
May 2014
IPUG98_1.1

2.5 Gbps Ethernet MAC IP Core User’s Guide

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

IPUG98_1.1, May 2014 2 2.5 Gbps Ethernet MAC User’s Guide

Chapter 1. Introduction .. 4
Quick Facts ... 4
Features .. 4

Chapter 2. Functional Description .. 6
Functional Overview.. 7
Core Signal Descriptions... 9

Host Interface... 12
Receive MAC (Rx MAC) .. 12
Transmit MAC (Tx MAC).. 15
Internal Data Buffer and FIFO Interfaces ... 16

Internal Registers .. 16
Register Descriptions .. 17

MODE (R/W) .. 17
Transmit and Receive Control (R/W) ... 18
Maximum Packet Size (R/W) ... 18
IPG (Inter-Packet Gap) (R/W) .. 18
MAC Address Register {0,1,2} (R/W), Set of Three ... 19
Transmit and Receive Status (RO) .. 19
VLAN Tag (RO).. 19
Multicast Tables (R/W), Set of Eight .. 20
Pause Opcode (R/W) ... 20

Timing Specifications .. 20
Reception of a 64-Byte Frame Without Error – Rx MAC Application Interface .. 20
Reception of a 64-byte Frame with Error(s) – Rx MAC Application Interface .. 21
Reception of a 64-Byte Frame with FIFO Overflow - Rx MAC Application Interface 21
Successful Transmission of a 64-Byte Frame -Tx MAC Application Interface... 22
Successful Transmission of a 64-byte Frame with FIFO Empty – Tx MAC Application Interface.............. 23
Aborted Transmission Due to FIFO Empty – Tx MAC Application Interface.. 24

Host Interface Read/Write Operation .. 24
GMII Transmit and Receive Operations... 25

Chapter 3. Parameter Settings .. 27
Synthesis/Simulation Tools Selection ... 27

Chapter 4. IP Core Generation and Evaluation .. 28
Licensing the IP Core.. 28
Getting Started .. 28
IPexpress-Created Files and Top Level Directory Structure... 30
Instantiating the Core .. 31
Running Functional Simulation ... 31
Synthesizing and Implementing the Core in a Top-Level Design ... 32

Using Project Files With Synplify in Diamond .. 33
Hardware Evaluation... 33

Enabling Hardware Evaluation in Diamond.. 33
Updating/Regenerating the IP Core .. 33

Regenerating an IP Core in Diamond .. 33
Chapter 5. Application Support... 35

Test Application Design .. 35
The Test Logic Module... 35
The JTAG ORCAstra to Host Bus/USI module .. 35
The Register Interface Module... 35

Table of Contents

 Table of Contents

IPUG98_1.1, May 2014 3 2.5 Gbps Ethernet MAC User’s Guide

2.5GMAC Support Logic .. 36
Simulation of the Test Application.. 36
Test Application Registers ... 37

Register Descriptions .. 38
Version/Identification (RO) ... 38
Test Control Register (R/W)... 39
Test Control Register 2 (R/W).. 39
MAC Control Register (R/W).. 39
Pause Timer Register - Low Byte (R/W) .. 40
Pause Timer Register - High Byte (R/W) ... 40
FIFO Almost Full Threshold Register - Low (R/W)... 40
FIFO Almost Full Threshold Register - High (R/W).. 40
FIFO Almost Empty Threshold Register - Low (R/W) .. 40
FIFO Almost Full Threshold Register - High (R/W).. 41
Rx Status Register (RO/COR) ... 41
TXSTATUS (RO/COR)... 41

Code Listing for Multicast Bit Selection Hash Algorithm in C Language... 42
Chapter 6. Core Validation... 45
Chapter 7. Support Resources .. 47

Lattice Technical Support.. 47
E-mail Support ... 47
Local Support ... 47
Internet ... 47
IEEE... 47

References.. 47
Revision History .. 47

Appendix A. Resource Utilization ... 48
LatticeECP3 FPGAs.. 48

Ordering Part Number.. 48

IPUG98_1.1, May 2014 4 2.5 Gbps Ethernet MAC User’s Guide

This document provides technical information about the Lattice 2.5 Gbps Ethernet Media Access Controller
(2.5GMAC) IP core.

The 2.5GMAC IP core supports the ability to transmit and receive data between a host processor and an Ethernet
network. The main function of the Ethernet MAC is to ensure that the Media Access rules specified in the 802.3
IEEE standard are met while transmitting a frame of data over Ethernet. On the receiving side, the Ethernet MAC
extracts the different components of a frame and transfers them to higher applications through the FIFO interface.

The 2.5GMAC IP core comes with the following documentation and files:

• Protected netlist/database

• Behavioral RTL simulation model

• Source files for instantiating and evaluating the core

Quick Facts

Core Requirements
FPGA Families Supported LatticeECP3TM

Minimal Device Needed LFE3-17EA-8FTN256C

Resource Utilization

Data Path Width 16

LUTs2 2100

sysMEM EBRs2 1

Registers2 1290

Design Tool Support

Lattice Implementation Lattice Diamond® 1.3

Synthesis
Synopsys® Synplify® Pro for Lattice E-2011.03L

Mentor Graphics® Precision® RTL

Simulation

Aldec® Active-HDL™ 8.2 Lattice Edition (Verilog and VHDL)

Mentor Graphics® ModelSim® 6.3f SE (Verilog only)

Cadence® NC-Verilog® (Linux only)

Table 1-1 gives quick facts about the 2.5GMAC IP core.

Features
• Compliant to IEEE 802.3-2005 standard

• Generic 8-bit host interface

• 16-bit wide internal data path

• Generic transmit and receive FIFO interface

• Full-duplex operation

• Transmit and receive statistics vector

• Programmable Inter-Packet Gap (IPG)

• Multicast address filtering

Table 1-1. 2.5GMAC IP Core Quick Facts

2.5GMAC IP Configuration

Chapter 1:

Introduction

at: www.latticesemi.com/software.

 Introduction

IPUG98_1.1, May 2014 5 2.5 Gbps Ethernet MAC User’s Guide

• Supports:
– Full-duplex control using PAUSE frames
– VLAN tagged frames
– Automatic padding of short frames
– Multicast and Broadcast frames
– Optional FCS transmission and reception
– Jumbo frames of any length

IPUG98_1.1, May 2014 6 2.5 Gbps Ethernet MAC User’s Guide

The 2.5GMAC IP core is a fully synchronous machine composed of Transmit and Receive MAC sections that oper-
ate independently to support full duplex operation.

The block diagram of the 2.5GMAC IP core is shown in Figure 2-1. The major functional modules are:

• Host Interface

• Receive MAC

• Transmit MAC

• Internal Buffers and FIFO Interfaces

• GMII

Figure 2-1. Core Block Diagram

Transmit
MAC

GMII

Host
Interface

Receive
MAC

rx_fifo_full

ignore_pkt

rx_dbout[15:0]

rx_write

rx_stat_en

rx_statvector[31:0]

rx_fifo_error

rx_eof

rx_error

rx_last_byte_valid

tx_mac_clk

rx_mac_clk

txd[15:0]

txen[1:0]

txer[1:0]

rxd[15:0]

rxdv[1:0]

rxer[1:0]

cpu_if_gbit_en

hready_n

hdataout_en_n

hdataout[7:0]

haddr[7:0]

hdatain[7:0]

hcs_n

hwrite_n

hread_n

hclk

tx_fifodata[15:0]

tx_fifoavail

tx_fifoeof

tx_fifoempty

tx_sndpaustim[15:0]

tx_sndpausreq

tx_fifoctrl

tx_last_byte_valid

tx_macread

tx_discfrm

tx_staten

tx_statvec[30:0]

tx_done

reset_n

Chapter 2:

Functional Description

 Functional Description

IPUG98_1.1, May 2014 7 2.5 Gbps Ethernet MAC User’s Guide

Functional Overview
The 2.5GMAC IP core transmits and receives data between a client application and an Ethernet network. The main
function of the Ethernet MAC is to ensure that the Media Access rules specified in the 802.3 IEEE standard are met
while transmitting and receiving Ethernet frames. Figure 2-2, Figure 2-3, and Figure 2-4 show some of the frame
formats of data transmitted and received on the Ethernet network that the 2.5GMAC IP core supports.

On the receiving side, the Ethernet MAC extracts the different components of a frame and transfers them to higher
applications through the client FIFO interface.

The data received from the GMII interface is first buffered until sufficient data is available to be processed by the
Receive MAC (Rx MAC). The Preamble and the Start-of-Frame Delimiter (SFD) information are then extracted
from the incoming frame to determine the start of a valid frame. The Receive MAC checks the address of the
received packet and validates whether the frame can be received before transferring it into the FIFO. Only valid
frames are transferred into the FIFO (runts and fragments are discarded). The Rx MAC also provides a statistics
vector on a per packet basis that can be used by the application. The 2.5GMAC IP core always calculates CRC to
check whether the frame was received error-free.

On the transmit side, the Tx MAC is responsible for controlling access to the physical medium. The Tx MAC reads
data from an external client Tx FIFO, formats this data into an Ethernet packet and passes it to the GMII module.

The Tx MAC reads data from the Tx Client FIFO when the client indicates a packet is available, and the Tx MAC is
in its appropriate state. The Tx MAC pre-fixes the Preamble and the Start-of-Frame Delimiter information to the
data and appends the Frame Check Sequence at the end of the data.

Figure 2-2. Un-Tagged Ethernet Frame Format

Figure 2-3. VLAN-Tagged Ethernet Frame Format

Figure 2-4. Ethernet Control Pause Frame Format

A Tagged frame includes a 4-byte VLAN Tag field, which is located between the Source Address field and the
Length/Type field. The VLAN Tag field includes the VLAN Identifier and other control information needed when
operating with Virtual Bridged LANs as described in IEEE P802.1Q.

PREAMBLE

7 bytes

SFD

1 byte

DESTINATION
ADDRESS

6 bytes

SOURCE
ADDRESS

6 bytes

LENGTH/
TYPE

2 bytes

 DATA/PAD

46-1500 bytes

FRAME CHECK
SEQUENCE

4 bytes

PREAMBLE

7 bytes

SFD

1 byte

DESTINATION
ADDRESS

6 bytes

SOURCE
ADDRESS

6 bytes

LENGTH/
TYPE

2 bytes

VLAN TAG
HEADER

4 bytes

 DATA/PAD

46-1500 bytes

FRAME CHECK
SEQUENCE

4 bytes

PREAMBLE

7 bytes

SFD

1 byte

DESTINATION
ADDRESS

01-80-C2-00-00-01
6 bytes

SOURCE
ADDRESS

6 bytes

MAC CTL
OP_CODE

00-01
2 bytes

LENGTH/TYPE
88-08

2 bytes

OP_CODE
PARAMS/RSV

60 bytes

FRAME CHECK
SEQUENCE

4 bytes

 Functional Description

IPUG98_1.1, May 2014 8 2.5 Gbps Ethernet MAC User’s Guide

Note that the 2.5GMAC’s GMII interface utlizes a 16-bit data interface. Although this interface conforms to the tim-
ing specified in IEEE 802.3 Clause 35, the data bus width and clock frequency do not conform to the IEEE stan-
dard. Therefore, it may be difficult to find external PHY devices that directly connect. To overcome this issue,
Lattice provides a 2.5G PCS IP core with a 16-bit data path and 156.25 Mhz clock that is directly compatible with
the 2.5GMAC GMII interface. Figure 2-5 shows how the Lattice 2.5GMAC and Lattice 2.5G PCS can be combined
to provide a full Ethernet client interface to Ethernet physical layer interface for 2.5Gbps applications.

Figure 2-5. System Block Diagram

Transmit
MAC

GMII

Host
Interface

Receive
MAC

rx_fifo_full

ignore_pkt

rx_dbout[15:0]

rx_write

rx_stat_en

rx_statvector[31:0]

rx_fifo_error

rx_eof

rx_error

rx_last_byte_valid

tx_mac_clk
156.25

MHz

rx_mac_clk

txd[15:0]

txen[1:0]

txer[1:0]

rxd[15:0]

rxdv[1:0]

rxer[1:0]

cpu_if_gbit_en

hready_n

hdataout_en_n

hdataout[7:0]

haddr[7:0]

hdatain[7:0]

hcs_n

hwrite_n

hread_n

hclk

tx_fifodata[15:0]

tx_fifoavail

tx_fifoeof

tx_fifoempty

tx_sndpaustim[15:0]

tx_sndpausreq

tx_fifoctrl

tx_last_byte_valid

tx_macread

tx_discfrm

tx_staten

tx_statvec[30:0]

tx_done

RX/TX MAC

User
Application

Logic

2.5 Gbps Ethernet MAC IP Core

2.5G
PCS

IP Core
SERDES

3.125 Gbps

3.125 Gbps

8B Tx

8B Rx

SYS_CLK
312.5 MHz

User
Host

Logic

I/O
Buffers

hdout_P

hdout_N

hdin_P

hdin_N

FPGA Top

CLKDIV
DIV2

DIV1
312.5 MHz

 Functional Description

IPUG98_1.1, May 2014 9 2.5 Gbps Ethernet MAC User’s Guide

Core Signal Descriptions
Table 2-1 lists the I/O signals for the 2.5GMAC IP core.

