General Description The AAT4601 SmartSwitch is a member of Skyworks' Application Specific Power MOSFET™ (ASPM™) product family. It is a 1.8A current limited P-channel MOSFET power switch designed for high-side load switching applications. This switch operates with inputs ranging from 2.7V to 5.5V, making it ideal for both 3V and 5V systems. An integrated current-limiting circuit protects the input supply against large changes in load current which could cause the supply to fall out of regulation. The AAT4601 has protection from thermal overload which limits power dissipation and junction temperatures. The maximum current limit level will guarantee that 1.8A can be delivered to the load; the actual threshold is programmed with a resistor from the SET pin to ground. The quiescent supply current is typically 12µA. In shutdown mode, the supply current decreases to less than 1µA. The AAT4601 is available in a Pb-free, 8-pin SOP package and is specified over the -40°C to +85°C temperature range. #### **Features** - Input Voltage: 2.7V to 5.5V - Programmable Over-Current Threshold - Low Quiescent Current - 12µA Typical - Less Than 1µA with Switch Off - Only 2.5V Needed for ON Control - Thermal Shutdown - Fault Flag - 2ms Fault Blanking - Under-Voltage Lockout - Temperature Range: -40°C to +85°C - 4kV ESD Rating - UL Approved—File No. E217765 - 8-Pin SOP Package ## **Applications** - Hot Swap Supplies - Notebook Computers - Peripheral Ports - USB Ports # **Typical Application** ## 1.8A Current Limited P-Channel Switch # **Pin Descriptions** | Pin # | Symbol | Function | | |-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | 1, 2 | IN | hese pins are the input to the P-channel MOSFET source. Connect a 1µF capacitor from IN to GND. | | | 3 | ŌN | Active low enable input. A logic low turns the switch on. | | | 4 | GND | Ground. | | | 5 | SET | Current limit set input. A resistor from SET to ground sets the current limit for the switch. | | | 6, 7 | OUT | These pins are the P-channel MOSFET drain connection. Connect a 1µF capacitor from OUT to GND. | | | 8 | FAULT | Fault indication output. This open-drain output goes low when in current limit or when the die temperature exceeds +135°C, with a 2ms delay after the fault event occurs. | | # **Pin Configuration** ## SOP-8 (Top View) ## **1.8A Current Limited P-Channel Switch** # Absolute Maximum Ratings¹ $T_A = 25$ °C, unless otherwise noted. | Symbol | Description | Value | Units | |--------------------------------------|------------------------------------------|--------------------------|-------| | V_{IN} | IN to GND | -0.3 to 6 | | | V _{ON} , V _{FAULT} | ON, FAULT to GND | -0.3 to $V_{IN} + 0.3$ | V | | V _{SET} , V _{OUT} | SET, OUT to GND | -0.3 to $V_{IN} + 0.3$ | | | I _{MAX} | Maximum Continuous Switch Current | 3 | А | | T ₁ | Operating Junction Temperature Range | -40 to 150 | °C | | T _{LEAD} | Maximum Soldering Temperature (at Leads) | 300 | | | V_{ESD} | ESD Rating—HBM ² | 4 | kV | # Thermal Characteristics³ | Symbol | Description | Value | Units | | |----------------|----------------------------|-------|-------|--| | Θ_{JA} | Maximum Thermal Resistance | 100 | °C/W | | | P _D | Maximum Power Dissipation | 1.25 | W | | ^{1.} Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. ^{2.} Human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. ^{3.} Mounted on an FR4 printed circuit board. ## 1.8A Current Limited P-Channel Switch # **Electrical Characteristics** $V_{IN} = 5V$, $T_A = -40$ °C to +85 °C, unless otherwise noted. Typical values are $T_A = 25$ °C. | Symbol | Description | Conditions | Min | Тур | Max | Units | |----------------------|-----------------------------------|--------------------------------------------------------|-----|-------|-----|-------| | V_{IN} | Operation Voltage | | 2.7 | | 5.5 | V | | I_Q | Quiescent Current | $V_{IN} = 5V$, $\overline{ON} = GND$, $I_{OUT} = 0$ | | 12 | 30 | | | $I_{Q(OFF)}$ | Off-Supply Current | $\overline{ON} = IN, V_{IN} = 5.5V$ | | 0.004 | 1 | μΑ | | $I_{SD(OFF)}$ | Off-Switch Current | $\overline{ON} = IN$, $V_{IN} = 5.5V$, $V_{OUT} = 0$ | | 0.07 | 15 | | | V_{UVLO} | Under-Voltage Lockout | Rising Edge, 1% Hysteresis | 2.0 | 2.3 | 2.7 | V | | | | $V_{IN} = 5.0V$ | | 70 | 120 | | | D D | On Resistance | $V_{IN} = 4.5V$ | | 75 | 130 | mΩ | | $R_{DS(ON)}$ | Off Resistance | $V_{IN} = 3.0V$ | | 80 | 150 | 11152 | | | | $V_{IN} = 3.0V, T_A = 25^{\circ}C$ | | 80 | 110 | | | I_{LIM} | Current Limit | $R_{SET} = 2k\Omega$ | 510 | 715 | 920 | mΛ | | $I_{LIM(MIN)}$ | Minimum Current Limit | | | 375 | | mA mA | | OTMP | Shutdown Temperature | $V_{IN} = 5V$ | | 125 | | ٥C | | V_{ONL} | ON Input Low Voltage | | | | 0.8 | | | \/ | ON Input High Voltage | $V_{IN} = 2.7V \text{ to } 3.6V$ | 2.0 | | | V | | $V_{\overline{ONH}}$ | ON Input High Voltage | $V_{IN} = 4.5V \text{ to } 5.5V$ | 2.4 | | | | | I _{ONSINK} | ON Input leakage | $V_{ON} = 5.5V$ | | 0.01 | 1 | μA | | V_{FAULTL} | FAULT Logic Output Low Voltage | $I_{SINK} = 1mA$ | | 0.08 | 0.4 | V | | I_{FSINK} | FAULT Logic Output High Leakage | $V_{FAULT} = 5.5V$ | | 0.05 | 1 | μA | | T_{RESP} | Current Limit Response Time | $V_{IN} = 5V$ | | 2 | | μs | | T _{BLANK} | Fault Blanking Time After Turn-On | | | 2 | | ms | | T _{OFF} | Turn-Off Time ¹ | $V_{IN} = 5V$ | | | 20 | luc | | T _{ON} | Turn-On Time ¹ | $V_{IN} = 5V$ | | | 200 | μs | ^{1.