

Evaluation Board User Manual

AD5258/AD5259

5 Steps to Setup The Evaluation Board...

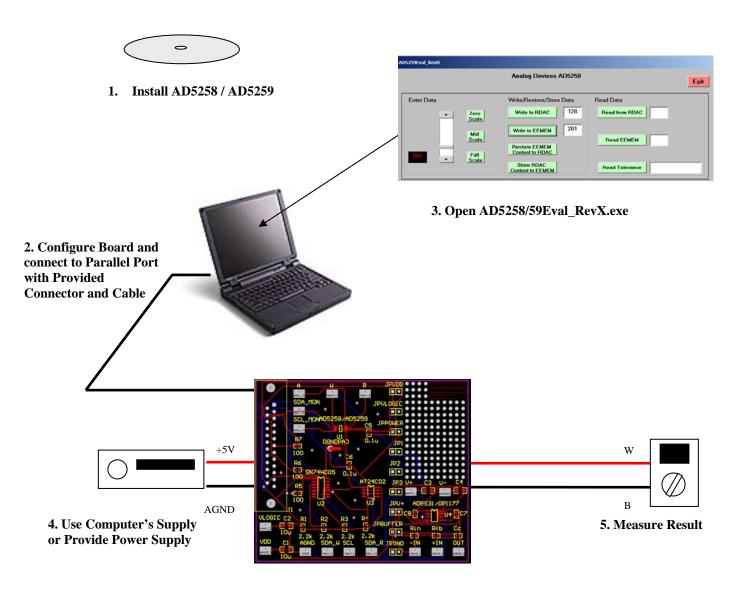


Figure 1. Evaluation Kit Setup

No Programming Skills Required!

Evaluation Board User Manual

AD5258/AD5259

General Overview

This evaluation board provides the user with a simple and quick solution to evaluate digital potentiometers from Analog Devices.

How to Get Started

- 1. Load the CD and click on setup.exe.
- 2. Use power from the parallel port or apply an external power supply(refer to "Powering Options" to avoid damaging the part and computer port).
- 3. Connect board to parallel port with the provided connector and cable.
- 4. Open the AD5258/59Eval_RevX program from the Windows Start menu.

Powering Options

- A. Using the power from the parallel port.
 - 1. Connect JPVDD jumper. This will power V_{DD}.
 - 2. Connect JPVLOGIC jumper. This will power V_{LOGIC} .
- B. Using an external power supply(supply must be at least +2.7V)*
 - 1. DO NOT connect JPVDD and JPLOGIC jumpers.
 - 2. Connect JPPOWER jumper.
 - 3. Connect voltage supply power and ground to the V_{DD} and GND pads on the board.

*If two independent supplies are being for V_{DD} and V_{LOGIC} , do not connect JPPOWER. Simply apply the two power supplies to V_{DD} , V_{LOGIC} , and GND pads on the board.

How to Use Software Interface

- 1. In the 'Enter Data' box, either type in the value, use the scroll bar, or click a preset button. Note that this is simply a data entry box and does not perform any function on the digital potentiometer device. Communication with the device occurs in Steps 2 and 3.
- 2. In the 'Write/Restore/Store' box...
 - i. Click on 'Write to RDAC' to write value chosen in Step 1 to the RDAC.
 - ii. Click on 'Write to EEMEM' to write value chosen in Step 1 to the EEMEM.
 - iii. Click on 'Restore EEMEM Content to RDAC' to restore current EEMEM content to RDAC.
 - iv. Click on 'Store RDAC Content to EEMEM' to store current RDAC setting to EEMEM.
- 3. In the 'Read Data' box...
 - i. Click on 'Read from RDAC' to read back current setting of RDAC.
 - ii. Click on 'Read EEMEM' to read back current content of EEMEM.
 - iii. Click on 'Read Tolerance' to read back the tolerance of the resistance R_{AB} . For example, if the device is the device is a $10k\Omega$ option and the tolerance readback is 3.5%, that would mean the actual value of $R_{AB}=10{,}350\Omega$.

