

Pan-Lug™ Copper Compression Parallel Splices

PANDUIT® PAN-LUG™ Parallel Splices deliver installation flexibility and reduced costs with the most UL Listed and CSA Certified conductor combinations in the industry. Ten parts provide safe and reliable terminations of 278 conductor combinations to increase productivity and minimize inventory requirements. Simplify installation and improve reliability with Pan-Lug™ Parallel Splices, the first to be approved with dieless crimping tools.

The splices feature industry recognized color coding and large, easy-to-read part numbering for visual verification in demanding low light conditions. Save time and money with a new selection guide that simplifies part selection from design and ordering to job site installation.

PANDUIT offers a complete system for terminating and splicing including die type and dieless tools, heat shrink, labeling and grounding connectors.

Key Features

Benefits

UL Listed and CSA Certified with the most conductor combinations in the industry	Ten parts provide safe and reliable terminations of 278 conductor combinations to reduce procurement costs, minimize inventory requirements, and increase productivity
UL Listed and CSA Certified with die type and dieless crimping tools	Dieless crimping tools eliminate the need to purchase or match crimping dies, reducing costs and speeding installation
UL Listed and CSA Certified for maximized fill rate of up to six conductors	Enables greater application flexibility
Color coded selection guide	Facilitates fast and accurate part selection for improved productivity
Single crimp design	Speeds installation and reduces labor costs
Largest marking in the industry	Easier to read in demanding low light conditions for increased productivity
Industry recognized color coding	Allows proper part selection and quick identification of crimping dies to speed installation
Chamfered on both ends	Facilitates fast and easy conductor insertion to speed installation

Technical Information

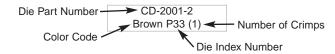
- UL Listed and CSA Certified to 35 kV
- Temperature rated to 90°C

- RoHS Compliant
- Made from high strength, high conductivity, electrolytic copper
- Tin-plated

Pan-Lug™ Copper Compression Parallel Splices

Part Number	Barrel O.D. (In.)	Length (ln.)	PANDUIT Color Code	PANDUIT Die Index No.	Wire Strip Length (In.)	Std. Pkg. Qty.
PSCRED-L	0.27	0.50	Red	P21	7/16	50
PSCBLU-L	0.31	0.50	Blue	P24	7/16	50
PSCGRY-L	0.38	0.50	Gray	P29	7/16	50
PSCBRN-L	0.47	0.62	Brown	P33	11/16	50
PSCGRN-L	0.52	0.62	Green	P37	11/16	50
PSCPNK-L	0.58	0.62	Pink	P42	11/16	50
PSCBLK-Q	0.64	0.81	Black	P45	7/8	25
PSCORG-Q	0.71	0.81	Orange	P50	7/8	25
PSCPUR-Q	0.77	0.88	Purple	P54	1	25
PSCYEL-Q	0.81	1.05	Yellow	P62	1 1/16	25

PANDUIT® Pan-Lug™ Parallel Splices Selection Guide


Match the horizontal axis conductor size/quantity with the vertical axis conductor size/quantity to determine the color code of the correct part to use for your application.

