

9.0 x 7.0 x 2.24 mm

> OVERVIEW:

ASGTX temperature compensated Crystal Oscillators are designed to accommodate a broad breadth of Precision TCXO requirements, without NRE and extended lead-times. This oscillator series is designed and manufactured by Abracon Corporation and is available to order from 1pc to high volume production quantities.

 1-5 day quick-turn availability of a TCXO/VCTCXO with LVCMOS output, <u>Any frequency</u> between 10MHz & 250MHz

For example, if a reference oscillator requirement calls out 49.7521MHz; ±1.00 ppm TCXO/VCTCXO with **LVCMOS** output, ASGTX can be configured and shipped within 1-5 days and in most cases, same day if order is received before noon. Customers with low-to-mid annual volume requirements find it difficult to procure custom frequency TCXO/VCTXCO's without costly NRE charges and/or long lead-times (≥ 12 weeks).

• 1-5 day quick turn availability of a TCXO/VCTXCO requiring LVDS or LVPECL Differential output, Any frequency between 10MHz to 1.50GHz

ASGTX is available with either **LVDS** or **LVPECL** output, from **10MHz** to **1.50GHz**; at any desired frequency, such as 149.875MHz, 1.00GHz, 1.5GHz, etc. with as tight as ± 1.00 ppm stability over temperature. No other solution in the marketplace currently offers such capability, especially in a small form-factor of 9.0x7.0x2.24 mm.

ASGTX is suitable for a wide variety of precision timing applications where TCXO/VCTXO's are typically employed. In addition, for high frequency LO requirements, traditionally customers have relied on SAW based oscillators. Such devices are only available at a few fixed frequencies, such as 915MHz, 1.0GHz, etc. They are typically in 9x14mm or bigger packages and vary as much as ± 100 ppm over temperature.

Although ASGTX series will be slightly less favorable in phase noise performance compared to SAW based oscillators, it offers the following key advantages:

- o ± 1.00 ppm stability over -30°C to +70°C & ± 2.00 ppm stability over -40°C to +85°C
- o **Any carrier frequency** between 10MHz & 1.50GHz
- o LVCMOS Output (10MHz to 250MHz) or LVDS / LVPECL Output (10MHz to 1.50GHz)
- o Small form-factor of 9.0x7.0x2.24 mm
- o No NRE or lead-time

> FEATURES:

- 10MHz to 1.50GHz, any Carrier Frequency in differential mode (LVDS or LVPECL)
- 10MHz to 250MHz, any Carrier Frequency in LVCMOS mode
- -40°C to +85°C operating temperature range
- ± 1.0 ppm stability over -30°C to +70°C and ± 2.0 ppm stability over -40°C to +85°C
- Minimum guaranteed pull ability of \pm 10ppm in VCTCXO mode
- Good Phase Noise, excellent Harmonics and Spurious content
- Guaranteed rms jitter of 1.80ps maximum @ 1.50GHz carrier (LVDS mode)
- Immediate availability, 5-day maximum lead-time for small quantities

▶ APPLICATIONS:

- 40G & 100G Ethernet
- WiMax,
- LTE, BTS
- CATV, LAN, LMDS
- Point-to-Point communication networks

9.0 x 7.0 x 2.24 mm

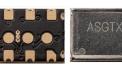
KEY ELECTRICAL SPECIFICATIONS:

Para	meters	Minimum	Typical	Maximum	Units	Notes
	LVCMOS	10		250		
Frequency:	LVDS	10		1500	MHz	
	LVPECL	10		1500		
Operating Tempera	iture:	-40		+85	°C	
Storage Temperatu	re:	-40		+85	°C	
Frequency Stability	<i>I</i> :					
Initial Set Tole	rance	-1.50	≤±1.00	+1.50	ppm	1 hour after reflow
Stability over	-30°C to +70°C	-1.00		+1.00	ppm	Option "1"
operating temperature*	-40°C to +85°C **	-2.00		+2.00		Option "2"
Aging @ 25°C	after one year	-1.00		+1.00	ppm	
Supply Voltage (Vo	Supply Voltage (Vdd):		3.300	3.465	V	
Startup Time:				3	ms	
Control Voltage***:		0		Vdd	V	In VCTCVO Mode
Frequency Pull:		±10			ppm	In VCTCXO Mode
Phase jitter RMS [(12kHz to 20MHz)			<1.00	1.80	ps	Frequency dependent

