
Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 179

Column #87 July 2002 by Jon Williams:

Multi-Bank Programming

If you work with BASIC Stamps long enough there will come a time when you either run out of
space or wish you could change some part of your program (usually the user interface device)
without impacting all the hard work you applied to your control code. Or both. Welcome to the
club.

If space becomes the issue, that can be certainly solved with one of the multi-bank BASIC Stamps
(BS2e, BS2sx or BS2p). But how do we take advantage of all those program banks? Well, there
are a lot of ways, really. In this issue I'll show you a strategy that has worked for me an that you
can apply to your own projects.

Plan Your Work, Work Your Plan

Yeah, yeah, I know I harp on it a bit, but I sincerely believe that we get into trouble with our
projects when we don't plan them. You know the saying: "We don't plan to fail, we fail to plan." I
think that's particularly the case when we start to work across program banks with the BS2e,
BS2sx or BS2p. Since talk is theoretical talk is cheap, let's dive into a project and learn by doing.

Column #87: Multi-Bank Programming

Page 180 • The Nuts and Volts of BASIC Stamps (Volume 3)

Figure 87.1: Multi-Bank Programming Circuit

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 181

Figure 87.1: Multi-Bank Programming Circuit (continued)

Our project this month is a simple thermostat simulation. The goal is to manage the temperature
and control code in one bank and the display output in another. Why? Well, this version will use
a standard 2x16 LCD display. But what if, two months from now, we decide we want to use one
of Scott Edwards' nifty graphics LCDs instead? By keeping the display code in a separate module,
we don't have to tear-up the control code module to use it.

In the BS2e, BS2sx and BS2p there are three keywords that apply to the use of multiple program
banks: PUT, GET and RUN. PUT will write a byte variable to a specific location in a shared
RAM space called the Scratchpad. GET will retrieve a byte. RUN will execute the target
program bank.

What were going to do is use the Scratchpad as mechanism to store program variables and to pass
commands and data between program banks. Here's where some of the planning comes into play.
Program design will also play a big role in making all of this work easily.

Column #87: Multi-Bank Programming

Page 182 • The Nuts and Volts of BASIC Stamps (Volume 3)

I've long advocated the use of a "task manager" approach to writing PBASIC programs. I like this
style because it allows programs to become very flexible without overusing GOTO. In this case, it
really helps because we can save our current task to the Scratchpad, go run code in another
module, then come back and retrieve the task to run. It'll probably make more sense as we get into
the code.

Let's define our program: The main module will monitor a temperature sensor (DS1620), a mode
switch (Off, Cool, Heat) and a couple of buttons (Up and Down) to change the current setpoint.
The external module will initialize the display device, clear the display device, show the
temperature, the setpoint, the thermostat mode and whether or not the fan is running. What we'll
find is that the main module will be completely unaware of the mechanics of displaying data – it
will simply pass the command and/or data and rely on the external code to handle it. This aspect
of the program design will let us change the display device and code later without affecting our
main module.

Based on what we have so far, here's how we'll use the Scratchpad:

0 Bank 0 task
1 Bank 1 task (command)
2 thermostat mode (plus fan status)
3 temperature (low byte)
4 temperature (high byte)
5 setpoint (low byte)
6 setpoint (high byte)

As you can see, the start of our data "package" for the external module starts at address 2. We'll
actually define this value as a constant so we can shift the package around if necessary to
accommodate the use of more than one external module.

Cool It, Buddy

Okay, it's time to write some code. As you can see by the schematics, we're working with simple
parts that we've all dealt with a thousand times (if you're new, don't worry, there's plenty of
documentation available to explain how these parts work). As I pointed out earlier, we'll use a
task manager approach to our design so we can save what we're doing when we access an external
module. For the main program, we'll need to do the following tasks:

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 183

0 Initialize the display (external code)
1 Initialize the DS1620
2 Read the temperature
3 Get the setpoint
4 Update the display (external code)

Tasks 0 and 1 will only have to run once – the others will repeat through the run of the program.
Now, you may be wondering why we don't define scanning the mode switch and buttons as a task.
The reason is that we want this to happen all the time, so our design will allow us to do that
between every iteration of tasks 2, 3 and 4.