} Guaranteed by design. ### 1.8A Current Limited P-Channel Switch # **Typical Characteristics** Unless otherwise noted, V_{IN} = 5V, T_A = 25°C. #### **Quiescent Current vs. Temperature** #### **Quiescent Current** Current Limit $(R_{SET} = 2k\Omega; V_{IN} = 5V)$ R_{SET} * I_{LIM} Product vs. I_{LIM} #### **Off-Supply Current vs. Temperature** #### Off-Switch Current vs. Temperature ### 1.8A Current Limited P-Channel Switch # **Typical Characteristics** Unless otherwise noted, V_{IN} = 5V, T_A = 25°C. #### Turn-On Time vs. Temperature #### **Turn-Off Time vs. Temperature** #### **Switch Turn-On Time** #### **Switch Turn-Off Time** ### Short-Circuit Through 0.3Ω ### Short-Circuit Through 0.6Ω ## 1.8A Current Limited P-Channel Switch # **Typical Characteristics** Unless otherwise noted, $V_{IN} = 5V$, $T_A = 25$ °C. ### Fault Delay vs. Temperature # R_{DS(ON)} vs. Temperature # **Functional Block Diagram** ## **Functional Description** The AAT4601 is an integrated MOSFET load switch with an adjustable current limit, over-temperature protection, level-shifted input, and a fault flag. The current limit control is combined with an over-temperature thermal limit circuit to provide a comprehensive system to protect the load switch under short-circuit or other adverse operating conditions. The AAT4601 is ideally suited for control and protection of peripheral ports such as USB, RS232, and parallel ports. The current limit and over-temperature circuits will act independently. The device current limit is activated when the output load current exceeds an internal threshold level. The internal current limit threshold is determined by an external resistor connected between the SET pin and ground. The minimum current limit threshold is specified by $I_{\text{LIM}(\text{MIN})}.$ If the load switch ambient temperature becomes excessive or if a short-circuit condition persists, the die temperature will rise, causing the overtemperature protection circuit to activate. If a current limit level less than $I_{\text{LIM}(\text{MIN})}$ is required, the AAT4601 can be used to operate in foldback current limit mode. To achieve this, an R_{SET} value can be chosen to program a current limit lower than $I_{\text{LIM}(\text{MIN})}$; in this case, when the load current reaches $I_{\text{LIM}(\text{MIN})}$, the current will immediately drop, limiting at the programmed value. If the current limit or over-temperature protection circuits are active for more than 2ms, the system will be informed via the $\overline{\text{FAULT}}$ flag. The 2ms delay allows the AAT4601 to be turned on into capacitive loads without activating the $\overline{\text{FAULT}}$ flag. The open drain $\overline{\text{FAULT}}$ output can be connected directly to system controllers driven by voltage levels less than the IN pin voltage without additional level shifting circuitry. The load switch is turned off by applying a logic high level to the \overline{ON} pin. The AAT4601 typically consumes 12µA when operating; when off, the device draws less than 1µA. In the off state, current is prevented from flowing between the input and output. The \overline{ON} function has logic level thresholds that allow the AAT4601 to be TTL compatible and may also be controlled by 2.5V to 5.0V CMOS circuits. The voltage level on either \overline{ON} or \overline{FAULT} should not exceed the input supply level present on the IN pin. # AAT460I #### 1.8A Current Limited P-Channel Switch # **Applications Information** ### **Setting Current Limit** A simple three-step procedure can be used to adjust the AAT4601's current limit. First, the maximum current required by the load should be determined. Second, select a resistor that guarantees adequate current is available to the load under normal conditions. Finally, the maximum current that can pass through the switch can be calculated and compared to the maximum current available. **Step 1:** The maximum current required by a load is usually defined in port specifications design application references. For example, USB ports may be specified to support loads of up to 500mA. **Step 2:** The most convenient method for determining a current limit resistor value is to look it up in Table 1, "Current Limit R_{SET} Values.". Find the lowest current value that is greater than the maximum load current in the given