Table 2-1. 2.5GMAC IP Core Input and Output Signals

Port Name Type
Active
State Description

Clocks and Reset/Other

rxmac_clk Input N/A

Receive MAC Application Interface Clock. This clock is used by the client applica-
tion and MAC. All outputs driven by the Rx MAC on the client side are synchronous to
this clock.

Note: this clock can be viewed as a “word” clock, since all Rx MAC 16-bit words are
aligned with this clock. This clock is derived from the system sys_clk (156.25 MHz for
2.5 Gbps operation).

txmac_clk Input N/A

Transmit MAC Application Interface Clock. This clock is used by the client applica-
tion and MAC. All inputs to the Tx MAC on the client side should be synchronous to
this clock.

Note: this clock can be viewed as a “word” clock, since all Tx MAC 16-bit words
should be aligned with this clock. This clock is derived from the system sys_clk
(156.25 MHz for 2.5 Gbps operation).

hclk Input N/A Host Clock. This is the Host Bus clock, and is used to clock the Host Bus interface.

reset_n Input Low Reset. This is an active low asynchronous signal that resets the internal registers
and internal logic. When activated, the I/O signals are driven to their inactive levels.

cpu_if_gbit_en Output High CPU Interface 1G Mode Enabled Indication. This signal is always high in the
2.5GMAC IP core. It exists for backward compatibility to 1 Gbps MAC.

Host Interface

hcs_n Input Low Chip Select. This is an active low signal used to select the core for register
read/write operations.

haddr[7:0] Input N/A Address. This selects one of the internal core registers.

hdatain[7:0] Input N/A Data Bus Input. The CPU writes to the internal registers through the data bus.

hwrite_n Input Low Host Write. This active low signal is used to write data to the selected register.

hread_n Input Low Host Read. This active low signal is used to read data from the selected register.

hready_n Output Low
Ready. This is an active low signal used to indicate the end of transfer. For write
operations, hready_n is asserted after data is accepted (written). For read operations
hready_n is asserted after data on the hdataout bus is ready to be driven out.

hdataout_en_n Output Low
Data Out Enable. This signal is driven low whenever the 2.5GMAC IP core outputs
valid data onto the hdataout bus. This signal can be used to build a bi-directional data
bus.

hdataout[7:0] Output N/A Data Bus Output. The CPU reads the internal registers through the data bus.

Transmit MAC Application Interface

tx_fifodata[15:0] Input N/A

Transmit FIFO Read Data Bus. The data from the FIFO is presented on this bus.
When the Ethernet frame reaches the physical layer, the upper byte is transmitted
first (bits 15:8). Also, for each byte, the least significant bit is transmitted first at the
physical layer (bit D8 for the upper byte; bit D0 for the lower byte).

tx_fifoavail Input High

Transmit FIFO Data Available. When asserted, this signal indicates that the TxFIFO
has data ready for transmission on the GMII interface. Once this signal is asserted by
the client, a short delay later the frame will be transmitted. The client needs to use an
appropriate threshold on the client FIFO to indicate that a frame is ready to be sent
and use that threshold as the tx_fifo_avail signal.

tx_fifoeof Input High Transmit FIFO End of Frame. This signal is asserted along with the last byte of
frame data indicating the end of the frame.

tx_fifoempty Input High
Transmit FIFO Empty. This signal indicates that the TxFIFO is empty. When this sig-
nal is asserted and the 2.5GMAC IP core is reading the FIFO, the under-run condi-
tion is transferred to the network through the txer signal.

 Functional Description

IPUG98_1.1, May 2014 10 2.5 Gbps Ethernet MAC User’s Guide

tx_sndpaustim[15:0] Input N/A PAUSE Frame Timer. This signal indicates the PAUSE time value that should be
sent in the PAUSE frame.

tx_fifoctrl Input N/A

FIFO Control Frame. This signal indicates whether the current frame in the Tx FIFO
is a control frame or a data frame. It is qualified by the tx_fifoavail signal. The follow-
ing values apply:

• 1 = Control frame
• 0 = Normal frame

tx_staten Output High Transmit Statistics Vector Enable. When asserted, the contents of the statistics
vector bus tx_statvec are valid.

tx_last_byte_valid Input High

Transmit Last Byte Valid. When tx_fifoeof asserts, the state of tx_last_byte_valid
indicates whether or not the last 16-bit word on tx_fifodata bus has one or two bytes
that are valid. If high, both bytes are valid. If low, only the most significant byte is valid
and the least significant byte is ignored.

tx_macread Output High

Transmit FIFO Read. This is the 2.5GMAC IP core Tx FIFO read request, asserted
by the 2.5GMAC IP core when it intends to read the client FIFO. The core will first
assert the tx_macread signal if the client FIFO is not empty (i.e., tx_fifoempty = 0),
after which the tx_macread may de-assert (based on MAC processing) or re-assert
(based on MAC processing and if tx_fifoempty is still 0). The tx_macread signal
should be tied to the client FIFO read pin, and the FIFO empty pin should be tied to
the tx_fifoempty of the MAC core.

tx_statvec[30:0] Output N/A

Transmit Statistics Vector. This bus includes useful information about the frame
that was just transmitted. The corresponding bit locations of this bus are defined as
follows:

• tx_statvec[0] – UNICAST frame
• tx_statvec[1] – Multicast frame
• tx_statvec[2] – BROACAST frame tx_statvec[3] - Bad FCS frame
• tx_statvec[4] – JUMBO frame
• tx_statvec[5] – FIFO under-run
• tx_statvec[6] – PAUSE frame
• tx_statvec[7] – VLAN tagged frame
• tx_statvec[21:8] – Number of bytes in the transmitted frame
• tx_statvec[22] – Not used
• tx_statvec[23] – Not used
• tx_statvec[24] – Not used
• tx_statvec[25] – Not used
• tx_statvec[29:26] – Not used
• tx_statvec[30] – FCS generation is disabled and a short frame was transmitted

tx_done Output High Transmit Done. This signal is asserted for one clock cycle after transmitting a frame
if no errors were present in transmission.

tx_discfrm Output High
Discard Frame. This signal is asserted at the end of a frame transmit process if the
2.5GMAC IP core detected a FIFO under-run. The user application normally moves
the pointer to next frame in this condition.

GMII Signals

txd[15:0] Output N/A

Transmit Data sent to the SERDES/PCS core. When the Ethernet frame reaches
the physical layer, the upper byte is transmitted first (bits 15:8). Also, for each byte,
the least significant bit is transmitted first at the physical layer (bit D8 for the upper
byte; bit D0 for the lower byte).

txen[1:0] Output High
Transmit Enable. Indicates that the bytes within the transmit data are valid. The
most significant bit indicates that the most significant byte of txd is valid and similarly
for the least significant bit and byte.

txer[1:0] Output High
Transmit Error. Indicates that the bytes within the transmit data have an error. The
most significant bit indicates that the most significant byte of txd is in error and simi-
larly for the least significant bit and byte.

Table 2-1. 2.5GMAC IP Core Input and Output Signals (Continued)

Port Name Type
Active
State Description

 Functional Description

IPUG98_1.1, May 2014 11 2.5 Gbps Ethernet MAC User’s Guide

rxd[15:0] Input High

Receive Data Bus. These GMII Rx data inputs (bytes valid whenever respective rxdv
bit is asserted) come from the SERDES/PCS or from a GMII PHY interface. At the
physical layer, the upper byte arrives first (bits 15:8). Also, for each byte, the least sig-
nificant bit arrives first at the physical layer (bit D8 for the upper byte; bit D0 for the
lower byte).

rxdv[1:0] Input High
Receive Data Valid. Indicates the data bytes on the rxd bus are valid. The most sig-
nificant bit indicates that the most significant byte of rxd is valid and similarly for the
least significant bit and byte.

rxer[1:0] Input High
Receive Data Error. Indicates that the bytes within the receive data have an error.
The most significant bit indicates that the most significant byte of rxd is in error and
similarly for the least significant bit and byte.

Receive MAC Application Interface

rx_fifo_full Input High Receive FIFO Full. This signal indicates the Rx FIFO is full and cannot accept any
more data. This is an error condition and should never happen.

rx_write Output High Receive FIFO Write. This signal is asserted by the 2.5GMAC IP core to request a
FIFO write.

rx_dbout[15:0] Output N/A

Receive FIFO Data Output. This bus contains the data that is to be written into the
Rx FIFO. At the physical layer, the upper byte arrives first (bits 15:8). Also, for each
byte, the least significant bit arrives first at the physical layer (bit D8 for the upper
byte; bit D0 for the lower byte).

rx_stat_vector[31:0] Output N/A

Receive Statistics Vector. This bus indicates the events encountered during frame
reception. This bus is qualified by the rx_stat_en signal. The definition of each signal
is explained in “Receive MAC (Rx MAC)” on page 12 of this user’s guide. The corre-
sponding bit locations of this bus are defined as follows:

• rx_statvec[15:0] – Frame Byte Count
• rx_statvec[16] – VLAN Tag Detected
• rx_statvec[17] – Pause Frame
• rx_statvec[18] – Control Frame
• tx_statvec[19] – Unsupported Opcode
• rx_statvec[20] – Unused
• rx_statvec[21] – Broadcast Address
• rx_statvec[22] – Multicast Address
• rx_statvec[23] – Receive OK
• rx_statvec[24] – Length Check Error
• rx_statvec[25] – CRC Error
• rx_statvec[26] – Packet Ignored
• rx_statvec[27] – Unused
• rx_statvec[28] – Unused
• rx_statvec[29] – IPG Violation
• rx_statvec[30] – Short Frame
• rx_statvec[31] – Long Frame

rx_stat_en Output High Receive Statistics Vector Enable. When asserted, this signal indicates that the
contents of the rx_stat_vector bus is valid.

ignore_next_pkt Input High
Ignore Next Packet. This signal is asserted by the host to prevent a Rx FIFO Full
condition. The Rx MAC continues dropping packets as long as this signal is asserted.
This is an asynchronous signal.

rx_eof Output High End Of Frame. Indicates the last word of the current packet is on the rx_dbout data
bus.

rx_last_byte_valid Output High

Receive Last Byte Valid. When tx_eof asserts, the state of rx_last_byte_valid indi-
cates whether or not the last 16-bit word on rx_ dbout bus has one or two bytes that
are valid. If high, both bytes are valid. If low, only the most significant byte is valid and
the least significant byte is ignored.

Table 2-1. 2.5GMAC IP Core Input and Output Signals (Continued)

Port Name Type
Active
State Description

 Functional Description

IPUG98_1.1, May 2014 12 2.5 Gbps Ethernet MAC User’s Guide

Host Interface
The Host Interface module is a fully synchronous module that runs off the host clock. A number of registers are ini-
tialized via the Host interface to ensure that the 2.5GMAC IP core functions as intended. The write operation to an
internal register is initiated when the hcs_n and hwrite_n signals are asserted. The address of the targeted register
is placed on the haddr bus, while the valid data is placed on the hdatain bus. The contents of the address and data
busses should remain unchanged until the 2.5GMAC IP core asserts the hready_n signal. The signals hcs_n,
hwrite_n and hread_n must remain unchanged until hready_n is asserted.

A register read is initiated by asserting the hcs_n and hread_n signals, while keeping the hwrite_n signal deas-
serted. The address of the targeted register is placed on the haddr bus. The 2.5GMAC IP core places the content
of the targeted register on the hdataout bus and qualifies it with the assertion of hready_n signal. The haddr bus
should not change until the hready_n signal is asserted.

Figure 2-12 shows the timing diagram associated with the host interface write and read operations.

Receive MAC (Rx MAC)
The main function of the Rx MAC is to accept the formatted data from the GMII interface and pass it to the host
application through an external FIFO. In this process, the Rx MAC performs the following functions:

• Detect the start of frame

• Compare the MAC address

• Re-calculate CRC

• Process the control frame and pass it to the flow control module.