AWG	AWG		#14			#12			#10			#8			#6			#4			#2			#1			1/0			2/0			3/0	
AIIO	# of Wires	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	1	_											_		_	_		_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_
#14	2												_		_	_		_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
	3							Г					_		_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_
	1																								_			_		_	_		_	_
#12	2																								_			_	Г	_	_		_	-
	3																								_			_		_	_		_	-
	1							Г																	_			_	┌	_	_		_	-
#10	2																								_	Г		_		_	_		_	_
	3																								_	Г		_		_	_		_	_
	1							Г																	_	г		_	Т	_	_		_	
#8	2																								_	Г		_		_	_		_	_
	3	_	_	_																					_	Г	_	_		_	_		_	_
	1																						Г		_	г		_		_	_		_	
#6	2	_	_	_																		_	Г		_			_		_	_		_	-
	3	_	_	_																		_			_		_	_		_	_		_	١.
	1			_																г		-			_			_		_	_		_	-
#4	2	_	_	_																		_		_	_		_	_		_	_		_	<u> </u>
	3	_	_	_															_		_	_		_	_		_	_	_	_	_	_	_	١.
	1	_	_	_				Т														-		_	_		-	_		_	_	_	_	-
#2	2	_	_	_															_		_	_		_	_		_	_	_	_	_	_	_	<u> </u>
	3	_	_	_											_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-
	1	_	_	_																		-		-	_		-	_	_	_	_	_	_	
#1	2	_	_	_														_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-
	3	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_		_	_	-	_	_		_	_	-	_	_	_	_	-
	1	_	_	_																		-		_	_		-	_	_	_	_	_	_	-
1/0	2	_	_	_									_			_		_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	١.
	3	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	-	_	_	-	_	_	-	_	_	-	_	_	_	_	-
	1	_	_	_															_		_	_	-	_	_	_	_	_	_	_	_	_	_	-
2/0	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			-	_		-		_	 		_		_	
	3	_	_	_	_				_		H			-				_		H			 	_		 -		_			_	_	_	
	1	_	_	_															_	=	_	_	-	_	_	-	_	_	Ε	_	_	_	_	
3/0	2	_	_		_	_		_	_	_	_	_	_	_	_	_	_	_		-	_		-	_	_	-		_	-		_	_	_	
	3	_		_			_												_				_			-			_					-
	aminated		_	-		-			-	_			-	<u> </u>				-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	

For the laminated Selection Guide, request PANDUIT Parallel Splice Selection Guide, SA-PCSG13.

Crimping Tools and Die Selections for Copper Compression Parallel Splices with Copper Code Conductor

How to read this chart For PSCBRN-L parallel splice and CT-2001 crimping tool:

LISTED CERTIFIED			PANDUIT Crimping Tool	Part Number					
PANDUIT Splice	Wire Strip Length	<i>UNI-DIE</i> [™] Dieless CT-980, CT-980CH, CT-2950, CT-2980, CT-2981	CT-2001, CT-2002	CT-920, CT-930, CT-2940*, CT-920CH, CT-930CH, CT-940CH*, CT-2920, CT-2930, CT-2931					
Part Number	(In.)	Die Part Number/Color Code and Die Index Number (Number of Crimps)							
PSCRED-L	7/16	_	CD-2001-8 Red P21 (1)	CD-920-8 Red P21 (1)					
PSCBLU-L	7/16	_	CD-2001-6 Blue P24 (1)	CD-920-6 Blue P24 (1)					
PSCGRY-L	7/16	(1)	CD-2001-4 Gray P29 (1)	CD-920-4 Gray P29 (1)					
PSCBRN-L	11/16	(1)	CD-2001-2 Brown P33 (1)	CD-920-2 Brown P33 (1)					
PSCGRN-L	11/16	(1)	CD-2001-1 Green P37 (1)	CD-920-1 Green P37 (1)					
PSCPNK-L	11/16	(1)	CD-2001-1/0 Pink P42 (1)	CD-920-1/0 Pink P42 (1)					
PSCBLK-Q	7/8	(1)	CD-2001-2/0 Black P45 (1)	CD-920-2/0 Black P45 (1)					
PSCORG-Q	7/8	(1)	CD-2001-3/0 Orange P50 (1)	CD-920-3/0 Orange P50 (1)					
PSCPUR-Q	1	(1)	CD-2001-4/0 Purple P54 (1)	CD-920-4/0 Purple P54 (1)					
PSCYEL-Q	1 1/16	(1)	CD-2001-250 Yellow P62 (1)	CD-920-250 Yellow P62 (1)					

^{*}CD-920 dies can be used with CT-940CH and CT-2940 tools with the CD-940-DA die adapter. For the laminated Selection Guide, request *PANDUIT* Parallel Splice Selection Guide, SA-PCSG13.

