Development Board EPC9003C Quick Start Guide 200 V Half-Bridge with Gate Drive, Using EPC2010C **DESCRIPTION** www.epc-co.com The EPC9003C development board is a 200 V maximum device voltage, 5 A maximum output current, half bridge with onboard gate drives, featuring the EPC2010C enhancement mode (eGaN®) field effect transistor (FET). The purpose of this development board is to simplify the evaluation process of the EPC2010C eGaN FET by in-cluding all the critical components on a single board that can be easily connected into any existing converter. The EPC9003C development board is 2" x 1.5" and contains not only two EPC2010C *eGaN* FET in a half bridge configuration with gate drivers, but also an on board gate drive supply and bypass capacitors. The board contains all critical components and layout for optimal switching performance. There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. For more information on the EPC2010Cs *eGaN* FET please refer to the datasheet available from EPC at www.epc-co.com. The data-sheet should be read in conjunction with this quick start guide. | SYMBOL | PARAMETER | CONDITIONS | MIN | MAX | UNITS | |------------------|--|--------------------------------|------|-----|-------| | V _{DD} | Gate Drive Input Supply Range | | 7 | 12 | V | | V _{IN} | Bus Input Voltage Range | | | 170 | V | | V _{out} | Switch Node Output Voltage | | | 200 | V | | I _{out} | Switch Node Output Current | | | 5* | A | | V _{PWM} | PWM Logic Input Voltage Threshold | Input'High' | 3.5 | 6 | V | | | | Input'Low' | 0 | 1.5 | V | | | Minimum 'High' State Input Pulse Width | VPWM rise and fall time < 10ns | 60 | | ns | | | Minimum 'Low' State Input Pulse Width | VPWM rise and fall time < 10ns | 500# | | ns | ^{*} Assumes inductive load, maximum current depends on die temperature – actual maximum current with be subject to switching frequency, bus voltage and thermals. [#] Dependent on time needed to 'refresh' high side bootstrap supply voltage. ## **Quick Start Procedure** Development board EPC9003C is easy to set up to evaluate the performance of the EPC2010C *eGaN* FET. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below: - 1. With power off, connect the input power supply bus to $+V_{IN}$ (J5, J6) and ground / return to $-V_{IN}$ (J7, J8). - 2. With power off, connect the switch node of the half bridge OUT (J3, J4) to your circuit as required. - 3. With power off, connect the gate drive input to $+V_{DD}$ (J1, Pin-1) and ground return to $-V_{DD}$ (J1, Pin-2). - 4. With power off, connect the input PWM control signal to PWM (J2, Pin-1) and ground return to any of the remaining J2 pins. - 5. Turn on the gate drive supply make sure the supply is between 7 V and 12 V range. - 6. Turn on the bus voltage to the required value (do not exceed the absolute maximum voltage of 200 V on Vout). - 7. Turn on the controller / PWM input source and probe switching node to see switching operation. - 8. Once operational, adjust the bus voltage and load PWM control within the operating range and observe the output switching behavior, efficiency and other parameters. - 9. For shutdown, please follow steps in reverse. NOTE. When measuring the high frequency content switch node (OUT), care must be taken to avoid long ground leads. Measure the switch node (OUT) by placing the oscilloscope probe tip through the large via on the switch node (designed for this purpose) and grounding the probe directly across the GND terminals provided. See Figure 3 for proper scope probe technique. #### THERMAL CONSIDERATIONS The EPC9003C development board showcases the EPC2010C *eGaN* FET. Although the electrical performance surpasses that for traditional Silicon devices, their relatively smaller size does magnify the thermal management requirements. The EPC9003C is intended for bench evaluation with low ambient temperature and convection cooling. The addition of heat-sinking and forced air