Take a look at the Initialization section in Proram Listing 87.1. You'll notice that the first thing
we do is read the Scratchpad for our current task and the stored setpoint. On power-up or reset,
these values will be zero so the BRANCH command that follows will take us to Init_Screen. This
section of code prepares us to launch the [external] code that initializes our display device (LCD).
What we have to do before running the external module is save what we want to do when we get
back. In this case, we'll want to initialize the DS1620 (task value of 1). In Scratchpad address 1
we'll tell the external module what to do. Then we run the external module. So let's go there.

Jump over to Program Listing 87.2. What you'll see is that this module simply holds a group of
subroutines that deal with the display: initialize, clear and update. The routine to run is passed via
the Scratchpad in location 1.

Our first task is to initialize the display. This is pretty common code as we're using a standard
2x16 LCD for this program. What you'll notice is that the end of the initialization section is
allowed to drop through to the code that clears the display. This is necessary in case of a reset
when the program has been running. Re-initializing the display does not automatically clear it.
Once the display is cleared, the program exits back to the main code module (Program Listing
87.1).

Now when we return to the main module, the program starts all over again. This is why we save
the current task and the setpoint in the Scratchpad – they will probably get destroyed because of
the different variable definitions in the other program bank. This time through our task value is
one, so the program will BRANCH to the [internal] code that initializes the DS1620. Again, this
is code we've used before. It sets up the DS1620 to "free-run" and be accessed by an external
CPU. When this is complete, we update our task variable and initialize the setpoint to a default
value.

Now we're in the heart of the main control program. At the top is where we scan our mode switch
and Up/Down buttons for the setpoint. This little loop of code is useful for debouncing multiple

Column #87: Multi-Bank Programming

Page 184 • The Nuts and Volts of BASIC Stamps (Volume 3)

inputs. The tilde (~) operator inverts our active-low inputs to "1" when pressed or on to make the
inputs easier to deal with in code. Once done, the mode value is isolated so we can pass it to the
external module. The modulus operator (//) keeps the mode value in the range of 0 (off), 1 (cool)
and 2 (heat).

The first [repeating] task is to get the current temperature and compare it to the setpoint. This
code calls an internal subroutine to read the DS1620 and to convert its output (half degrees
Celsius) to whole degrees Fahrenheit. The returned value is compared to the setpoint and, based
on the current control mode, the fan control bit is set or cleared.

The end of this code updates the task variable and goes back to the top where we scan the inputs
again then BRANCH to checking for a setpoint change. This is actually very simple code and
demonstrates the usefulness of aliasing variables. If you look at the variables section, you'll see
that the Up and Down bits have been aliased from the btnIns variable. As bits, these variables will
have values or 0 (not pressed) or 1 (pressed).

The entry portion of this code actually looks to see if both buttons are being pressed at the same
time. If not, it jumps to code that handles a possible setpoint change. If both buttons are pressed,
the setpoint is reset to the default value. Most of the time, though, only one button will be pressed.

Let's say, for example, that our current setpoint is lower than the specified maximum. In this case,
the value of the Up button will be added to the current setpoint. If pressed, this value will be one.
If not, the value will be zero. The nice thing is that we don't have to use an IF-THEN construct to
check if the button was pressed or not, we simply add the current button value. Pretty neat. But
what if you wanted to increment or decrement by a different value, say five? No problem. Just
change the code so it looks like this:

setpoint = setpoint + (btnUp * 5)

The same approach is used to check the down button and decrease the setpoint if it's pressed.

Now that we have the current temperature and setpoint, it's time to update the LCD. The task that
handles this actually sets up everything so that it can run externally. In this task we'll store what
we want to do when we get back, what external routine to run (display update) and the values used
by the external code.

Notice that the fan control bit is added into the mode value and passed that way. Since the
temperature and setpoint are stored as words, we have to use PUT twice to pass the value. This is
required because PUT and GET only work with bytes. The technique of storing low-byte first is
often referred to as "Little Endian" and is common practice.