The Rx MAC operation is determined by programming the MODE and TX_RX_CTL registers. These register defini-
tions and bit descriptions can be found in Table 2-3 on page 16.

Programming the MODE and TX_RX_CTL registers can control the Receive MAC operation. The various events
that occur during the reception of a frame are logged into the rx_stat_vector signal and the TX_RX_STS register.
At the end of reception, the rx_stat_en signal is asserted to qualify the rx_stat_vector signal. The 2.5GMAC IP core
can report a wealth of information such as

• FIFO overflow

• CRC error

• Receive error

• Short frame reception

rx_error Output High

Receive Packet Error. When asserted, this signal indicates the packet contains
error(s). This signal is qualified with the rx_eof signal. The rx_error signal will be
asserted for any of the following conditions:

• The rxer signal on the GMII is asserted by the PHY during frame reception.
• There are Rx FCS errors on received frames.
• There is a length check error on the received frame.

rx_fifo_error Output High

Receive FIFO Error. This signal is asserted when the external Rx FIFO is full
(rx_fifo_full signal asserted) and the Rx FIFO is being written to by the Rx MAC
(rx_write is asserted). When this error signal is asserted the rx_write signal will be
de-asserted as long as the rx_fifo_error signal is asserted. The rx_fifo_error signal
will be de-asserted when the end of packet (rx_eof) exits the receive FIFO (Note: In
this errored condition, data will continue to be pulled out of the Rx FIFO, even while
the rx_write signal has been de-asserted).

Table 2-1. 2.5GMAC IP Core Input and Output Signals (Continued)

Port Name Type
Active
State Description

 Functional Description

IPUG98_1.1, May 2014 13 2.5 Gbps Ethernet MAC User’s Guide

• Long frame reception

• IPG violation

By default, the entire frame, except the preamble and SFD bytes, is sent to the FIFO via the Rx MAC application
interface signals. If the user does not want to receive the FCS, the core can be programmed to strip the FCS field
as well as any PAD bytes in the frame and send the rest to the FIFO.

Receiving Frames
The frames received by the Rx MAC are analyzed and the Preamble and SFD bytes are stripped off the frame
before it is transferred to an external FIFO. The client data interface between the MAC and the FIFO is 16 bits wide.

The default behavior of the MAC is to transfer the unmodified frame after stripping off the Preamble and SFD bytes.
This behavior can be changed by setting bit [1] of the TX_RX_CTL register. When bit [1] is set, the Rx MAC strips
the Preamble, SFD, FCS bytes and the PAD bytes, if any. Note that the Rx MAC assumes a received frame has
PAD bytes if a 64 byte packet is received with its Length/Type field set to a value of less than 46 bytes.

Once the frame is ready to be written into the FIFO, the Rx MAC asserts the rx_write signal, then presents the data
on the rx_dbout bus. The rx_write signal is asserted as long as the frame is being written. After transferring the
entire frame into the FIFO, the Rx MAC asserts rx_eof indicating the end of the frame and sets the state of
rx_last_byte_valid to indicate if one or both of the bytes in the last word are valid. If the frame is received with
errors, rx_error is asserted along with rx_eof. If the frame is received with no errors, rx_error remains de-asserted.
In either case, a rich set of statistics vectors is presented, containing information about the frame that was
received. The statistics vector bus, rx_stat_vector, is qualified by the assertion of rx_stat_en.

If the RxFIFO becomes full, rx_fifo_full is asserted and the frame data is lost. Therefore, the FIFO full condition
must be avoided at all times. The rx_fifo_error signal will be asserted along with rx_eof for all frames written into
the FIFO while it is full.

The Rx MAC goes to the IDLE state when it is done receiving the frame. This is indicated by bit[10] of the
TX_RX_STS register. If the Rx MAC is disabled while it is in the process of receiving a frame, it goes to the IDLE
state after it completes the current frame reception.

Address Filtering
The Rx MAC offers several address filtering methods the user can employ to effectively block unwanted frames. It
also provides a Promiscuous mode, in which all supported filtering schemes are abandoned and the Rx MAC
receives all the frames irrespective of the address they contain.

By default, the Rx MAC is configured to filter and discard Broadcast frames (i.e. all bits of the received DA == 1)
and multicast frames (i.e. bit[0] of the received DA == 1). The MAC can be configured to receive broadcast frames
by setting bit [7] of the TX_RX_CTL register.

Multicast frames are received only when bit [4] of the TX_RX_CTL register is set. When set, multicast frames are
subject to filtering that is dependent on a 64-bit hash table lookup. The 64-bit hash table is organized as eight, 8-bit
registers. The six middle bits of the most significant byte of the CRC calculated for the destination address field of
the frame, are used to address one of the 64 bits of the hash table. The three most significant bits of the calculated
CRC select one of the eight tables, and the three least significant bits select a bit. The frame is received only if the
retrieved bit is set. The IP core registers specifying the hash tables contents are described in “Internal Registers”
on page 16. An example of C programming language code that can be used to determine hash table contents
based on the multicast addresses to be received is given in “Code Listing for Multicast Bit Selection Hash Algorithm
in C Language” on page 42.

All other regular frames are filtered based on the Rx MAC address programmed into the MAC_ADDR_0,
MAC_ADDR_1 and MAC_ADDR_2 registers.

 Functional Description

IPUG98_1.1, May 2014 14 2.5 Gbps Ethernet MAC User’s Guide

Filtering Based on Frame Length
The default minimum Ethernet frame size is 64 bytes. By default, the Rx MAC is configured to ignore frames
shorter than 64 bytes. The user can configure the MAC to receive shorter frames by setting bit [8] of the
TX_RX_CTL register. Whenever a short frame is received, the appropriate bit is set in the statistics vector, marking
it as a Short frame.

The Rx MAC has been designed to receive frames larger than the standard specified maximum as easily as any
other frame. This ensures the MAC can work in environments that can generate jumbo frames. However, for statis-
tics purposes, the user can set the maximum length of the frame in the MAX_PKT_SIZE register. When a received
frame is larger than the number in this register, bit [31] of the Receive Statistics Vector bus is set, marking it as a
Long frame.

Receiving a PAUSE Frame
When the Rx MAC receives a PAUSE frame, the Tx MAC continues with the current transmission, then pauses for
the duration indicated in the PAUSE time. During this time, the Tx MAC can transmit Control frames.

Although PAUSE frames may contain the Multicast Address, Multicast filtering rules do not apply to them. If bit [3]
of the TX_RX_CTL register is set, the Rx MAC will signal the Tx MAC to stop transmitting for the duration specified
in the frame. If this bit is reset, the Rx MAC assumes the Tx MAC does not have the PAUSE capability and/or does
not wish to be paused and will not signal it to stop transmitting. If the drop control, bit[6] in the TX_RX_CTL register,
is set then the PAUSE frame is received but dropped internal to the MAC and is not transferred to the client FIFO
interface. Otherwise, the PAUSE frame is received and transferred to the FIFO.

Statistics Vector
By default, a Statistics Vector is generated for all received frames transferred to the external FIFO. If the user wants
the Rx MAC to ignore all incoming frames, then the input signal ignore_next_pkt must be asserted. In this case, a
frame that should have been received is ignored and the Rx MAC sets the Packet Ignored bit (bit 26) of the Statis-
tics Vector.

The MAX_PKT_SIZE register is programmed by the user as a threshold for setting the Long Frame bit of the Statis-
tics Vector. This value is used for un-tagged frames only. The Receive MAC will add “4” to the value specified in this
register for all VLAN tagged frames when checking against the number of bytes received in the frame. This is
because all VLAN tagged frames have an additional four bytes of data.

When a tagged frame is received, the entire VLAN tag field is stored in the VLAN_TAG register. Additionally, every
time a statistics vector is generated, some of the bits are written into the corresponding bit locations [9:1] of the
TX_RX_STS register. This is done so the user can get this information via the Host interface.

The description of the bits in the Statistics Vector bus is shown in Table 2-2.

Table 2-2. Receive Statistics Vector Descriptions

Bit Description

31 Long Frame. This bit is set when a frame longer than specified in the MAX_PKT_SIZE register is received.

30 Short Frame. This bit is set when a frame shorter than 64 bytes is received.

29 IPG Violation. This bit is set when a frame is received before the IPG timer runs out (96 bit times).

28 Not Used. This bit always returns a zero.

27 Not Used. This bit always returns a zero.

26 Packet Ignored. When set, this bit indicates the incoming packet is to be ignored.

25 CRC Error. This bit is set when a frame is received with an error in the CRC field.

24 Length Check Error. This bit is set if the number of data bytes in the incoming frame do not match the value in
the length field of the frame.

23 Receive OK. This bit is set if the frame is received without any error.

22 Multicast Address. This bit is set to indicate the received frame contains a Multicast Address.

21 Broadcast Address. This bit is set to indicate the received frame contains a Broadcast Address.

 Functional Description

IPUG98_1.1, May 2014 15 2.5 Gbps Ethernet MAC User’s Guide

Transmit MAC (Tx MAC)
The Tx MAC is responsible for controlling access to the physical medium. The Tx MAC reads data from an external
Tx FIFO when the FIFO is not empty and it detects an active tx_fifoavail. The Tx MAC then formats this data into an
Ethernet packet and passes it to the GMII module.

The Tx MAC is disabled while Tx_en is low (Bit_3 of the MODE register) and should only be enabled after the asso-
ciated registers are properly initialized. Once enabled, the Tx MAC will continuously monitor the FIFO interface for
an indication that frame(s) are ready to be transmitted. Tx MAC and the Tx FIFO interface operations are synchro-
nous to txmac_clk derived from sys_clk.

In full-duplex operation, it is possible for the receiver’s buffer to fill up rapidly. In such cases, the receiver sends flow
control (PAUSE) frames to the transmitter, requesting that it stop transmitting frames. When the receiver is able to
free the buffers, the transmitter completes transmitting the current frame and stops for the duration specified in the
PAUSE frame.

Transmitting Frames
By default, the Transmit MAC is configured to generate the FCS pattern for the frame to be transmitted. However,
this can be prevented by setting bit[2] of the Tx_RX_CTL register. This feature is useful if the frames being pre-
sented for transmission already contain the FCS field. When FCS field generation by the MAC is disabled, it is the
user’s responsibility to ensure that short frames are properly padded before the FCS is generated. If the MAC
receives a frame to transmit that is shorter than 64 bytes when FCS generation is disabled, the frame is sent as is
and a statistic vector for the condition is generated.

The DA, SA, L/T, and DATA fields are derived from higher applications through the FIFO interface and then encap-
sulated into an Un-tagged Ethernet frame. This frame is not sent over the network until the network has been idle
for a minimum of Inter-Packet Gap (IPG) time. The Frame encapsulation consists of adding the Preamble bits, the
Start of Frame Data (SFD) bits and the CRC check sum to the end of the frame (FCS). If padding is not disabled, all
short frames are padded with hexadecimal 00.

The input signal tx_fifoeof is asserted along with the last set of data transfer to indicate the end of the frame. The
tx_last_byte_valid signal is asserted or not on the last word of the frame (tx_fifoeof asserted) to indicate whether
one or both bytes of the last word are valid. If not asserted, only the most significant byte is valid. The Tx MAC
requires a continuous stream of data for the entire frame. There cannot be any bubbles of “no data transfer” within
a frame. If the MAC is able to transmit the frame without any errors, the tx_done signal is asserted. Once the trans-
mission has ended, data on the tx_stat_vector bus is presented to the host, including all the statistical information
collected in the process of transmitting the frame. Data on this bus is qualified by assertion of the tx_staten signal.

After the Transmit MAC is done transmitting a frame, it waits for more frames from the FIFO interface. During this
time, it goes to an idle state that can be detected by reading the TX_RX_STS register. Since the MODE register
can be written at any time, the Tx MAC can be disabled while it is actively transmitting a frame. In such cases, the
MAC will completely transmit the current frame and then return to the idle state. The control registers should be
programmed only after the MAC has returned to the IDLE state.

20 Not Used. This bit always returns a zero.

19 Unsupported Opcode. This bit is set if the received control frame has an unsupported opcode. In this version of
the IP, only the opcode for PAUSE frame is supported.

18 Control Frame. This bit is set to indicate that a Control frame was received.

17 PAUSE Frame. This bit is set when the received Control frame contains a valid PAUSE opcode.

16 VLAN Tag Detected. This bit is set when the 2.5GMAC IP core receives a VLAN Tagged frame.

15:0 Frame Byte Count. This bus contains the length of the frame that was received. The frame length includes the
DA, SA, L/T, TAG, DATA, PAD and FCS fields.