application; refer to the column, "Device Will Not Current Limit Below." The resistor value needed is in the corresponding row named " R_{SET} ." For example, a USB port requires 500mA. The lowest level where the device will current limit above 500mA is 516mA. The corresponding resistor value for R_{SET} would be $2k\Omega$. **Step 3:** Now the required resistor value has been determined. The maximum current that can be drawn, even with a short circuit applied to the output, can be determined by referring to the column labeled, "Device Always Current Limits Below." If the power supply connected to the AAT4601's input can provide this current level, the power supply voltage will not collapse when a short circuit is applied to the load switch output. For example, a notebook computer has a USB port which is powered by an AAT4601 with a $2k\Omega$ resistor connected between the SET pin and GND. If the power supply connected to the AAT4601's IN pin can provide more than 917mA, this supply will remain in regulation even if a short circuit is applied to the USB port. | Current (Ω) Device Will Not Current Limit Below (mA) Device Always Current Limits Below (mA) 10 2510 1807 3213 10 2463 1773 3152 20 2423 1745 3102 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1 | | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--------------------|-----------------------| | R _{SET} (Ω) Limit Typ (mA) Limit Below (mA) Current Limits Below (mA) 0 2510 1807 3213 10 2463 1773 3152 20 2423 1745 3102 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 | | | Device Will | | | (Ω) (mA) Below (mA) 0 2510 1807 3213 10 2463 1773 3152 20 2423 1745 3102 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 2300 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 | | Current | Not Current | Device Always | | (Ω) (mA) Below (mA) 0 2510 1807 3213 10 2463 1773 3152 20 2423 1745 3102 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 | R _{SET} | Limit Typ | Limit Below | Current Limits | | 10 2463 1773 3152 20 2423 1745 3102 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 | (Ω) | (mA) | (mA) | Below (mA) | | 10 2463 1773 3152 20 2423 1745 3102 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 | 0 | 2510 | 1807 | 3213 | | 20 2423 1745 3102 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 | 10 | | 1773 | | | 30 2386 1718 3054 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 | 20 | - | | | | 36 2361 1700 3022 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 | | | | | | 47 2332 1679 2985 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 | | 2361 | 1700 | | | 56 2297 1654 2940 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 100 1089 784 1394 1100 | 47 | 2332 | 1679 | | | 68 2258 1626 2890 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 | 56 | 2297 | 1654 | 2940 | | 82 2214 1594 2834 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 | | | | | | 100 2161 1556 2766 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 | | | 1594 | 2834 | | 120 2107 1517 2697 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 | 100 | 2161 | | | | 150 2028 1460 2596 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 | 120 | | | 2697 | | 200 1918 1381 2455 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 < | | | | | | 240 1840 1325 2355 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 <td< td=""><td></td><td></td><td></td><td></td></td<> | | | | | | 300 1737 1251 2223 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 6 | | | | | | 360 1649 1187 2111 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 | | 1737 | | | | 470 1585 1141 2029 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 </td <td></td> <td></td> <td></td> <td></td> | | | | | | 510 1529 1101 1957 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 <td></td> <td></td> <td></td> <td></td> | | | | | | 560 1466 1055 1876 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 | | | | | | 620 1397 1006 1788 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 | | | | | | 680 1334 960 1707 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 | | | | | | 750 1266 911 1620 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 | | | | | | 820 1206 869 1544 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 | | | | | | 910 1144 823 1464 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 | | | | | | 1000 1089 784 1394 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 | | | | | | 1100 1034 745 1324 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 <t< td=""><td></td><td></td><td></td><td></td></t<> | | | | | | 1200 986 710 1262 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | 745 | | | 1300 941 677 1204 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 1500 865 623 1107 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | 941 | | | | 1600 829 597 1061 