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 185

Now we want to update the display, so let's jump back over to Program Listing 87.2. At this point,
the command passed will cause the program to BRANCH to Update_LCD. Since this routine uses
data passed from the main module, the first thing it has to do is use GET to retrieve the data from
the Scratchpad.

With the data in hand, the temperature and setpoint values are printed using a subroutine called
Print_Temperature. This code prints a three-digit, right justified (space padded) value. It assumes
the value to be positive, so if you want to deal with negative values this code will have to be
updated. It's not tough to do. Simply look at bit 15 of the tPrint value. If it's a one, the value is
negative. In this case, you would print a "-" then use the ABS function to get the positive
temperature value and print using the code as shown.

The next thing to do is print the current thermostat mode. The various mode strings are stored in
DATA statements. LOOKUP is used to locate the first character of a string and a simple loop
writes the characters to the LCD. The strings are terminated with zero so that the print loop knows
when to stop. Also note that the strings are also padded with a leading space that will erase the fan
running indicator when we change the mode.

The final step, then, is to display the fan status. In this demo, I took the lead from my own home
thermostat that prints an asterisk when the fan is running. Once the fan status is displayed (or
not), the program exits back to the control program and the process starts over again at reading the
temperature.

That wasn't too tough, was it? Of course, we could have easily fit both this programs into one
bank, but then updating the display portion would lead to us potentially damaging the control
code. By using the external module to deal with the display, we free up variable and code space
for control code and can change display types without worry.

Saving Everything ... Almost Everything

I am not a fan of -- and I actually discourage -- the use of internal variable names (like B0, W1,
etc.), but there is a case here where it can be useful. Let's say, for example, that you need to save
and retrieve a lot of variables when dealing with an external program module. Here's bit of code
that will save everything to the Scratchpad except one byte:

Push_Vars:
 FOR B25 = 0 TO 24
 PUT (BankVarsStart + B25), B0(B25)
 NEXT
 RETURN

Column #87: Multi-Bank Programming

Page 186 • The Nuts and Volts of BASIC Stamps (Volume 3)

This routine uses B25 (last allocated byte in the variable RAM space) as a loop counter and takes
advantage of the fact that the BASIC Stamp treats the variable RAM space as an array. So B0(0)
is the first byte of variable RAM and B0(24) is the penultimate byte. The constant called
BankVarsStart determines where the data is saved in the Scratchpad (be careful not to make it so
high as to overrun the end of the Scratchpad). The only thing that doesn't get saved is B25 since
it's used as the loop control. Of course, if things get really desperate, you could use 26 PUT
statements to save the data. But that's not likely to be the case since the use of an external for
subroutines generally frees up some variable space.

Retrieving data is just as easy:

Pop_Vars:
 FOR B25 = 0 TO 24
 GET (BankVarsStart + B25), B0(B25)
 NEXT
 RETURN

Go For It!

Okay, now that you've seen how easy using multiple program banks can be, it's time for you to use
this technique in your own programs. It only takes a little bit of planning to organize the use the
Scratchpad and a task-manager approach to your code so that you can direct the flow across
modules. Remember to plan your work and work your plan and you won't have any trouble.

For those of you that have either of the Scott Edwards graphics displays, a good first project
would be to create a module that is compatible with the code we've built here. Could be a lot of
fun....

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 187

' ==
'
' Program Listing 87.1
' File...... Thermo_Demo.BSE
' Purpose... Multi-bank Program Demo
' Author.... Jon Williams
' E-mail.... jwilliams@parallaxinc.com
' Started...
' Updated... 02 JUN 2002
'
' {$STAMP BS2e, Thermo_LCD.BSE}
'
' ==

' --
' Program Description
' --
'
' The pupose of these programs is to demonstrate the multi-bank capability of
' the BS2e, BS2sx and BS2p. The core program monitors a DS1620 and functions
' as a simple thermostat control. Information from the program is displayed
' on an LCD that is controlled from a different program bank.
'
' Tasks:
'
' 0 Initialize LCD (code in bank 1)
' 1 Initialize DS1620
' 2 Read temperature
' 3 Get setpoint
' 4 Update LCD (code in bank 1)
'
' Tasks 0 and 1 run only once.