cooling can significantly increase the current rating of these devices, but care must be taken to not exceed the absolute maximum die temperature of 125°C. NOTE: The EPC9003C development board does not have any current or thermal protection on board. Figure 1: Block Diagram of EPC9003C Development Board Figure 4: Waveforms for V $_{\rm IN}=170$ V to 5 V/5 A (100kHz) Buck converter CH1: V $_{\rm PWN}$ Input voltage - CH4: (V $_{\rm Out}$) Switch node voltage Figure 2: Proper Connection and Measurement Setup Figure 3: Proper Measurement of Switch Node – OUT | Table | 2 | : Rill | of Ma | aterial | |-------|---|--------|---------|---------| | IUNI | | · PIII | VI 1111 | uttiui | | Item Qty Reference Part Description Manufacturer / Part # 1 5 C1, C2, C3, C10, C11 Capacitor, 1uF, 10%, 25V, X5R Murata, GRM188R61E105KA12D 2 2 C6, C7 Capacitor, 100pF, 5%, 50V, NP0 TDK, C1608C0G1H101J 3 4 C8, C9, C12, C13 Capacitor, 0.22uF, 10%, 16V, X7R TDK, C1005X7R1C224K 4 3 C16, C17, C18 Capacitor, 0.1uF, 10%, 250V, X7T C2012X7T2E104K125AA 5 2 D1, D2 Schottky Diode, 30V Diodes Inc., SDM03U40-7 6 1 D3 Diode, 200V Diodes Inc., BAV21WS-7-F 7 2 D4, D5 Diode, 40V Diodes Inc., BAS40LP-7 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN*FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stack | | | | | | | |---|------|-----|------------------------|----------------------------------|-----------------------------|--| | 2 2 C6, C7 Capacitor, 100pF, 5%, 50V, NP0 TDK, C1608C0G1H101J 3 4 C8, C9, C12, C13 Capacitor, 0.22uF, 10%, 16V, X7R TDK, C1005X7R1C224K 4 3 C16, C17, C18 Capacitor, 0.1uF, 10%, 250V, X7T C2012X7T2E104K125AA 5 2 D1, D2 Schottky Diode, 30V Diodes Inc., SDM03U40-7 6 1 D3 Diode, 200V Diodes Inc., BAV21WS-7-F 7 2 D4, D5 Diode, 40V Diodes Inc., BAS40LP-7 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN°FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0603FT00R0 14 4 R2, R3, R6, R15 Resistor, 100Ohm, 1/8, 1/8W Stackpole, RMCF0603FT100R 15 1 R4 Resistor, 470 | ltem | Qty | Reference | Part Description | Manufacturer / Part # | | | 3 4 C8, C9, C12, C13 Capacitor, 0.22uF, 10%, 16V, X7R TDK, C1005X7R1C224K 4 3 C16, C17, C18 Capacitor, 0.1uF, 10%, 250V, X7T C2012X7T2E104K125AA 5 2 D1, D2 Schottky Diode, 30V Diodes Inc., SDM03U40-7 6 1 D3 Diode, 200V Diodes Inc., BAV21WS-7-F 7 2 D4, D5 Diode, 40V Diodes Inc., BAS40LP-7 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN*FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0603FT00R0 14 4 R2, R3, R6, R15 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 15 1 R4 Resistor, 470 Ohm, 1%, 1/8W Stackpol | 1 | 5 | C1, C2, C3, C10, C11 | Capacitor, 1uF, 10%, 25V, X5R | Murata, GRM188R61E105KA12D | | | 4 3 C16, C17, C18 Capacitor, 0.1uF, 10%, 250V, X7T C2012X7T2E104K125AA 5 2 D1, D2 Schottky Diode, 30V Diodes Inc., SDM03U40-7 6 1 D3 Diode, 200V Diodes Inc.,BAV21WS-7-F 7 2 D4, D5 Diode, 40V Diodes Inc.,BAS40LP-7 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN°FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0603FT00R0 14 4 R2, R3, R6, R15 Resistor, 1000hm, 1%, 1/8W Stackpole, RMCF0603FT100R 15 1 R4 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT1470R | 2 | 2 | C6, C7 | Capacitor, 100pF, 5%, 50V, NP0 | TDK, C1608C0G1H101J | | | 5 2 D1, D2 Schottky Diode, 30V Diodes Inc., SDM03U40-7 6 1 D3 Diode, 200V Diodes Inc., BAV21WS-7-F 7 2 D4, D5 Diode, 40V Diodes Inc., BAS40LP-7 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN*FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0603FT10K0 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT100R 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 3 | 4 | C8, C9, C12, C13 | Capacitor, 0.22uF, 10%, 16V, X7R | TDK, C1005X7R1C224K | | | 6 1 D3 Diode, 200V Diodes Inc.,BAV21WS-7-F 7 2 D4, D5 Diode, 40V Diodes Inc.,BAS40LP-7 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN*FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0603FT10K0 