Compression Connector Crimping Tools

Part Number	Part Description
CT-930	Die type, manual hydraulic, 14 ton, crimping tool; includes tool case with die storage.
CT-2001	Die type, battery powered hydraulic, 6 ton, crimping tool; includes two batteries, charger, shoulder strap and tool case.
CT-2002	Die type, battery powered hydraulic, 6 ton, crimping tool with open "C-Head" design; includes two batteries, charger, shoulder strap and tool case.
CT-2931	Die type, battery powered hydraulic, 12 ton, crimping tool; includes two batteries, charger, and tool case.
CT-930CH	Die type, remote hydraulic, 14 ton, crimp head; used with 10,000 PSI hydraulic systems; includes tool case and female Parker type quick-connect fitting assembled to tool.
CT-980	UNI-DIE™ Dieless, Manual Hydraulic, 6.2 Ton, Crimping Tool; includes plastic tool case.
CT-2981	<i>UNI-DIE</i> ™ Dieless, Battery Powered Hydraulic, 6.2 Ton, Crimping Tool, 12 VDC; includes two batteries, charger, and tool case.
CT-980CH	<i>UNI-DIE™</i> Dieless Remote Hydraulic, 6.2 Ton, Crimp Head; used with 10,000 PSI hydraulic systems; includes tool case and female Parker type quick-connect fitting assembled to tool.

For more detailed crimping tool information, refer to www.panduit.com.

Related Products

Complete your solution with superior heat shrink, labeling, and grounding products for street lighting and other parallel splice applications.

Light Pole Service Post Connector Wiring Detail Heat Shrink Parallel Splice

IP68 № Heat Shrink End Caps and Tubing

- Applications include insulating, protecting, and color coding conductors
- Adhesive-lined inner wall seals and protects against moisture
- End cap temperature range -67°F to 230°F
- Thick wall tubing temperature range -85°F to 230°F
- Thick wall tubing meets UL 486D
- Voltage rating: 600 V

Parallel Splice Part Number	Recommended Heat Shrink End Cap	Recommended Thick Wall Heat Shrink				
PSCRED-L						
PSCBLU-L	HSECFR0.5-X	HST0.4-6-3				
PSCGRY-L						
PSCBRN-L						
PSCGRN-L						
PSCPNK-L	HSECFR0.8-X	HST0.8-6-3				
PSCBLK-Q						
PSCORG-Q						
PSCPUR-Q	HSECFR1.0-X	HST1.1-6-3				
PSCYEL-Q						

Thermal Transfer Labeling

- Self-laminating vinyl label offers crisp clear legends with superior legibility
- Includes a white print-on area and clear overlaminate to protect the legend for clear and durable identification
- Indoor/outdoor rated for versatility

	Suggested Label Solutions								
AWG	TDP43MY Thermal Transfer Desktop Printer Label	PANTHER [™] LS8E Hand-Held Printer Label							
#18 – #14	S100X075VATY	S100X075VAC							
#12 – #10	S100X125VATY	S100X125VAC							
#8 – #4	S100X225VATY	S100X225VAC							
#2 – #1	S100X400VATY	S100X400VAC							
1/0 - 3/0	S100X650VATY	S100X650VAC							

Service Post Grounding Connectors

- For grounding a single copper code conductor to steel structures, busbars, or transformers
- UL Listed for grounding and bonding and suitable for direct burial in earth or concrete
- True hex design for body and nut hex provides correct fit with socket, box, or open end wrenches resulting in proper torquing of electrical connection

Part Number	Conductor Size Range	Stud Size‡
SP1-4-C	#10 SOL - #4 STR	5/16 — 18
SP1-3-C	#6 SOL – #3 STR	3/8 – 16
SP1-1/0-L	#6 SOL - 1/0 STR	1/2 – 13

‡UNC threads.

WORLDWIDE SUBSIDIARIES AND SALES OFFICES

PANDUIT CANADA Markham, Ontario cs-cdn@panduit.com Phone: 800.777.3300 PANDUIT EUROPE LTD. London, UK cs-emea@panduit.com Phone: 44.20.8601.7200 PANDUIT SINGAPORE PTE. LTD. Republic of Singapore Phone: 65.6305.7575

PANDUIT JAPAN Tokyo, Japan cs-japan@panduit.com Phone: 81.3.3767.7011 PANDUIT LATIN AMERICA Jalisco, Mexico cs-la@panduit.com Phone: 52.333.777.6000

PANDUIT AUSTRALIA PTY. LTD. Victoria, Australia cs-aus@panduit.com Phone: 61.3.9794.9020

For a copy of PANDUIT product warranties, log on to www.panduit.com/warranty

For more information

Visit us at www.panduit.com

Contact Customer Service by email: cs@panduit.com or by phone: 800-777-3300 and reference PCCB08

©2007 PANDUIT Corp. ALL RIGHTS RESERVED. Printed in the U.S.A. Product Bulletin Number SA-PCCB08