Table 2-2. Receive Statistics Vector Descriptions

Bit Description

 Functional Description

IPUG98_1.1, May 2014 16 2.5 Gbps Ethernet MAC User’s Guide

External Transmit FIFO
The interface between the Tx MAC and the external, client side FIFO is 16 bits wide. When the Ethernet frame
reaches the physical layer, the upper byte is transmitted first (bits 15:8). Also within each byte, the least significant
bit is transmitted first at the physical layer (bit D8 for the upper byte; bit D0 for the lower byte).

Logic inside the MAC signals if the frame ready for transmission at the head of the FIFO is a Control frame. This is
done so the Tx MAC can continue transmission of a Control frame while it is paused.

FIFO Under-flow
If a FIFO underflow occurs, the FIFO logic must assert tx_fifoempty. If at least 64 bytes have been transmitted, the
Tx MAC aborts the transmission by asserting tx_er. In addition, the Tx MAC inserts erroneous CRC bits into the
packet to guarantee the receiver will detect the error in the packet. If less than 64 bytes have been transmitted
when the FIFO underflow occurs, the MAC will pad the remaining bytes before ending the transmission. In either
case, the MAC asserts tx_discfrm indicating an error during transmission.

Transmitting PAUSE Frame
Two different methods are used for transmitting a PAUSE frame. In the first method, the application layer forms a
PAUSE frame and submits it for transmission via the FIFO. In the other method, the application layer signals the Tx
MAC directly to transmit a PAUSE frame. This is accomplished by asserting tx_sndpausreq. In this case the Tx
MAC will complete transmission of the current packet and then transmit a PAUSE frame with the PAUSE time value
supplied through the tx_sndpaustim bus.

Internal Data Buffer and FIFO Interfaces
On the receive side, an internal FIFO buffer is used to support the dropping of packets less than 64 bytes and to
provide additional data buffering for normal packets. The core provides a feature where the user can block all the
frames that are shorter than the minimum frame length of 64 bytes in the 2.5GMAC IP core itself (for example colli-
sion fragments, runt frames, and such). This prevents these frames from reaching the user's application.

The 2.5GMAC IP core provides two independent interfaces for use with external Transmit and Receive FIFOs. This
feature enables the 2.5GMAC IP core to support full duplex operation.

Internal Registers
The 2.5GMAC IP core internal registers are initialized through the generic Host Interface. These rules apply when
accessing the internal registers:

• With the 8-bit Host Interface, the individual bytes of the registers are accessed through their corresponding
addresses, with the lower address pointing to the lower byte.

• The reserved bits should be programmed to 0. These bits are invalid, and should be discarded when read.

• All registers except the MODE register can be written into only when the core is disabled, i.e., MAC is in the IDLE
state (Tx_en and Rx_en low in the MODE register). The MODE register is the only register that can be written to
after the 2.5GMAC IP core is no longer disabled.

Table 2-3 lists the 2.5GMAC IP core registers accessible via the Host Interface. The registers are either Read/Write
(R/W) or Read Only (RO) for status reporting purposes. The values of the registers immediately after the Reset
Condition is removed from the 2.5GMAC IP core (POR Value in Hexadecimal format) are also given.

Table 2-3. 2.5GMAC IP Core Internal Registers

Register Description Mnemonic I/O Address POR Value

Mode register MODE 00H - 01H 0000H

Transmit and Receive Control register TX_RX_CTL 02H - 03H 0000H

Maximum Packet Size register MAX_PKT_SIZE 04H - 05H 05EEH

Inter-Packet Gap register IPG_VAL 08H - 09H 000CH

2.5GMAC IP core Address register 0 MAC_ADDR_0 0AH - 0BH 0000H

 Functional Description

IPUG98_1.1, May 2014 17 2.5 Gbps Ethernet MAC User’s Guide

Register Descriptions
MODE (R/W)
Mnemonic: MODE
POR Value = 0001H

2.5GMAC IP core Address register 1 MAC_ADDR_1 0CH - 0DH 0000H

2.5GMAC IP core Address register 2 MAC_ADDR_2 0EH - 0FH 0000H

Transmit and Receive Status TX_RX_STS 12H - 13H 0000H

Reserved 14H - 15H 0000H

Reserved 16H - 17H 0000H

VLAN Tag Length/type register VLAN_TAG 32H - 33H 0000H

Multicast_table_0 MLT_TAB_0 22H - 23H 0000H

Multicast_table_1 MLT_TAB_1 24H - 25H 0000H

Multicast_table_2 MLT_TAB_2 26H - 27H 0000H

Multicast_table_3 MLT_TAB_3 28H - 29H 0000H

Multicast_table_4 MLT_TAB_4 2AH - 2BH 0000H

Multicast_table_5 MLT_TAB_5 2CH - 2DH 0000H

Multicast_table_6 MLT_TAB_6 2EH - 2FH 0000H

Multicast_table_7 MLT_TAB_7 30H - 31H 0000H

Pause_opcode PAUS_OP 34H - 35H 0080H

Name Range Description

Rsvd 15:4 Reserved.

Tx_en 3
Transmit Enable. When this bit is set, the Tx MAC is enabled to transmit frames. When
reset, the Tx MAC completes transmission of the packet currently being processed, then
stops.

Rx_en 2
Receive Enable. When this bit is set, the Rx MAC is enabled to receive frames. When
reset, the Rx MAC completes reception of the packet currently being processed, then
stops.

FC_en 1
Flow-control Enable. When set, this bit enables the flow control functionality of the Tx
MAC. This bit should be set to enable the Tx MAC to transmit a PAUSE frame via the
tx_sndpausreq and tx_sndpaustim[15:0] MAC input ports.

Gbit_en 1 Read Only. Always set to ‘1’.

Table 2-3. 2.5GMAC IP Core Internal Registers (Continued)

Register Description Mnemonic I/O Address POR Value

 Functional Description

IPUG98_1.1, May 2014 18 2.5 Gbps Ethernet MAC User’s Guide

Transmit and Receive Control (R/W)
Mnemonic: TX_RX_CTL
POR Value = 0000H

This register can be overwritten only when the Rx MAC and the Tx MAC are disabled. This register controls the
various features of the MAC.

Maximum Packet Size (R/W)
Mnemonic: MAX_PKT_SIZE
POR Value = 05EEH (1518 decimal)

This register can be overwritten only when the MAC is disabled. All frames longer than the value (number of bytes)
in this register will be tagged as long frames.

IPG (Inter-Packet Gap) (R/W)
Mnemonic: IPG_VAL
POR Value = 000CH

Name Range Description
Rsvd 15:9 Reserved.

Receive_short 8 Receive Short Frames. When high, enables the Rx MAC to receive frames shorter than
64 bytes.

Receive_brdcst 7 Receive Broadcast. When high, enables the Rx MAC to receive broadcast frames

Rsvd 6 Reserved.

Rsvd 5 Reserved.

Receive_mltcst 4 Receive Multicast. When high, the multicast frames will be received per the filtering rules
for such frames. When low, no Multicast (except PAUSE) frames will be received.

Receive_pause 3

Receive PAUSE. When set, the Rx MAC will indicate the Rx PAUSE frame reception to
the Tx MAC and thereby cause the Tx MAC to pause sending data frames for the period
specified within the Rx PAUSE frame. Note this indication is independent of the
Drop_control bit setting.

Tx_dis_fcs 2 Transmit Disable FCS. When set, the FCS field generation is disabled in the Tx MAC.

Discard_fcs 1

Rx Discard FCS and Pad. When set, the FCS and any of the padding bytes of an IEEE
802.3 frame are stripped off the frame before it is transferred to the Rx FIFO. When low,
the entire frame is transferred into the Rx FIFO. Note: Discarding padding bytes is only
applicable to pure IEEE 802.3 frames (such as in backplane applications) and will not
function on Ethernet frames (IP, UDP, ICMP, etc.) where the length field is now interpreted
as a protocol type field.

Prms 0 Promiscuous Mode. When asserted, all filtering schemes are abandoned and the Rx
MAC receives frames with any address.

Name Range Description

Max_frame 15:0 Maximum size of the packet than can be handled by the core.

Name Range Description

Rsvd 15:5 Reserved.

IPG 4:0 Inter-packet gap value in units of bytes (one word clock for every two bytes of IPG).

 Functional Description

IPUG98_1.1, May 2014 19 2.5 Gbps Ethernet MAC User’s Guide

MAC Address Register {0,1,2} (R/W), Set of Three
Mnemonic: MAC_ADDR
POR Value = 0000H

The MAC Address Registers 0-2 contain the Ethernet address of the port. The MAC Address Register [0] has the
two bytes that are transmitted first and the MAC Address Register [2] has the two bytes that are transmitted last.
Bit[8] through Bit[15] are transmitted first while bit[0] through bit[7] are transmitted last.

Note that the MAC address is stored in the registers in Hexadecimal form. For example, setting the MAC Address
to AC-DE-48-00-00-80 would require writing 0xAC (octet 0) to address 0x0B (high byte of Mac_addr[15:0]), 0xDE
(octet 1) to address 0x0A (Low byte of Mac_addr[15:0]), 0x48 (octet 2) to address 0x0D (high byte of
Mac_addr[15:0]), 0x00 (octet 3) to address 0x0C (Low byte of Mac_addr[15:0]), 0x00 (octet 4) to address 0x0F
(high byte of Mac_addr[15:0]), and 0x80 (octet 5) to address 0x0E (Low byte of Mac_addr[15:0]). Note Octet 0 is
transmitted first and Octet 5 is transmitted last.

Transmit and Receive Status (RO)
Mnemonic: TX_RX_STS
POR Value = 0000H

This register reports events that have occurred during packet reception and transmission.

VLAN Tag (RO)
Mnemonic: VLAN_TAG
POR Value = 0000H.

The VLAN tag register has the VLAN TAG field of the most recent tagged frame that was received. This is a read
only register.

Name Range Description

Mac_addr 15:0 Ethernet address assigned to the port supported by the 2.5GMAC IP core.

Name Range Description
Rsvd 15:11 Reserved.

Rx_idle 10 Receive MAC Idle. Receive MAC in idle condition used to reset configurations by CPU
interface.

Tagged_frame 9 Tagged Frame. Tagged frame received.

Brdcst_frame 8 Broadcast Frame. Indicates that a Broadcast packet was received.

Multcst_frame 7 Multicast Frame. Indicates that a Multicast packet was received.

IPG_shrink 6 IPG Shrink. Received frame with shrunk IPG (IPG < 96 bit time).

Short_frame 5 Short Packet. Indicates that a packet shorter than 64 bytes has been received.

Long_frame 4 Too Long Packet. Indicates receipt of a packet longer than the maximum allowable packet
size specified in the MAX_PKT_SIZE register.

Error frame 3 Rx_er Asserted. Indicates the frame was received with the rx_er signal asserted.

CRC 2 CRC Error. Indicates a packet was received with a CRC error.

Pause_frame 1 PAUSE Frame. Indicates a PAUSE frame was received.

Tx_idle 0 Transmit MAC Idle. Transmit MAC in idle condition, used to reset configurations by CPU
interface.

Name Range Description

VLAN 15:0 This field defines length/type of field of the VLAN tag when inserted into transmitted
frames.

 Functional Description

IPUG98_1.1, May 2014 20 2.5 Gbps Ethernet MAC User’s Guide

Multicast Tables (R/W), Set of Eight
Mnemonic: MLT_TAB_[0-7]
POR Value = 0000H.

When the core is programmed to receive multicast frames, a filtering scheme is used to decide whether the frame
should be received or not. The six middle bits of the most significant byte of the CRC value, calculated for the des-
tination address, are used as a key to the 64-bit hash table. The three most significant bits select one of the eight
tables, and the three least significant bits select a bit. The frame is received only if this bit is set.

Pause Opcode (R/W)
Mnemonic: PAUS_OP
POR Value = 0001H

This register contains the PAUSE Opcode, This will be compared against the Opcode in the received PAUSE
frame. This value will also be included in any PAUSE frame transmitted by the 2.5GMAC IP core. Bit 15 is transmit-
ted first and bit 0 is transmitted last.

Timing Specifications
This section contains operational timing diagrams applicable to the 2.5GMAC IP core interfaces.

Reception of a 64-Byte Frame Without Error – Rx MAC Application Interface
Figure 2-6. Reception of a 64-byte Frame Without Error

Name Range Description
Multicast_table_[0-7] 7:0 Multicast Table. Eight tables that make a 64-bit hash.

Name Range Description

Pause_OpCode 15:0 PAUSE Opcode.