Evaluation Board User Manual

AD5258/AD5259

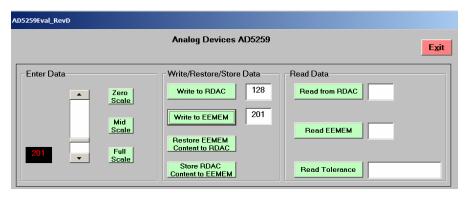


Figure 2. AD5259 Software Graphical Interface

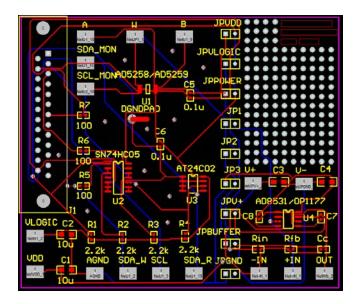


Figure 3. Evaluation Board Top Overlay.

Evaluation Board User Manual

AD5258/AD5259

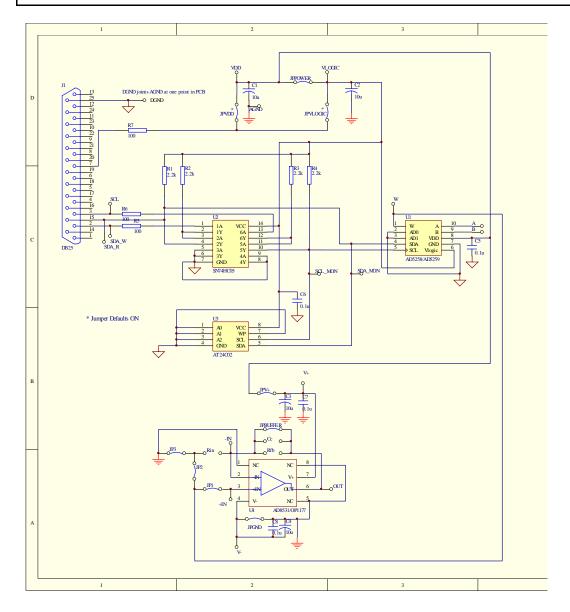


Figure 4. Evaluation Board Schematic

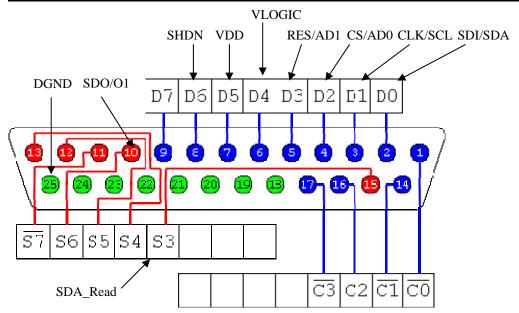



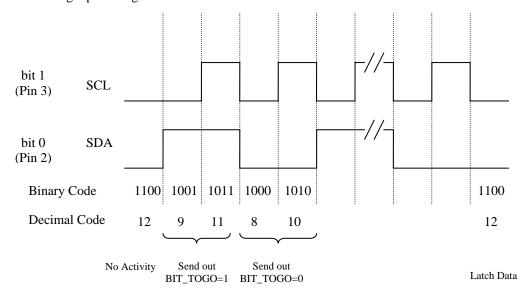
Figure 5. Pinout

Evaluation Board User Manual

AD5258/AD5259

Parallel Port Connection (Information for Visual Basic Program Developers Only)

http://www.doc.ic.ac.uk/~ih/doc/par/


8 output pins accessed via the **DATA Port**

5 input pins (one inverted) accessed via the STATUS Port

4 output pins (three inverted) accessed via the **CONTROL Port**

The remaining 8 pins are grounded

portID = Val("&H" + "378") [378h = 888] portID = Val("&H" + "379") [379h = 889] portID = Val("&H" + "37A") [37Ah = 890]