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | 1500 | 865 | | 1107 | | 1800 769 554 985 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | 1600 | 829 | | 1061 | | 2000 716 516 917 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 2200 673 485 861 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | 2000 | | | | | 2400 633 456 811 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | 2200 | | | 861 | | 2700 582 419 745 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | 456 | | | 3000 539 388 690 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 3300 502 362 643 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 3600 470 339 602 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 3900 442 318 565 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 4300 410 295 524 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 4700 382 275 489 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 5100 358 258 458 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 5600 332 239 424 6200 306 220 392 6800 283 204 362 | | | | | | 6200 306 220 392 6800 283 204 362 | | | | | | 6800 283 204 362 | | | | | | | | | | | | | | | | | Table 1: Current Limit R_{SET} Values. ## **Operation in Current Limit** If an excessive load is applied to the output of an AAT4601, the load current will be limited by the device's current limit circuitry. Refer to Figure 1, Overload Operation. If a short circuit were to occur on the load, it would demand more current than allowed by the internal current limiting circuit and the voltage at the AAT4601's output would drop. This causes the AAT4601 to dissipate more power than in normal operation, causing the die temperature to increase. When die temperature exceeds the internal over-temperature threshold, the AAT4601 will shut down. After shutting down, the AAT4601 cools to a level below the over-temperature threshold, at which point it will start up again. The AAT4601 will continue to cycle off and on until one of the following events occurs: the load current is reduced to a level below the AAT4601's current limit setting; the input power is removed; or the output is turned off by a logic high level applied to the \overline{ON} pin. #### **Thermal Considerations** Since the AAT4601 has internal current limit and over-temperature protection, junction temperature is rarely a concern. If an application requires a large load current in a high-temperature operating environment, there is the possibility that the over-temperature protection circuit, rather than the current limit circuit, will regulate the current available to the load. In these applications, the maximum current available without risk of activation of the over-temperature circuit can be calculated. The maximum internal temperature while current limit is not active can be calculated using Equation 1: **Eq. 1:** $$T_{J(MAX)} = I_{MAX}^{2} \cdot R_{DS(ON)(MAX)} \cdot R_{\theta JA} + T_{A(MAX)}$$ In Equation 1, I_{MAX} is the maximum current required by the load. $R_{DS(ON)(MAX)}$ is the maximum rated $R_{DS(ON)}$ of the AAT4601 at high temperature. $R_{\theta JA}$ is the thermal resistance between the AAT4601's die and the board onto which it is mounted. $T_{A(MAX)}$ is the maximum ambient temperature for the printed circuit board assembly under the AAT4601 when the load switch is not dissipating power. Equation 1 can be transformed to provide I_{MAX} ; Refer to Equation 2: Eq. 2: $$I_{MAX} = \sqrt{\frac{T_{SD(MIN)} - T_{A(MAX)}}{R_{DS(ON)(MAX)} \cdot R_{\theta JA}}}$$ $T_{\text{SD(MIN)}}$ is the minimum temperature required to activate the AAT4601's over-temperature protection. With a typical specification of 125°C, 115°C is a safe minimum value to use. For example, a portable device is specified to operate in a 50°C environment. The printed circuit board assembly will operate at temperatures as high as 85°C. This portable device has a sealed case and the area of the printed board assembly is relatively small, causing $R_{\tiny 0JA}$ to be approximately 120°C/W. Using Equation 2: **Eq. 3:** $$I_{MAX} = \sqrt{\frac{115^{\circ}\text{C} - 85^{\circ}\text{C}}{0.13\Omega \cdot 120^{\circ}\text{C/W}}} = 1.4\text{A}$$ If this system requires less than 1.4A, the thermal limit will not activate during normal operation. Figure 1: Overload Operation. #### 1.8A Current Limited P-Channel Switch ## **Input Capacitor** The input capacitor serves two purposes. First, it protects the source power supply from transient current effects generated by the application load circuit. If a short circuit is suddenly applied to the output of an AAT4601, there is a microsecond-long period during which a large current can flow before the current limit circuitry activates; refer to the characteristic curve, "Short-Circuit Through 0.3Ω ." A properly sized input capacitor can dramatically reduce the load switch input transient response