' --
' Revision History
' --

' --
' I/O Definitions
' --

Inputs VAR InA ' mode and temp change inputs
DQ CON 4 ' DS1620.1 (data I/O)
Clock CON 5 ' DS1620.2
Reset CON 6 ' DS1620.3

Column #87: Multi-Bank Programming

Page 188 • The Nuts and Volts of BASIC Stamps (Volume 3)

' --
' Constants
' --

RdTmp CON $AA ' read temperature
WrHi CON $01 ' write TH (high temp)
WrLo CON $02 ' write TL (low temp)
RdHi CON $A1 ' read TH
RdLo CON $A2 ' read TL
StartC CON $EE ' start conversion
StopC CON $22 ' stop conversion
WrCfg CON $0C ' write config register
RdCfg CON $AC ' read config register

TskInitScr CON 0 ' program tasks
TskInitTmp CON 1
TskTemp CON 2
TskSetPoint CON 3
TskScreen CON 4

ScreenBank CON 1 ' bank that holds output code

ScrInit CON 0 ' initialize screen
ScrClear CON 1 ' clear screen
ScrUpdate CON 2 ' update screen

AcOff CON 0 ' A/C modes
AcCool CON 1
AcHeat CON 2

MinTemp CON 0 ' valid temp range
MaxTemp CON 125
DefaultSP CON 75 ' default setpoint

Yes CON 1
No CON 0

DataStart CON 2 ' data block starts at loc 2

' --
' Variables
' --

task VAR Nib ' current task
loop VAR Nib ' loop counter
btnIns VAR Nib ' switch and button inputs
btnUp VAR btnIns.Bit2
btnDn VAR btnIns.Bit3
mode VAR Nib
fanCtrl VAR mode.Bit3 ' 1 = run fan

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 189

fan VAR bit
setpoint VAR Word ' temperature setpoint
tempIn VAR Word ' raw temp from DS1620
sign VAR tempIn.Bit8 ' 1 = negative temperature
tSign VAR Bit
tempC VAR Word
tempF VAR Word

' --
' EEPROM Data
' --

' --
' Initialization
' --

Initialize:
 GET 0, task ' get current task
 GET (DataStart + 3), setpoint.LowByte ' get last setpoint
 GET (DataStart + 4), setpoint.HighByte

 BRANCH task, [Init_Screen, Init_DS1620, Main, Main, Main]

Init_Screen:
 PUT 0, TskInitTmp ' store task for retrun
 PUT 1, ScrInit ' store task for external code
 RUN ScreenBank ' run external code

Init_DS1620:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFirst, [WrCfg, %10] ' use with CPU; free-run
 LOW Reset
 PAUSE 10
 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFirst, [StartC] ' start conversions
 LOW Reset

 task = TskTemp
 setpoint = DefaultSP

' --
' Program Code
' --

Main:
 btnIns = %1111 ' enable all four inputs
 FOR loop = 1 TO 10
 btnIns = btnIns & ~Inputs ' test inputs

Column #87: Multi-Bank Programming

Page 190 • The Nuts and Volts of BASIC Stamps (Volume 3)

 PAUSE 5 ' delay between tests
 NEXT

 mode = (btnIns & %0011) // 3 ' isolate mode switch bits

Task_Manager:
 BRANCH (task - 2), [Get_Temperature, Get_SetPoint, Update_Screen]
 GOTO Main

Get_Temperature:
 GOSUB Read_DS1620 ' read current temperature
 fan = No ' assume fan is off
 BRANCH mode, [Get_TempX, Check_Cool, Check_Heat]

Check_Cool: ' check for cooling on
 IF (tempF <= setpoint) THEN Get_TempX
 fan = Yes
 GOTO Get_TempX

Check_Heat: ' check for heating on
 IF (tempF >= setpoint) THEN Get_TempX
 fan = Yes