1 2 3 4 5 30 31 32

Valid

rxmac_clk

rx_dbout[15:0]

rx_write

rx_stat_en

rx_stat_vector[31:0]

rx_eof

rx_last_byte_valid

rx_error

rx_fifo_error

 Functional Description

IPUG98_1.1, May 2014 21 2.5 Gbps Ethernet MAC User’s Guide

Reception of a 64-byte Frame with Error(s) – Rx MAC Application Interface
The signal rx_error is asserted to indicate that the 64-byte frame was received with error(s).

Figure 2-7. Reception of a 64-byte Frame with Error

Reception of a 64-Byte Frame with FIFO Overflow - Rx MAC Application Interface
The FIFO writing operation is suspended whenever an overflow condition occurs. When this condition occurs, the
2.5GMAC IP core asserts rx_fifo_error. This signal should be sampled along with rx_eof in order to process the
error condition.

Figure 2-8. Reception of a 64-byte Frame with FIFO Overflow

1 2 3 4 5 30 31 32

Valid

rxmac_clk

rx_dbout[15:0]

rx_write

rx_stat_en

rx_stat_vector[31:0]

rx_eof

rx_last_byte_valid

rx_error

rx_fifo_error

1 2 3 4 5 30 31 32

Valid

rxmac_clk

rx_dbout[15:0]

rx_write

rx_stat_en

rx_stat_vector[31:0]

rx_eof

rx_last_byte_valid

rx_error

rx_fifo_full

rx_fifo_error

 Functional Description

IPUG98_1.1, May 2014 22 2.5 Gbps Ethernet MAC User’s Guide

Successful Transmission of a 64-Byte Frame -Tx MAC Application Interface
The assertion of tx_fifoavail indicates a frame is ready to be transmitted. It does not trigger the MAC transmit pro-
cess. The MAC actually pre-reads the FIFO as soon as tx_fifoempty goes low (indicating data is present in the Tx
FIFO). The tx_fifoempty signal, the tx_fifoavail signal and the MAC Tx state machine all determine when to read the
Tx FIFO. The 2.5GMAC IP core reads the FIFO and the data is transmitted until tx_fifoeof is asserted. Once the
frame is transmitted, tx_staten is asserted to qualify the statistic vector, tx_statvec. The signal tx_done is asserted
to indicate a successful transmission. This is shown in Figure 2-9, and described as follows in detail.

Figure 2-9. Transmission of a 64-byte Frame without Error

1. The Tx FIFO is initially empty (tx_fifoempty is asserted) and the MAC Tx state machine is in an idle state.

2. The client interface begins loading the Tx FIFO. Once the tx_fifoempty signal is de-asserted the tx_macread is
asserted and the MAC Tx state machine goes into a transmit state. The MAC performs a “pre-read” and contin-
ues to assert the tx_macread as long as the Tx FIFO is not empty (tx_fifoempty stays low). The pre-read typi-
cally is 7 to 8 bytes.

3. If tx_fifoavail is low after the pre-read, the Tx MAC will de-assert the tx_macread until the tx_fifoavail is
asserted.

4. tx_fifoavail is set high by the client interface indicating all bytes of the packet are now available for transmission.
The Tx MAC re-asserts tx_macread and reads all bytes until tx_fifoeof indicates the last byte.

5. Once the complete packet is read out by the Tx MAC, it checks the status of tx_fifoempty and tx_fifoavail again.
If either tx_fifoavail is low or tx_fifoempty is high at the end of the packet, the MAC de-asserts tx_macread. If
tx_fifoavail is high and tx_fifoempty is low, (FIFO is not empty) the Tx MAC will do another pre-read (not shown
in this figure) and start the transmit process over.

6. Once the frame is transmitted, tx_staten is asserted to qualify the statistic vector, tx_statvec. The signal tx_done
is asserted to indicate a successful transmission.

1 2 30 31 32

Valid

1

2 3

4

6

5

txmac_clk

tx_fifoavail

tx_fifodata[15:0]

tx_macread

tx_staten

tx_statvec[31:0]

tx_fifoeof

tx_last_byte_valid

tx_fifoempty

tx_discfrm

tx_done

 Functional Description

IPUG98_1.1, May 2014 23 2.5 Gbps Ethernet MAC User’s Guide

Additional Notes:
• The MAC Tx state machine may do other processing, such as inserting IPG after a previous packet is transmit-

ted, so even if tx_fifoempty is low and tx_fifoavail is high the MAC may not assert the tx_macread right away.

• There are many ways to interface client logic and FIFOs to the MAC - here are two examples:

1.) An appropriate threshold level for the Tx FIFO is chosen which indicates that a full frame is ready to be
sent. This is used as the tx_fifoavail signal. If there are variable size packets (some small) one may want to
OR this threshold with a frames_present signal. frames_present is a frames counter that keeps track of
EOPs into and out of the FIFO. Whenever the FIFO is Not Almost Empty and there is at least one full
packet in the FIFO tx_fifoavail is set high to indicate it is safe to transmit a packet.

2.) Decouple the tx_fifoempty and tx_fifoavail signals from the actual Tx FIFO and generate tx_fifoavail and
tx_fifoempty signals from a simple state machine:

I) Keep tx_fifoavail low and tx_fifoempty high - load Tx FIFO

II) When packet is fully loaded into Tx FIFO assert tx_fifoavail high and de-assert tx_fifoempty (set to
not empty)

III) When packet is completely pulled out of FIFO, de-assert tx_fifoavail and force tx_fifoempty high

Successful Transmission of a 64-byte Frame with FIFO Empty – Tx MAC Application
Interface
tx_fifoempty is asserted along with tx_fifoeof to indicate that the complete 64-byte frame has been read.

The frame is transmitted as a valid frame and tx_done is asserted at the end of transmission.

Figure 2-10. Successful Transmission of a 64-byte Frame with FIFO Empty

1 2 30 31 32

Valid

txmac_clk

tx_fifoavail

tx_fifodata[15:0]

tx_macread

tx_staten

tx_statvec[31:0]

tx_fifoeof

tx_last_byte_valid

tx_fifoempty

tx_discfrm

tx_done

 Functional Description

IPUG98_1.1, May 2014 24 2.5 Gbps Ethernet MAC User’s Guide

Aborted Transmission Due to FIFO Empty – Tx MAC Application Interface
If the tx_fifoempty is asserted while the Tx MAC is in the process of reading a frame, the MAC will stop reading the
frame and assert tx_disfrm to indicate an erroneous transmission. The frame transmission is abandoned when this
occurs. Note in Figure 2-11 the tx_fifoempty was asserted before the end of the frame (no tx_fifoeof asserted).

Figure 2-11. Aborted Transmission Due to FIFO Empty

Host Interface Read/Write Operation
During a write operation, haddr associated with hdatain, hcs_n and hwrite_n performs a write operation to an inter-
nal register. The end of transaction is indicated by assertion of hready_n. During a read operation, haddr associ-
ated with hcs_n and hread_n forms a write operation. The end of transaction is indicated by the assertion of
hready_n and hdataout_en_n along with the valid read data on hdataout.

1 2 30 31 32

Valid

txmac_clk

tx_fifoavail

tx_fifodata[15:0]

tx_macread

tx_staten

tx_statvec[31:0]

tx_fifoeof

tx_last_byte_valid

tx_fifoempty

tx_discfrm

tx_done

 Functional Description

IPUG98_1.1, May 2014 25 2.5 Gbps Ethernet MAC User’s Guide

Figure 2-12. Host Interface Read/Write Operation

GMII Transmit and Receive Operations
txd and tx_en are driven synchronous to the tx_clk during transmit operations. When the frame being transmitted
has an error, tx_er is asserted.

When receiving data, rxd and rx_dv are sampled on the rising edge of rx_clk. An error in the frame is indicated
when rx_er is asserted.

hclk

haddr

hdatain

hdataout

ADDR B

DATA A

[addr_width-1:0]

[data_width-1:0]

[data_width-1:0]

hcs_n

hread_n

hwrite_n

hready_n

hdataout_en_n

DATA B

ADDR A

WRITE OPERATION READ OPERATION

 Functional Description

IPUG98_1.1, May 2014 26 2.5 Gbps Ethernet MAC User’s Guide

Figure 2-13. GMII Transmit and Receive Operations

tx_clk

tx_en[1]

txd[15:8]

tx_er[1]

tx_en[0]

VALID FRAME DATA VALID FRAME DATAtxd[7:0]

tx_er[0]

FRAME WITHOUT
ERROR

FRAME WITH
ERROR

VALID FRAME DATA VALID FRAME DATA

FRAME WITHOUT
ERROR

FRAME WITH
ERROR

rx_clk

rx_dv[1]

rxd[15:8]

rx_er[1]

rx_dv[0]

rxd[7:0]

rx_er[0]

VALID FRAME DATA VALID FRAME DATA

FRAME WITHOUT
ERROR

FRAME WITH
ERROR

VALID FRAME DATA VALID FRAME DATA

FRAME WITHOUT
ERROR

FRAME WITH
ERROR

IPUG98_1.1, May 2014 27 2.5 Gbps Ethernet MAC User’s Guide

Synthesis/Simulation Tools Selection
The 2.5GMAC IP core evaluation capability supports multiple synthesis and simulation tool flows. These options
allow the user to select desired tool support.

Chapter 3:

Parameter Settings

IPUG98_1.1, May 2014 28 2.5 Gbps Ethernet MAC User’s Guide

This chapter provides information on how to generate the Lattice 2.5GMAC IP core using the Diamond software
IPexpress tool, and how to include the core in a top-level design.

Licensing the IP Core
An IP core- and device-specific license is required to enable full, unrestricted use of the 2.5GMAC IP core in a com-
plete, top-level design. Instructions on how to obtain licenses for Lattice IP cores are given at:

www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Users may download and generate the 2.5GMAC IP core and fully evaluate the core through functional simulation
and implementation (synthesis, map, place and route) without an IP license. The 2.5GMAC IP core also supports
Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in
hardware for a limited time (approximately four hours) without requiring an IP license. See “Hardware Evaluation”
on page 33 for further details. However, a license is required to enable timing simulation, to open the design in the
Diamond EPIC tool, and to generate bitstreams that do not include the hardware evaluation timeout limitation.

Getting Started
The 2.5GMAC IP core is available for download from the Lattice IP Server using the IPexpress tool. The IP files are
automatically installed using ispUPDATE technology in any customer-specified directory. After the IP core has
been installed, the IP core will be available in the IPexpress GUI dialog box shown in Figure 4-1.

The IPexpress tool GUI dialog box for the 2.5GMAC IP core is shown in Figure 4-1. To generate a specific IP core
configuration the user specifies:

• Project Path – Path to the directory where the generated IP files will be located.

• File Name – “username” designation given to the generated IP core and corresponding folders and files.

• (Diamond) Module Output – Verilog or VHDL.

• Device Family – Device family to which IP is to be targeted. Only families that support the particular IP core are
listed.

• Part Name – Specific targeted part within the selected device family.

Chapter 4:

IP Core Generation and Evaluation

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

 IP Core Generation and Evaluation

IPUG98_1.1, May 2014 29 2.5 Gbps Ethernet MAC User’s Guide

Figure 4-1. IPexpress Tool Dialog Box (Diamond Version)

Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output, Device Family
and Part Name default to the specified project parameters. Refer to the IPexpress tool online help for further infor-
mation.

To create a custom configuration, the user clicks the Customize button in the IPexpress tool dialog box to display
the 2.5GMAC IP core Configuration GUI, as shown in Figure 4-2. From this dialog box, the user can generate the
IP core.

 IP Core Generation and Evaluation

IPUG98_1.1, May 2014 30 2.5 Gbps Ethernet MAC User’s Guide

Figure 4-2. 2.5GMAC IP Core - Configuration GUI (Diamond Version)

IPexpress-Created Files and Top Level Directory Structure
When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are
generated in the specified “Project Path” directory. The directory structure of the generated files is shown in
Figure 4-3.

Figure 4-3. LatticeECP3 2.5GMAC IP Core Directory Structure

The design flow for IP created with the IPexpress tool uses a post-synthesized module (NGO) for synthesis and a
protected model for simulation. The post-synthesized module is customized and created during the IPexpress tool
generation.

 IP Core Generation and Evaluation

IPUG98_1.1, May 2014 31 2.5 Gbps Ethernet MAC User’s Guide

Table 4-1 provides a list of key files and directories created by the IPexpress tool and how they are used. The IPex-
press tool creates several files that are used throughout the design cycle. The names of most of the created files
are customized to the user’s module name specified in the IPexpress tool. These are all of the files needed to
implement and verify the 2.5GMAC IP core in a top-level design.

Table 4-2 provides a list of key additional files providing IP core generation status information and command line
generation capability are generated in the user's project directory.