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 4 | 3 | C16, C17, C18 | Capacitor, 0.1uF, 10%, 250V, X7T | C2012X7T2E104K125AA | | | 7 2 D4, D5 Diode, 40V Diodes Inc.,BAS40LP-7 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN®FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 5 | 2 | D1, D2 | Schottky Diode, 30V | Diodes Inc., SDM03U40-7 | | | 8 1 J1 Connector 2pins of Tyco, 4-103185-0 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN°FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 6 | 1 | D3 | Diode, 200V | Diodes Inc.,BAV21WS-7-F | | | 9 1 J2 Connector 4pins of Tyco, 4-103185-0 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN°FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 7 | 2 | D4, D5 | Diode, 40V | Diodes Inc.,BAS40LP-7 | | | 10 1 J3, J4, J5, J6, J7, J8 Connector FCI, 68602-224HLF 11 2 Q1, Q2 eGaN°FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 8 | 1 | J1 | Connector | 2pins of Tyco, 4-103185-0 | | | 11 2 Q1, Q2 eGaN°FET EPC, EPC2010C 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 9 | 1 | J2 | Connector | 4pins of Tyco, 4-103185-0 | | | 12 1 R1 Resistor, 10.0K, 5%, 1/8W Stackpole, RMCF0603FT10K0 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 10 | 1 | J3, J4, J5, J6, J7, J8 | Connector | FCI, 68602-224HLF | | | 13 2 R11, R12 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 11 | 2 | Q1, Q2 | eGaN®FET | EPC, EPC2010C | | | 14 4 R2, R3, R6, R15 Resistor, 0 Ohm, 1/8W Stackpole, RMCF0603FT00R0 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 12 | 1 | R1 | Resistor, 10.0K, 5%, 1/8W | Stackpole, RMCF0603FT10K0 | | | 15 1 R4 Resistor, 100Ohm, 1%, 1/8W Stackpole, RMCF0603FT100R 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 13 | 2 | R11, R12 | Resistor, 0 Ohm, 1/16W | Stackpole, RMCF0402ZT0R00 | | | 16 1 R5 Resistor, 470 Ohm, 1%, 1/8W Stackpole, RMCF0603FT470R | 14 | 4 | R2, R3, R6, R15 | Resistor, 0 Ohm, 1/8W | Stackpole, RMCF0603FT00R0 | | | | 15 | 1 | R4 | Resistor, 100Ohm, 1%, 1/8W | Stackpole, RMCF0603FT100R | | | 17 2 TP1, TP2 Test Point Keystone Elect, 5015 | 16 | 1 | R5 | Resistor, 470 Ohm, 1%, 1/8W | Stackpole, RMCF0603FT470R | | | | 17 | 2 | TP1, TP2 | Test Point | Keystone Elect, 5015 | | | 18 1 TP3 Connector 1/40th of Tyco, 4-103185-0 | 18 | 1 | TP3 | Connector | 1/40th of Tyco, 4-103185-0 | | | 19 1 U1 I.C., Logic Fairchild, NC7SZ00L6X | 19 | 1 | U1 | I.C., Logic | Fairchild, NC7SZ00L6X | | | 20 1 U2 I.C., Opto-coupler Silicon Labs, Si8610BC | 20 | 1 | U2 | I.C., Opto-coupler | Silicon Labs, Si8610BC | | | 21 1 U4 I.C., Logic Fairchild, NC7SZ08L6X | 21 | 1 | U4 | I.C., Logic | Fairchild, NC7SZ08L6X | | | 22 2 U6, U7 I.C., Gate driver Texas Instruments, UCC27611 | 22 | 2 | U6, U7 | I.C., Gate driver | Texas Instruments, UCC27611 | | | 23 0 P1, P2 Optional potentiometer | 23 | 0 | P1, P2 | Optional potentiometer | | | | 24 0 R13 Optional resistor | 24 | 0 | R13 | Optional resistor | | | | 25 0 U5 Optional I.C. | 25 | 0 | U5 | Optional I.C. | | | ### For More Information: Please contact info@epc-co.com or your local sales representative Visit our website: www.epc-co.com Sign-up to receive EPC updates at bit.ly/EPCupdates or text "EPC" to 22828 EPC Products are distributed through Digi-Key. www.digikey.com #### **Development Board / Demonstration Board Notification** The EPC9003C board is intended for product evaluation purposes only and is not intended for commercial use. As an evaluation tool, it is not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations. As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that en not RoHS compliant. Efficient Power Conversion Corporation (EPC) makes no quarantee that the purchased board is 100% RoHS compliant. No Licenses are implied or granted under any patent right or other intellectual property whatsoever. EPC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind. EPC reserves the right at any time, without notice, to change said circuitry and specifications.