Get_TempX:
 task = TskSetPoint
 GOTO Main

Get_SetPoint: ' check for both pressed
 IF ((btnIns >> 2) <> %11) THEN Check_Increase
 setpoint = DefaultSP
 GOTO SP_Done

Check_Increase:
 IF (setpoint = MaxTemp) THEN Check_Decrease
 setpoint = setpoint + btnUp

Check_Decrease:
 IF (setpoint = MinTemp) THEN SP_Done
 setpoint = setpoint - btnDn

SP_Done:
 PAUSE 100 ' delay between keys
 task = TskScreen
 GOTO Main

Update_Screen:
 PUT 0, TskTemp ' save next task
 PUT 1, ScrUpdate ' store task for external code

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 191

 fanCtrl = fan ' pass fan control in mode
 PUT (DataStart + 0), mode ' store data packet
 PUT (DataStart + 1), tempF.LowByte
 PUT (DataStart + 2), tempF.HighByte
 PUT (DataStart + 3), setpoint.LowByte
 PUT (DataStart + 4), setpoint.HighByte
 RUN ScreenBank ' run external code

' --
' Subroutines
' --

Read_DS1620:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [RdTmp] ' give command to read temp
 SHIFTIN DQ, Clock, LSBPRE, [tempIn\9] ' read it in
 LOW Reset ' release the DS1620

 tSign = sign ' save sign bit
 tempIn = tempIn / 2 ' round to whole degrees
 IF (tSign = 0) THEN No_Neg1
 tempIn = tempIn | $FF00 ' extend sign bits for negative

No_Neg1:
 tempC = tempIn ' save Celsius value
 tempIn = tempIn */ $01CC ' multiply by 1.8
 IF (tSign = 0) THEN No_Neg2 ' if negative, extend sign bits
 tempIn = tempIn | $FF00

No_Neg2:
 tempIn = tempIn + 32 ' finish C -> F conversion
 tempF = tempIn ' save Fahrenheit value
 RETURN

Column #87: Multi-Bank Programming

Page 192 • The Nuts and Volts of BASIC Stamps (Volume 3)

' ==
' Program Listing 87.2
' File...... Thermo_LCD.BSE
' Purpose... LCD output for THERMO DEMO.BSE
' Author.... Jon Williams
' E-mail.... jwilliams@parallaxinc.com
' Started...
' Updated... 02 JUN 2002
'
' {$STAMP BS2e}
'
' ==

' --
' Program Description
' --

' This module provides LCD output for the THEMO DEMO program. The main program
' will pass a task value using Scratchpad RAM location 1.
'
' Task Values:
'
' 0 Initialize LCD
' 1 Clear LCD
' 2 Update LCD
'
' For task 2, the following values are passed via the Scratchpad
'
' mode (off, cool, heat, cool-running, heat-running)
' temp.LowByte
' temp.HighByte
' setpoint.LowByte
' setpoint.HighByte

' --
' Revision History
' --

' --
' I/O Definitions
' --

E CON 9 ' LCD Enable pin (1 = enabled)
RW CON 10 ' LCD read/write (0 = write)
RS CON 11 ' Register Select (1 = char)
LcdBus VAR OutD ' 4-bit LCD data bus
LcdBusDirs VAR DirD

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 193

' --
' Constants
' --

ClrLCD CON $01 ' clear the LCD
CrsrHm CON $02 ' move cursor to home position
CrsrLf CON $10 ' move cursor left
CrsrRt CON $14 ' move cursor right
DispLf CON $18 ' shift displayed chars left
DispRt CON $1C ' shift displayed chars right
DDRam CON $80 ' Display Data RAM control
Line1 CON $80 ' DDRAM address of line 1
Line2 CON $C0 ' DDRAM address of line 2

LcdInit CON 0 ' initialize screen
LcdClear CON 1 ' clear screen
LcdUpdate CON 2 ' update screen

Yes CON 1
No CON 0

PgmBank CON 0 ' main program in bank 0
DataStart CON 2 ' data block starts at loc 2