The \<2_5_gbe_mac_eval> and subtending directories provide files supporting 2.5GMAC IP core evaluation.
The \<2_5_gbe_mac_eval> directory shown in Figure 4-3 contains files and folders with content that is constant
for all configurations of the 2.5GMAC. The \<username> subfolder (\mac_2g5_core0 in this example) contains
files and folders with content specific to the username configuration.

The \<2_5_gbe_mac_eval> directory is created by IPexpress the first time the core is generated and updated
each time the core is regenerated. A \<username> directory is created by IPexpress each time the core is gener-
ated and regenerated each time the core with the same file name is regenerated. A separate \<username> direc-
tory is generated for cores with different names, e.g. \<mac_core0>, \<mac_core1>, etc.

Instantiating the Core
The generated 2.5GMAC IP core package includes black-box (<username>_bb.v) and instance (<user-
name>_inst.v) templates that can be used to instantiate the core in a top-level design. An example RTL top-level
reference source file that can be used as an instantiation template for the IP core is provided in
\<project_dir>\2_5_gbe_mac_eval\<username>\src\rtl\top. Users may also use this top-level refer-
ence as the starting template for the top-level for their complete design.

Running Functional Simulation
Simulation support for the 2.5GMAC IP core is provided for Aldec Active-HDL (Verilog and VHDL) simulator, Men-
tor Graphics ModelSim (Verilog only) simulator, and Cadence NC-Verilog (Linux only) simulator.

The functional simulation includes a configuration-specific behavioral model of the 2.5GMAC IP core, which is
instantiated in an FPGA top level along with some test logic (MAC client side FIFO loop back logic and registers
with Read/Write Interface). This FPGA top, which is referred to as the Test Application Design, is instantiated in an

Table 4-1. File List

File Description

<username>.lpc This file contains the IPexpress tool options used to recreate or modify the core in the IPexpress
tool.

<username>.ipx

The IPX file holds references to all of the elements of an IP or Module after it is generated from the
IPexpress tool (Diamond version only). The file is used to bring in the appropriate files during the
design implementation and analysis. It is also used to re-load parameter settings into the IP/Mod-
ule generation GUI when an IP/Module is being re-generated.

<username>.ngo This file provides the synthesized IP core.

<username>_bb.v This file provides the synthesis black box for the user’s synthesis.

<username>_inst.v This file provides an instance template for the 2.5GMAC IP core.

<username>_beh.v This file provides the front-end simulation library for the 2.5GMAC IP core.

Table 4-2. Additional Files

File Description

<username>_generate.tcl Created when GUI “Generate” button is pushed, invokes generation, may be run from command
line.

<username>_generate.log Diamond synthesis and map log file.

<username>_gen.log IPexpress IP generation log file

 IP Core Generation and Evaluation

IPUG98_1.1, May 2014 32 2.5 Gbps Ethernet MAC User’s Guide

evaluation test bench that configures FPGA test logic registers and 2.5GMAC IP core registers. The test bench
also sources Ethernet packets to the Test Application, and monitors packets from Test Application.

More information on the simulation and the Test Application Design can be found in “Application Support” on
page 35.

The generated IP core package includes the configuration-specific behavior model (<username>_beh.v) for func-
tional simulation in the “Project Path” root directory. Lattice does not provide a test bench for evaluating this IP core
in isolation. However, a functional simulation capability is provided in which <username>_beh.v is instantiated in
the Test Application Design described in Application Support section of this document.

The simulation script supporting ModelSim evaluation simulation is provided in
\<project_dir>\2_5_gbe_mac_eval\<username>\sim\modelsim.

The simulation script supporting Active-HDL evaluation simulation is provided in
\<project_dir>\2_5_gbe_mac_eval\<username>\sim\aldec.

The Test Application Design is instantiated in a test-bench provided in
\<project_dir>\2_5_gbe_mac_eval\testbench.

Both ModelSim and Active-HDL simulation is supported via test bench files provided in
\<project_dir>\2_5_gbe_mac_eval\testbench. Models required for simulation are provided in the corre-
sponding \models folder.

Users may run the Active-HDL evaluation simulation by doing the following:

1. Open Active-HDL.

2. Under the Tools tab, select Execute Macro.

3. Browse to folder
\<project_dir>\2_5_gbe_mac_eval\<username>\sim\aldec and execute one of the “do” scripts
shown.

Users may run the ModelSim evaluation simulation by doing the following:

1. Open ModelSim.

2. Under the File tab, select Change Directory and choose the folder 
<project_dir>\2_5_gbe_mac_eval\<username>\sim\modelsim.

3. Under the Tools tab, select Execute Macro and execute the ModelSim “do” script shown.

Synthesizing and Implementing the Core in a Top-Level Design
Synthesis support for the 2.5GMAC IP core is provided for Mentor Graphics Precision or Synopsys Synplify. The
2.5GMAC IP core itself is synthesized and is provided in NGO format when the core is generated in IPexpress.
Users may synthesize the core in their own top-level design by instantiating the core in their top-level as described
previously and then synthesizing the entire design with either Synplify or Precision RTL Synthesis.

The following text describes the evaluation implementation flow for Windows platforms. The flow for Linux and
UNIX platforms is described in the Readme file included with the IP core.

Two example top-level reference source files are provided to support 2.5GMAC top-level synthesis and implemen-
tation.

One top file is for a 2.5GMAC IP core only implementation in isolation. This design is intended only to provide an
accurate indication of the device utilization associated with the 2.5GMAC IP core itself and should not be used as
an actual implementation example.

 IP Core Generation and Evaluation

IPUG98_1.1, May 2014 33 2.5 Gbps Ethernet MAC User’s Guide

The other top file is for the Test Application Design, and includes both the 2.5GMAC IP core and additional loop
back test logic. This is the same top used in the functional simulation described in the previous section.

Both top-level files, G25_mac_core_only_top.v (core only) and G25_mac_top.v (Application), are provided in
\<project_dir>\2_5_gbe_mac_eval\<username>\src\rtl\top.

In Diamond, push-button implementation of both reference designs is supported via the project files, 
<username>_reference_eval.ldf and <username>_core_only_eval.ldf located in
\<project_dir>\2_5_gbe_mac_eval\<username>\impl\(synplify or precision).

Using Project Files With Synplify in Diamond
1. Choose File > Open > Project.

2. Browse to \<project_dir>\2_5_gbe_mac_eval\<username>\impl\synplify in the Open Project dia-
log box.

3. Select and open <username>_reference_eval.ldf or <username>_core_only_eval.ldf. At this point, all of the files
needed to support top-level synthesis and implementation will be imported to the project.

4. Implement the complete design via the standard Diamond GUI flow.

Hardware Evaluation
The 2.5GMAC IP core supports Lattice’s IP hardware evaluation capability, which makes it possible to create ver-
sions of the IP core that operate in hardware for a limited period of time (approximately four hours) without requiring
the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined designs.

Enabling Hardware Evaluation in Diamond
Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be
enabled/disabled in the Strategy dialog box. It is enabled by default.

Updating/Regenerating the IP Core
By regenerating an IP core with the IPexpress tool, you can modify any of its settings including: device type, design
entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP
core or to create a new but similar one.

Regenerating an IP Core in Diamond
To regenerate an IP core in Diamond:

1. In IPexpress, click the Regenerate button.

2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate.

3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Tar-
get box.

4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The
base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx exten-
sion.

5. Click Regenerate. The module’s dialog box opens showing the current option settings.

6. In the dialog box, choose the desired options.

7. To import the module into your project, if it’s not already there, select Import IPX to Diamond Project (not
available in stand-alone mode).

 IP Core Generation and Evaluation

IPUG98_1.1, May 2014 34 2.5 Gbps Ethernet MAC User’s Guide

8. Click Generate.

9. Check the Generate Log tab to check for warnings and error messages.

10.Click Close.

The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP
core required to support simulation, synthesis and implementation. The IP core may be included in a user's design
by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is
already in a design project, double-click the module’s .ipx file in the File List view. This opens IPexpress and the
module’s dialog box showing the current option settings. Then go to step 6 above.

IPUG98_1.1, May 2014 35 2.5 Gbps Ethernet MAC User’s Guide

This chapter provides application support information for the 2.5GMAC IP core.

Test Application Design
The 2.5GMAC IP core evaluation package includes a reference design that can be used to instantiate, simulate,
map, place and route the 2.5GMAC IP core in an example working design. This reference design provides a loop
back path for packets on the MAC Rx/Tx client interface, through a FIFO and associated logic. Ethernet packets
are sourced to the GMII and looped back on the MAC Rx/Tx client FIFO interface. Source and destination
addresses in the ethernet frame can be swapped so the looped back packets on the Tx GMII have the correct
source and destination addresses. Figure 5-1 shows a block diagram of the test application design.

Figure 5-1. Test Application Design

The main blocks and functions of the test application design are as follows:

The Test Logic Module
This module includes the address swap logic, loop back FIFO and associated control logic, and miscellaneous con-
trol and status glue logic between the MAC Rx/Tx Client interface and the register interface module.

The JTAG ORCAstra to Host Bus/USI module
This module converts the JTAG bus to the host bus and a user slave interface bus. Using the JTAG bus, a user can
access the internal 2.5GMAC IP core registers, as well as the test application registers. The MAC registers
(accessed via the host bus) and test logic registers (accessed via the USI) are memory mapped as described in
“Test Application Registers” on page 37. A JTAG Bus Test bench driver is provided to ease simulation with this
interface.

The Register Interface Module
This module is accessed through the JTAG bus via the user slave interface (USI). The module contains registers
used by the test application for control and status of the IP core. In addition this module contains 16 bit statistics
counters fed by the 2.5GMAC IP core’s Rx/Tx statistics interfaces. These counters can be read and cleared
through the JTAG bus. An address map and description of these registers is given in “Test Application Registers”
on page 37.

2.5GMAC Top

2.5GMAC IP Core

txd[15:0]

tx_en[1:0]

tx_er[1:0]

rxd[15:0]

rx_dv[1:0]

rx_er[1:0]

Address
Swap &

Loop Back
Logic

ORCAstra JTAG
to MAC Host
Bus and User

Slave Interface
(USI)

Host Bus

Register Interface Module
(status/control registers and

statistics counters)

tck

tms

tdi

tdo

JTAG Control
Interface

16-Bit GMII
(2.5 Gbps)

Chapter 5:

Application Support

 Application Support

IPUG98_1.1, May 2014 36 2.5 Gbps Ethernet MAC User’s Guide

2.5GMAC Support Logic
This logic includes I/O, registers, clock dividers and multiplexers used by the 2.5GMAC IP core and test application.

Simulation of the Test Application
Figure 5-2 shows a block diagram of the test bench setup provided with the Test Application Design. All Accesses
to the internal 2.5GMAC registers and test application design registers can be accomplished through the testcase.v
file (via a JTAG ORCAstra driver). In addition, variable size and types of ethernet frames can be sourced to the
2.5GMAC Rx GMII port through the testcase.v file (via the Rx frame generator). These received packets get looped
back inside the test application design and are monitored on the 2.5GMAC Tx GMII by a packet monitor. The mon-
itored packets are logged in a file named ethernet_pkts_sink. The testcase.v file can be found in
\<project_dir>\2_5_gbe_mac_eval\testbench\tests\. While the ethernet_pkts_sink file will be created
and placed in \<project_dir>\2_5_gbe_mac_eval\core_name\sim\(modelsim or aldec) directory
once the simulation is run and completed.

Figure 5-2. Block Diagram of Test Bench Setup

Note that the user can easily edit the testcase.v file to configure and monitor any registers they desire in the test
application design, as well modify the type or number of packets they wish to drive to the test application design.
Also note that the destination and source addresses can be swapped by enabling the swap control bit in the test
control register. Figure 5-3 shows a timing waveform of data and control signals on the ingress and egress sides of
the address swap module (when address swap is enabled).

2.5GMAC Top

Rx Frame
Generator

Test
Program

txd[7:0]

tx_en
tx_er

rxd[7:0]
rx_dv
rx_er

Read/Write
Tasks

rdwr_task.v

testcase.v

ORCAstra
JTAG
Driver

Read/Write
Tasks

Test
Program

txd_word[15:0]
txen_word[1:0]
txer_word[1:0]

rxd_word[15:0]
rxdv_word[1:0]
rxer_word[1:0]

Loopback
Logic

2.5GMAC
IP Core

Tx Packet
Monitor

Rx Packet
Monitor

Interface

Register
Interface

task calls task calls task calls

tck

tms

tdi

tdo

ethernet_pkts_sink

MAC FIFO Client
Interface

16-to-8
Gearing

8-to-16
Gearing

2.5GMAC
IP Core

ORCAstra
JTAG

Interface

 Application Support

IPUG98_1.1, May 2014 37 2.5 Gbps Ethernet MAC User’s Guide

Figure 5-3. Timing Waveform

Test Application Registers
There are two address spaces in the test application design. The first space begins at base address 0x800 and is
used for addressing the IP core internal registers. Refer to Table 2-3 on page 16 for a listing of 2.5GMAC IP Core
internal registers. The first address in Table 2-3 on page 16 starts at offset 0x00 and ends at 0x35. Adding the
0x800 base address to an IP core register address from Table 2-3 on page 16 forms the memory mapped register
address.