effects seen by the power supply and other circuitry upstream from the AAT4601. The second purpose of the input capacitor is to prevent transient events generated by the load circuit from affecting operation of the AAT4601. For example, if an AAT4601 is used in a circuit that operates from a 3V power supply with poor step load response, it is possible that turning on the load switch could cause the input power supply to droop below the AAT4601's under-voltage lockout threshold. This drop in voltage would cause the AAT4601 to turn off until the input power supply voltage recovers. Since this cycle would be self-perpetuating, the entire circuit could be seen to be unstable. In the very rare case where capacitor cost is prohibitive, the output load circuit should be slew rate limited when turned on. ## **Output Capacitor** In order to insure stability while the device current limit is active, a small capacitance of approximately $1\mu F$ should be used. When the AAT4601 is activated using the \overline{ON} function, there are no momentary current transients, as in the case when a short circuit is suddenly applied to a device that is already on; refer to the characteristic curve, "Switch Turn-On Time." No matter how big the output capacitor, output current is limited to the value allowed by the threshold determined by R_{SET} and the internal current limiting circuitry. This permits very large output capacitors to be used. For example, USB ports are specified to have at least $120\mu F$ of downstream capacitance from their controlling power switch. An output capacitance as large as $1000\mu F$ would not disturb the input power supply to the AAT4601 used to control the USB port. ## **ON** Input When the AAT4601 is in the off state, the output is an open circuit and the device quiecent current consumption is reduced to less than 1 μ A. The $\overline{\text{ON}}$ threshold volt- age is set to allow the AAT4601 to be controlled by 5V TTL levels, as well as CMOS power from 2.5V to 5V. The ON function control voltage level should not exceed the input supply level applied to the IN pin. ### **FAULT Output** A FAULT flag is provided to alert a system if the load switch is not receiving a sufficient voltage level to properly operate. If either the current limit or over-temperature circuits in any combination are active for more than approximately 2ms continuously, the FAULT pin is pulled to ground internally through a 100Ω resistance. The 2ms delay on the FAULT function is intended to prevent capacitive loads connected to the load switch output from activating FAULT when the device is turned on. The placement of a pull-up resistor between the FAULT pin and the IN pin is recommended. Reasonable values for the pull-up resistor should range from $10k\Omega$ to $100k\Omega$. Since FAULT is an open drain terminal, it may be pulled up to any voltage that is not greater than the level present on the IN pin. This is done to allow the AAT4601 to signal ancillary circuitry that is powered by a voltage level less than the level on the IN pin. ## **Reverse Voltage** The AAT4601 is designed to control current flowing from IN to OUT. If a voltage is applied to OUT which is greater than that on IN, a large resulting reverse current may flow, potentially damaging the AAT4601. ## Printed Circuit Board Layout Recommendations For proper thermal management, and to take advantage of the low $R_{\text{DS}(\text{ON})}$ of the AAT4601, a few circuit board layout rules should be followed: V_{IN} and V_{OUT} should be routed using wider than normal traces, and GND should be connected to a ground plane. For best performance, C_{IN} and C_{OUT} should be placed close to the package pins. ## **Evaluation Board Layout** The AAT4601 evaluation layout follows the printed circuit board layout recommendations, and can be used for good applications layout. Note: Board layout shown is not to scale. ### 1.8A Current Limited P-Channel Switch Figure 1: AAT4601 Evaluation Board Top Side Silk Screen Assembly Drawing. Figure 2: AAT4601 Evaluation Board Component Side Layout. Figure 3: AAT4601 Evaluation Board Solder Side Layout. ## **Ordering Information** | Package | Marking ¹ | Part Number (Tape and Reel) ² | |---------|----------------------|------------------------------------------| | SOP-8 | 4601 | AAT4601IAS-T1 | Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04-0074. # **Package Information** #### SOP-8 All dimensions in millimeters. - 1. XYY = assembly and date code. - 2. Sample stock is generally held on all part numbers listed in BOLD. Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved. Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes. No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale. THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters. Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.