' --
' Variables
' --

task VAR Nib
mode VAR Nib ' A/C control mode
running VAR mode.Bit3
temp VAR Word ' current temperature
setpoint VAR Word ' A/C setpoint
tPrint VAR Word ' temp to print
char VAR Byte ' character sent to LCD
index VAR Byte ' loop counter
eeAddr VAR Byte ' address of string char

' --
' EEPROM Data
' --

Msg_Off DATA " OFF", 0
Msg_Cool DATA " COOL", 0
Msg_Heat DATA " HEAT", 0

Column #87: Multi-Bank Programming

Page 194 • The Nuts and Volts of BASIC Stamps (Volume 3)

' --
' Initialization
' --

Initialize:
 GET 1, task
 BRANCH task, [Init_LCD, Clear_LCD, Update_LCD]

' --
' Program Code
' --

Init_LCD:
 LOW E ' initialize LCD pins
 LOW RW
 LOW RS
 LcdBusDirs = %1111 ' make bus lines outputs

 PAUSE 500 ' let the LCD settle
 LCDbus = %0011 ' 8-bit mode
 PULSOUT E, 1
 PAUSE 5
 PULSOUT E, 1
 PULSOUT E, 1
 LCDbus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00101000 ' multi-line mode
 GOSUB LCD_Command
 char = %00001100 ' disp on, crsr off, blink off
 GOSUB LCD_Command
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Command

Clear_LCD:
 char = ClrLCD
 GOSUB LCD_Command
 GOTO Exit

Update_LCD:
 GET (DataStart + 0), mode ' retrieve data packet
 GET (DataStart + 1), temp.LowByte
 GET (DataStart + 2), temp.HighByte
 GET (DataStart + 3), setpoint.LowByte
 GET (DataStart + 4), setpoint.HighByte

 char = Line1 + 0 ' print temperature
 GOSUB LCD_Command
 tPrint = temp

Column #87: Multi-Bank Programming

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 195

 GOSUB Print_Temperarature

 char = Line1 + 4 ' print (setpoint)
 GOSUB LCD_Command
 char = "("
 GOSUB LCD_Write
 tPrint = setpoint
 GOSUB Print_Temperarature
 char = ")"
 GOSUB LCD_Write

Show_Mode:
 char = Line2 + 11 ' show system mode
 GOSUB LCD_Command
 LOOKUP (mode & %0011), [Msg_Off, Msg_Cool, Msg_Heat], eeAddr

Print_Char:
 READ eeAddr, char
 IF (char = 0) THEN Show_Fan
 GOSUB LCD_Write
 eeAddr = eeAddr + 1
 GOTO Print_Char

Show_Fan:
 IF (running = No) THEN Exit
 char = Line2 + 11 ' show fan status
 GOSUB LCD_Command
 char = "*" ' show on
 GOSUB LCD_Write

Exit:
 RUN PgmBank

' --
' Subroutines
' --

Print_Temperarature: ' prints 3-digit, space padded
 char = " " ' clear old digit
 GOSUB LCD_Write
 IF (tPrint < 100) THEN Print_T10
 char = CrsrLf
 GOSUB LCD_Command
 char = "0" + (tPrint DIG 2) ' convert 100's digit to ASCII
 GOSUB LCD_Write

Print_T10:
 char = " "

Column #87: Multi-Bank Programming

Page 196 • The Nuts and Volts of BASIC Stamps (Volume 3)

 GOSUB LCD_Write
 IF (tPrint < 10) THEN Print_T01
 char = CrsrLf
 GOSUB LCD_Command
 char = "0" + (tPrint DIG 1) ' convert 10's digit to ASCII
 GOSUB LCD_Write

Print_T01:
 char = "0" + (tPrint DIG 0) ' convert 1's digit to ASCII
 GOSUB LCD_Write
 RETURN

LCD_Command:
 LOW RS ' enter command mode

LCD_Write:
 LCDbus = char.HighNib ' output high nibble
 PULSOUT E, 1 ' strobe the Enable line
 LCDbus = char.LowNib ' output low nibble
 PULSOUT E, 1
 HIGH RS ' return to character mode
 RETURN

