannot be generated after a misplaced Stop
	2.4.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.4.4 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.4.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus is higher than ((VDD+0.3) / 0.7) V
	2.4.6 Spurious Bus Error detection in master mode

	2.5 SPI peripheral limitations
	2.5.1 BSY bit may stay high at the end of a data transfer in slave mode
	2.5.2 The last transacted bit of data or CRC calculation can be corrupted for the received data in master mode depending on the timing of the feedback communication clock respect to the APB clock (SPI or I2S)
	Table 5. Maximum APB frequency vs. GPIOx_OSPEEDR setting

	2.5.3 Wrong CRC calculation when the polynomial is even.

	2.6 I2S peripheral limitation
	2.6.1 In I2S slave mode WS level must be set by the external master when enabling the I2S

	2.7 USART peripheral limitations
	2.7.1 Idle frame is not detected if receiver clock speed is deviated
	2.7.2 In full duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register
	2.7.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.7.4 Break frame is transmitted regardless of nCTS input line status
	2.7.5 nRTS signal abnormally driven low after a protocol violation
	2.7.6 Start bit detected too soon when sampling for NACK signal from the smartcard
	2.7.7 Break request can prevent the Transmission Complete flag (TC) from being set
	2.7.8 Guard time is not respected when data are sent on TXE events
	2.7.9 nRTS is active while RE or UE = 0

	2.8 bxCAN limitation
	2.8.1 bxCAN time triggered communication mode not supported

	2.9 Ethernet peripheral limitations
	2.9.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets without TCP, UDP or ICMP payloads
	2.9.2 The Ethernet MAC processes invalid extension headers in the received IPv6 frames
	2.9.3 MAC stuck in the Idle state on receiving the TxFIFO flush command exactly 1 clock cycle after a transmission completes
	2.9.4 Transmit frame data corruption
	2.9.5 Successive write operations to the same register might not be fully taken into account
	Table 6. Impacted registers and bits

	2.10 FMC peripheral limitation
	2.10.1 Dummy read cycles inserted when reading synchronous memories

	2.11 QUADSPI peripheral limitation
	2.11.1 Extra data written in the FIFO at the end of a read transfer
	2.11.2 First nibble of data is not written after dummy phase
	2.11.3 Wrong data can be read in memory-mapped after an indirect mode operation

	2.12 SDIO peripheral limitations
	2.12.1 Wrong CCRCFAIL status after a response without CRC is received
	2.12.2 No underrun detection with wrong data transmission

	2.13 ADC peripheral limitation
	2.13.1 ADC sequencer modification during conversion

	2.14 DAC peripheral limitations
	2.14.1 DMA underrun flag management
	2.14.2 DMA request not automatically cleared by DMAEN=0

	2.15 DSI Host peripheral limitations
	2.15.1 When used over the DSI link, the Tearing Effect Interrupt Flag is set when an Acknowledge Trigger is received from the display
	2.15.2 The time to activate the clock between HS transmissions is not calculated correctly
	2.15.3 The immediate update procedure may fail

	3 Revision history
	Table 7. Document revision history