The second address space shown in Table 5-1 starts at address 0x8000 and ends at 0x8037. This space contains
ID, control, status and statistics registers used by the test application.

The REGINTF logic block in the test application provides the address decoding, for the RO and R/W registers used
by the test logic and statistics counters. All registers are 8 bits wide and are byte addressable. Note that the statis-
tics counter registers are composed of two 8 bit registers, a low and a high byte register, therefore, in order to
access these registers, two byte accesses must be made. For example, to access to all 16 bits of the RXOKCNT
would require an access to both 0x8019 (high byte) and 0x8018 (low byte). Note that since the statistics counter
registers are clear on read (COR), the high byte should be read first before reading the low byte, since a read of the
low byte clears all the combined 16 bits of the low and high registers. The address map for the test application
related resisters are listed in Table 5-1.

Table 5-1. Test Application Related Registers

Address Register Description Mnemonic Type

0x08000 VERsion/IDentification Register VERID RO

0x08001 TeST CoNTroL Register TSTCNTL RW

0x08002 TeST CoNTroL Register 2 TSTCNTL_2 RW

0x08003 MAC CoNTroL Register MACCNTL RW

0x08004 PAUSe TiMeR Register - Low byte PAUSTMRL RW

0x08005 PAUSe TiMeR Register - High byte PAUSTMRH RW

0x08006 FIFO Almost Full Threshold Register - Low FIFOAFTL RW

0x08007 FIFO Almost Full Threshold Register - High FIFOAFTH RW

0x08008 FIFO Almost Empty Threshold Register - Low FIFOAETL RW

0x08009 FIFO Almost Empty Threshold Register - High FIFOAETH RW

0x0800a Rx Status Register RXSTATUS RO/COR

0x0800b Tx Status Register TXSTATUS RO/COR

DST_ADDrx_dbout SRC_ADD DST_ADD FCS

SRC_ADD DST_ADD DATA/PAD

Len/
Type

Len/
Type

rx_write

eof

rx_dbout
add_swap

rx_write_dly

eof_dly

FCS

 Application Support

IPUG98_1.1, May 2014 38 2.5 Gbps Ethernet MAC User’s Guide

Register Descriptions
Version/Identification (RO)
Mnemonic: VERID

POR Value = A2H

0x0800c, 0x0800d Rx Packet Ignored Counter Register (L,H) RXPICNT RO/COR

0x0800e, 0x0800f Rx Length Check Error CouNTer (L,H) RXLCECNT RO/COR

0x08010, 0x08011 Rx Long Frames CouNTer Register (L,H) RXLFCNT RO/COR

0x08012, 0x08013 Rx Short Frames CouNTer Register (L,H) RXSFCNT RO/COR

0x08014, 0x08015 Rx IPG violations CouNTer Register (L,H) RXIPGCNT RO/COR

0x08016, 0x08017 Rx CRC errors CouNTer Register (L,H) RXCRCCNT RO/COR

0x08018, 0x08019 Rx OK packets CouNTer Register (L,H) RXOKCNT RO/COR

0x0801a, 0x0801b Rx Control Frame CouNTer Register (L,H) RXCFCNT RO/COR

0x0801c, 0x0801d Rx Pause Frame CouNTer Register (L,H) RXPFCNT RO/COR

0x0801e, 0x0801f Rx Multicast Frame CouNTer Register (L,H) RXMFCNT RO/COR

0x08020, 0x08021 Rx Broadcast Frame CouNTer Register (L,H) RXBFCNT RO/COR

0x08022, 0x08023 Rx VLAN tagged Frame CouNTer Register (L,H) RXVFCNT RO/COR

0x08024, 0x08025 Tx Unicast Frame CouNTer Register (L,H) TXUFCNT RO/COR

0x08026, 0x08027 Tx Pause Frame CouNTer Register (L,H) TXPFCNT RO/COR

0x08028, 0x08029 Tx Multicast Frame CouNTer Register (L,H) TXMFCNT RO/COR

0x0802a, 0x0802b Tx Broadcast Frame CouNTer Register (L,H) TXBFCNT RO/COR

0x0802c, 0x0802d Tx VLAN tagged Frame CouNTer Register (L,H) TXVFCNT RO/COR

0x0802e, 0x0802f Tx BAD FCS Frame CouNTer Register (L,H) TXBFCCNT RO/COR

0x08030, 0x08031 Tx Jumbo Frame CouNTer Register (L,H) TXJFCNT RO/COR

0x8032, 0x08031 Rx Byte Count RXBYTECNT RO/COR

0x08034, 0x08035 Tx Byte Count TXBYTECNT RO/COR

0x08036, 0x08037 Tx Underrun TXURUNCNT RO/COR

0x08038 - 0x0FFFF Unused

Name Range Description

Version_ID [7:0] 7:0 Version ID: Echoes back the version and ID of the application (A2H).

Table 5-1. Test Application Related Registers

Address Register Description Mnemonic Type

 Application Support

IPUG98_1.1, May 2014 39 2.5 Gbps Ethernet MAC User’s Guide

Test Control Register (R/W)
Mnemonic: TSTCNTL

POR Value = 00H

Test Control Register 2 (R/W)
Mnemonic: TSTCNTL 2

POR Value = 00H

MAC Control Register (R/W)
Mnemonic: MACCNTL

POR Value = 00H

Name Range Description

Rsvd 7:4 Reserved

pkt_loop_clksel 3 Packet Loop Clock Select: When this bit is set High, sys_clk is tied to
rx_clk. When the bit is Low sys_clk is sourced from an external IO pin.

Rsvd 2 Reserved.

loop back enable 1 Loop back Enable: When this bit is set High the client side loop back is
enabled. When the bit is Low the Loop back is disabled.

destination/source
address swap 0

Swap Destination and Source Addresses: When this bit is set High the
Ethernet Destination and source addresses are swapped. When the bit is
Low there is no address swapping.

Name Range Description

testcontrol[7:0] 7:0 Reserved.

Name Range Description

Rsvd [7:5] 7-5 Reserved

ignore next packet 4
ignore next packet: This bit asserts the ignore_next_pkt pin on the
2.5GMAC IP core. See Table 2-1 on page 9 for more information.

tx_fifo_empty 3

tx_fifo_empty: This bit gets ORed with the FIFO empty signal. The ORed
output sets the tx_fifoempty pin on the 2.5GMAC IP core. See Table 2-1 on
page 9 for more information on this 2.5GMAC IP core signal. Note by setting
this bit you can mimic the Tx FIFO being empty. Also note that the applica-
tion design only has one loopback FIFO. So the Tx FIFO is the same as the
Rx FIFO.

rx_fifo full 2

rx_fifo full: This bit gets ORed with the FIFO full signal. The ORed output
sets the rx_fifo_full pin on the 2.5GMAC IP core. See Table 2-1 on page 9
for more information on this 2.5GMAC IP core signal. Note by setting this bit
you can mimic the rx fifo being full. Also note that the application design only
has one loopback FIFO. So the Tx FIFO is the same as the Rx FIFO.

fifo control frame 1
fifo control frame: This bit sets the tx_fifoctrl pin on the 2.5GMAC IP core.
See Table 2-1 on page 9 for more information on this 2.5GMAC IP core sig-
nal.

send pause request 0

send pause request: This bit gets ORed with the Tx FIFO almost full signal.
The ORed output sets the tx_sndpausreq pin on the 2.5GMAC IP core. See
Table 2-1 on page 9 for more information on this 2.5GMAC IP core signal.
When this bit is set High OR the FIFO is almost full tx_sndpausreq is
asserted, otherwise tx_sndpausreq is de-asserted.

 Application Support

IPUG98_1.1, May 2014 40 2.5 Gbps Ethernet MAC User’s Guide

Pause Timer Register - Low Byte (R/W)
Mnemonic: PAUSTMRL

POR Value = 00H

Pause Timer Register - High Byte (R/W)
Mnemonic: PAUSTMRH

POR Value = 00H

FIFO Almost Full Threshold Register - Low (R/W)
Mnemonic: FIFOAFTL

POR Value = 00H

FIFO Almost Full Threshold Register - High (R/W)
Mnemonic: FIFOAFTH

POR Value = 00H

FIFO Almost Empty Threshold Register - Low (R/W)
Mnemonic: FIFOAETL

POR Value = 00H

Name Range Description

pause timer Low bits
[7:0] 7:0

Pause Timer Low bits: These reg bits set the tx_sndpaustim[7:0] pins on
the 2.5GMAC IP core. See Table 2-1 on page 9 for more information on this
2.5GMAC IP core signal.

Name Range Description

pause timer High bits
[7:0] 7:0

Pause Timer High bits: These bits set the tx_sndpaustim[15:8] pins on the
2.5GMAC IP core. See Table 2-1 on page 9 for more information on this
2.5GMAC IP core signal.

Name Range Description

FIFO almost Full Low
bits [7:0] 7:0 FIFO almost Full Low bits: These bits set the loop back FIFO Almost Full

threshold [7:0] bits

Name Range Description

Rsvd [7:1] 7 - 1 Reserved.

FIFO almost Full High
bit [0] 0 FIFO almost Full High bit: This bit sets the loop back FIFO Almost Full

threshold [8] bit.

Name Range Description

FIFO almost Empty Low
bits [7:0] 7:0 FIFO almost Empty Low bits: These bits set the loop back FIFO Almost

Empty threshold [7:0] bits

 Application Support

IPUG98_1.1, May 2014 41 2.5 Gbps Ethernet MAC User’s Guide

FIFO Almost Full Threshold Register - High (R/W)
Mnemonic: FIFOAETH

POR Value = 00H

Rx Status Register (RO/COR)
Mnemonic: RXSTATUS

POR Value = 00H

TXSTATUS (RO/COR)
Mnemonic: TXSTATUS

POR Value = 00H

The counter registers listed in Table 5-2 are all 16 bits with 8 bit low and 8 bit high address locations. The counters
count different Rx and Tx statistics as defined by the tx_statvec and rx_statvec statistics vectors define in Table 2-1
on page 9. All counters have a power-on reset (POR) value of 0x0000.

Name Range Description

Rsvd [7:1] 7 - 1 Reserved.

FIFO almost Empty
High bit [0] 0 FIFO almost Empty High bit: This bit sets the loop back FIFO Almost

Empty threshold [8] bit.

Name Range Description

Rsvd [7:2] 7:2 Reserved.

rx_error 1
rx_error: This bit is set high and latched if the rx_fifo_error signal is
asserted on 2.5GMAC IP core pin. See Table 2-1 on page 9 for more infor-
mation on this 2.5GMAC IP core signal.

rx_fifo_error 0
rx_fifo_error: This bit is set high and latched if the rx_error signal is
asserted on 2.5GMAC IP core pin. See Table 2-1 on page 9 for more infor-
mation on this 2.5GMAC IP core signal.

Name Range Description

Rsvd [7:2] 7:2 Reserved.

tx_fifo_full 1 tx_fifo_full: This bit is set high and latched if the tx_fifo_full signal from the
Loop back FIFO is asserted.

tx_discfrm 0
tx_discfrm: This bit is set high and latched if the tx_discfrm signal is
asserted on 2.5GMAC IP core pin. See Table 2-1 on page 9 for more infor-
mation on this 2.5GMAC IP core signal.

Table 5-2. Counter Registers
Address Register Description Mnemonic Type

0x0800c Rx Packet Ignored Counter Register RXPICNT (RO/COR)

0x0800e Rx Length Check Error CouNTer RXLCECNT (RO/COR)

0x08010 Rx Long Frames CouNTer Register RXLFCNT (RO/COR)

0x08012 Rx Short Frames CouNTer Register RXSFCNT (RO/COR)

0x08014 Rx IPG violations CouNTer Register RXIPGCNT (RO/COR)

0x08016 Rx CRC errors CouNTer Register RXCRCCNT (RO/COR)

0x08018 Rx OK packets CouNTer Register RXOKCNT (RO/COR)

0x0801a Rx Control Frame CouNTer Register RXCFCNT (RO/COR)

0x0801c Rx Pause Frame CouNTer Register RXPFCNT (RO/COR)

 Application Support

IPUG98_1.1, May 2014 42 2.5 Gbps Ethernet MAC User’s Guide

Table 5-3 lists test application I/Os.

Code Listing for Multicast Bit Selection Hash Algorithm in C Language
The code listing below is to aid software developers in programming the multicast tables in the 2.5GMAC IP core
when the core is programmed to receive multicast frames.

When a software developer wishes to accept a specific multicast address, they should follow the hash algorithm
illustrated in the C language code listing to determine which filter bit in the multicast registers to set. The C algo-
rithm returns the multicastcast_table register index (0 to 7) as well as the bit within the register that needs to be set
(0 to 7) based on a given multicast destination address input to the algorithm. Several bits can be set to accept sev-
eral multicast addresses. If all 64 multicast filter register bits are set to 1, then all received multicast addresses will
be passed to the MAC client interface.

#include <stdio.h>
#include <stdlib.h>

//Hexadecimal equivalent of the CRC
//equn.
#define CRC_POLYNOMIAL 0x04c11db6

int main(int argc, unsigned char *argv[])
{
 //The Multicast address is held in a 6 byte
 //array

0x0801e Rx Multicast Frame CouNTer Register RXMFCNT (RO/COR)

0x08020 Rx Broadcast Frame CouNTer Register RXBFCNT (RO/COR)

0x08022 Rx VLAN tagged Frame CouNTer Register RXVFCNT (RO/COR)

0x08024 Tx Unicast Frame CouNTer Register TXUFCNT (RO/COR)

0x08026 Tx Pause Frame CouNTer Register TXPFCNT (RO/COR)

0x08028 Tx Multicast Frame CouNTer Register TXMFCNT (RO/COR)

0x0802a Tx Broadcast Frame CouNTer Register TXBFCNT (RO/COR)

0x0802c Tx VLAN tagged Frame CouNTer Register TXVFCNT (RO/COR)

0x0802e Tx BAD FCS Frame CouNTer Register TXBFCCNT (RO/COR)

0x08030 Tx Jumbo Frame CouNTer Register TXJFCNT (RO/COR)

Table 5-3. Counter Registers

FPGA Signal Name FPGA Pin Notes

reset_n Input Active Low

rx_clk Input Rx GMII clock (Rx word clock)

rx_dv[1:0] Input Rx GMII data valid

rx_er[1:0] Input Rx GMII error

rxd[15:0] Input Rx GMII data bits 0 to 15

sys_clk Input System clock (at word clock rate)

tx_clk Input Tx GMII clock (Tx word clock)

tx_en[1:0] Output Tx GMII enable

tx_er[1:0] Output Tx GMII error

txd[15:0] Output Tx GMII data bits 0 to 15

rxmac_clk Output Rx MAC clock – used internally can be brought out

txmac_clk Output Tx MAC Clock – used internally can be brought out

hclk Input Host bus clock

 Application Support

IPUG98_1.1, May 2014 43 2.5 Gbps Ethernet MAC User’s Guide

 unsigned char multi_addr[6];
 // variables
 unsigned long int crc;
 unsigned int val;
 int i, j, bit;
 int carry;
 int register_no, register_bit;
 crc = 0xffffffff;

 // check number of arguments
 if (argc != 7) {
 printf("Invoke eth_crc with arguments specifying a MAC Address.\n");
 printf("Use hex format and blanks.\n");
 printf("Example:\n");
 printf("eth_crc 01 A2 B3 C4 D5 E6\n");
 system("PAUSE");

 return 1;
 }

 printf("\n DA ");
 // Input data from command line
 for (j=0; j<6; j++)
 {
 sscanf(argv[j+1], "%x", &val);
 multi_addr[j] = (unsigned char) val;
 printf("%s", argv[j+1]);
 }
 printf("\n");

 // check for multicast destination address
 if ((multi_addr[0] & 0x01) == 0)
 {
 printf(" Not a multicast address\n");
 printf(" Bit 0 of MSB must be 1\n\n");
 system("PAUSE");
 return 1;
 }

 // The following loops create the 32-bit crc
 // value.
 // loop through each byte of the address.
 for(i=0; i<6; i++)
 {
 // Loop through each byte bit of that byte.
 for(bit=0; bit<8; bit++)
 {
 carry = (crc >> 31)^((multi_addr[i] & (1 << bit)) >> bit);
 crc <<= 1;
 if (carry)
 crc = (crc ^ CRC_POLYNOMIAL) | carry;
 }
 }

 // Extract the middle 6 bits from the MSB of the 32bit CRC value,
 // this six bit value is used to index a
 // unique filter bit.
 printf(" crc %lx \n", crc);
 crc >>= 25; // 2.5GMAC refers to Bit 30..25

 Application Support

IPUG98_1.1, May 2014 44 2.5 Gbps Ethernet MAC User’s Guide

 crc &= 0x3F; // mask six bit

 //Find the multicast register number and
 //bit of that register to set.
 printf(" hash %lx \n", crc);
 register_no = crc >> 3;
 register_bit = crc & 7;
 printf (" register_no %lx\n register_bit %lx \n\n", register_no, register_bit);

 system("PAUSE");
 return 0;
}

IPUG98_1.1, May 2014 45 2.5 Gbps Ethernet MAC User’s Guide

The 2.5GMAC IP core has been validated using an Ethernet application design targeted to a LatticeECP3-95,
speed grade -8 FPGA. The FPGA design included this IP core, a data path loopback function on the MAC client
interface, a 1000BASE-X PCS on the MAC GMII interface, a SERDES operating at 1.25 Gbps, and miscellaneous
logic to control and read configuration/status registers. The FPGA was mounted on a demo board that included a
1000BASE-X SFP module. An optical cable was used to link the demo board to an external Spirent Testcenter
Ethernet Analyzer. Figure 6-1 illustrates the setup.

Figure 6-1. 2.5GMAC Hardware Validation Setup

Table 1 lists the tests performed during the validation process.

2.5GMAC
IP Core

Test
Logic

USI
to

Host

USI
Bus

ORCAstra
Target

Host
Bus

8B
to

16B

Spirent
Test Center

SPT-2000A-HS
SFP

LatticeECP3
SERDES/

PCS

1000BASEX
Soft-PCS

JTAG
Bus

Demo Board
LatticeECP3-95 FPGA

1000BASE-X
at Full Bandwidth

1.25Gbps

125 MHz
XOSC

PC Running
ORCAstra
Software

8B
to

10B

PCS
Registers

Misc.
Registers

Chapter 6:

Core Validation

 Core Verification

IPUG98_1.1, May 2014 46 2.5 Gbps Ethernet MAC User’s Guide

Table 1. Validation Test List

Packet Flow, Unicast

Packet Flow, Multicast

Packet Flow, Broadcast

Packet Flow, VLAN Tagged

Packet Flow, Jumbo

Packet Flow, Short

Packet Flow, Long Duration

Packet Flow, Sparse Bandwidth, Unicast

Packet Flow, Over Bandwidth, IPG=8-12

Packet Flow, Force CRC Error,discard CRC

Packet Flow, Force CRC Error, pass CRC

Flow Cntl, RX Pause, RX Drop, TX Normal

Flow Cntl, RX Pause, RX Pass, TX Normal

Flow Cntl, TX Pause, Flow Cntl Disabled

Flow Cntl, TX Pause, Flow Cntl Enabled

Addr Filtering, Dest Addr = MAC Addr

Addr Filtering, Dest Addr != MAC Addr

Promiscuous Mode

MAC Statistics Check

MAC Status Registers Check

MAC Control Registers Check

IPUG98_1.1, May 2014 47 2.5 Gbps Ethernet MAC User’s Guide

This chapter contains information about Lattice Technical Support, additional references, and document revision
history.

Lattice Technical Support
There are a number of ways to receive technical support.

E-mail Support
techsupport@latticesemi.com

Local Support
Contact your nearest Lattice Sales Office.

Internet
www.latticesemi.com

IEEE
IEEE offers publications and technology standards on its web site at www.ieee.org.

References
• HB1009, LatticeECP3 Family Handbook

Revision History

Date
Document

Version IP Core Version Change Summary

March 2012 01.0 1.0 Initial release.

May 2014 1.1 1.0 Updated LatticeECP3 FPGAs section. Changed part number
in Ordering Part Number.

Updated Lattice Technical Support information.

Chapter 7:

Support Resources

http://www.ieee.org.
mailto: techsupport@latticesemi.com
www.latticesemi.com
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
http://www.latticesemi.com/documents/tn1196.pdf

IPUG98_1.1, May 2014 48 2.5 Gbps Ethernet MAC User’s Guide

This appendix gives resource utilization information for the LatticeECP3 FPGA using the 2.5GMAC IP core.

LatticeECP3 FPGAs
Table A-1. Performance and Resource Utilization1

Ordering Part Number
The Ordering Part Number (OPN) for the 2.5G Ethernet MAC IP core targeting LatticeECP3 devices is 
2PT5-MAC-E3-U.

Slices LUTs Registers EBRs External Pins fMAX (MHz)

1480 2100 1290 1 203 156.25

1. Performance and utilization data are generated targeting an LFE3-150EA-8FN1156C device using Lattice Diamond 1.3 and Synplify Pro for
Lattice E-2011.03L software. Performance may vary when using a different software version or targeting a different device density or speed
grade within the LatticeECP3 family.

Appendix A:

Resource Utilization

	Table of Contents
	Introduction
	Quick Facts
	Features

	Functional Description
	Functional Overview
	Core Signal Descriptions
	Host Interface
	Receive MAC (Rx MAC)
	Receiving Frames
	Address Filtering
	Filtering Based on Frame Length
	Receiving a PAUSE Frame
	Statistics Vector

	Transmit MAC (Tx MAC)
	Transmitting Frames
	External Transmit FIFO
	FIFO Under-flow
	Transmitting PAUSE Frame

	Internal Data Buffer and FIFO Interfaces

	Internal Registers
	Register Descriptions
	MODE (R/W)
	Transmit and Receive Control (R/W)
	Maximum Packet Size (R/W)
	IPG (Inter-Packet Gap) (R/W)
	MAC Address Register {0,1,2} (R/W), Set of Three
	Transmit and Receive Status (RO)
	VLAN Tag (RO)
	Multicast Tables (R/W), Set of Eight
	Pause Opcode (R/W)

	Timing Specifications
	Reception of a 64-Byte Frame Without Error – Rx MAC Application Interface
	Reception of a 64-byte Frame with Error(s) – Rx MAC Application Interface
	Reception of a 64-Byte Frame with FIFO Overflow - Rx MAC Application Interface
	Successful Transmission of a 64-Byte Frame -Tx MAC Application Interface
	Additional Notes:

	Successful Transmission of a 64-byte Frame with FIFO Empty – Tx MAC Application Interface
	Aborted Transmission Due to FIFO Empty – Tx MAC Application Interface

	Host Interface Read/Write Operation
	GMII Transmit and Receive Operations

	Parameter Settings
	Synthesis/Simulation Tools Selection

	IP Core Generation and Evaluation
	Licensing the IP Core
	Getting Started
	IPexpress-Created Files and Top Level Directory Structure
	Instantiating the Core
	Running Functional Simulation
	Synthesizing and Implementing the Core in a Top-Level Design
	Using Project Files With Synplify in Diamond

	Hardware Evaluation
	Enabling Hardware Evaluation in Diamond

	Updating/Regenerating the IP Core
	Regenerating an IP Core in Diamond

	Application Support
	Test Application Design
	The Test Logic Module
	The JTAG ORCAstra to Host Bus/USI module
	The Register Interface Module
	2.5GMAC Support Logic
	Simulation of the Test Application
	Test Application Registers

	Register Descriptions
	Version/Identification (RO)
	Test Control Register (R/W)
	Test Control Register 2 (R/W)
	MAC Control Register (R/W)
	Pause Timer Register - Low Byte (R/W)
	Pause Timer Register - High Byte (R/W)
	FIFO Almost Full Threshold Register - Low (R/W)
	FIFO Almost Full Threshold Register - High (R/W)
	FIFO Almost Empty Threshold Register - Low (R/W)
	FIFO Almost Full Threshold Register - High (R/W)
	Rx Status Register (RO/COR)
	TXSTATUS (RO/COR)

	Code Listing for Multicast Bit Selection Hash Algorithm in C Language

	Core Validation
	Support Resources
	Lattice Technical Support
	E-mail Support
	Local Support
	Internet
	IEEE

	References
	Revision History

	Resource Utilization
	LatticeECP3 FPGAs
	Ordering Part Number