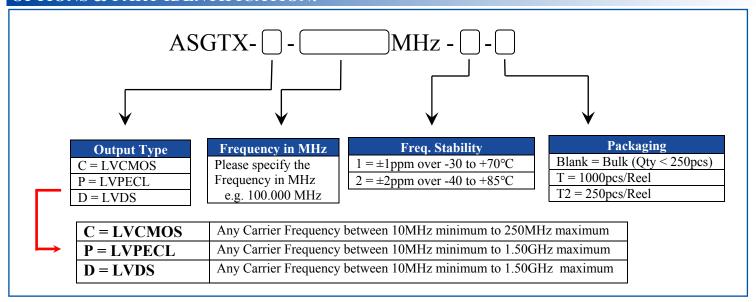
Notes

- * Relative to measured frequency post reflow
- ** Please contact Abracon for ±1.00 ppm frequency stability over -40°C to +85°C
- *** Center Control Voltage value is either $1.28V \pm 0.20V$ or, $1.55V \pm 0.20V$ for the device to be with-in ± 1.50 ppm of final frequency, 1-hour post reflow
- **** 1.8ps max is guaranteed for LVCMOS and LVDS output modes. For LVPECL mode at carrier frequency greater than 1.289GHz, the maximum RMS jitter is 3.0ps

Key Electrical Specifications – LVCMOS


Parameters		Minimum	Typical	Maximum	Units	Notes
Supply Current (I _{dd}):				45	mA	Frequency dependent
Output Load:				15	pF	
Output Logio Lovali	V_{OH}	$0.9*V_{dd}$			V	
Output Logic Level:	V_{OL}			$0.1*V_{dd}$	V	
Rise Time (Tr):				1000	ps	
Fall Time (Tf):				1000	ps	
Duty Cycle:		45		55	%	@1/2Vdd

9.0 x 7.0 x 2.24 mm


Key Electrical Specifications – LVPECL

Parameters		Minimum	Typical	Maximum	Units	Notes
Supply Current (I _{dd})				60	mA	With typical LVPECL output termination
Output Logic Lovel	V_{OH}	V_{dd} -1.03		V_{dd} -0.60	V	
Output Logic Level	V_{OL}	V_{dd} -1.85		V_{dd} -1.60	V	
Rise Time (Tr):				350	ps	
Fall Time (Tf):				350	ps	
Differential Duty Cycle:		45		55	%	$DODC_{LVPECL}$

Key Electrical Specifications – LVDS

Parameters	Minimum	Typical	Maximum	Units	Notes
Supply Current (I _{dd})			40	mA	With typical LVDS output termination
Differential Output Voltage (V _{OD})	175	350		mV	
V_{OD} Magnitude Change (ΔV_{OD})			50	mV	
Offset Voltage (Vos)		1.25		V	
V_{OS} Magnitude Change (ΔV_{OS})			50	mV	
Rise Time (Tr):			350	ps	
Fall Time (Tf):			450	ps	
Differential Duty Cycle:	45		55	%	ODC_{LVDS}

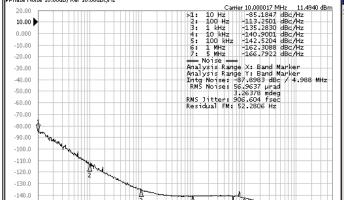
○ OPTIONS & PART IDENTIFICATION:

10.00

-150.0

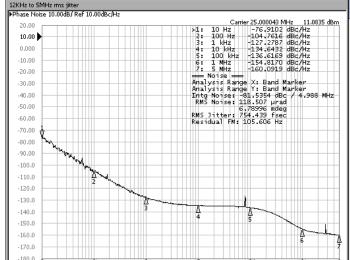
-160.0

-170.0 -180.0

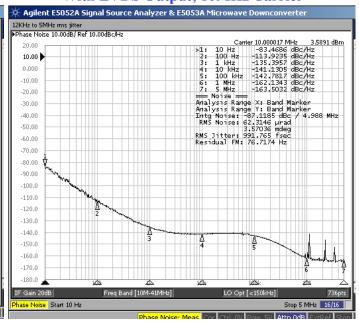


9.0 x 7.0 x 2.24 mm

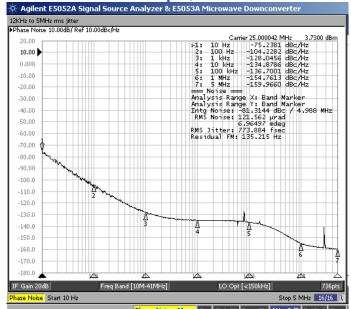
TYPICAL PHASE NOISE & JITTER CHARACTERISTICS


With LVCMOS Output; 10MHz Carrier

Agilent E5052A Signal Source Analyzer & E5053A Microwaye Do Carrier 10.000017 MHz 11.4940 dBr z -85.1847 dBg,/Hz Hz -113.2501 dBg,/Hz z -135.2830 dBg,/Hz Hz -140.9001 dBg,/Hz kHz -142.5204 dBg,/Hz z -162.3088 dBg,/Hz



Stop 5 MHz 16/16 V Attn 5dB ExtRef St With LVCMOS Output; 25MHz Carrier

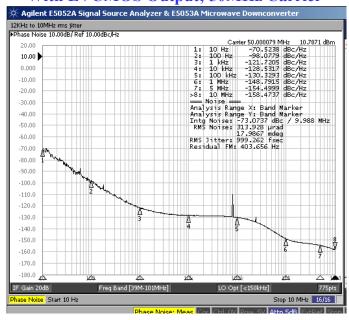

ent E5052A Signal Source Analyzer & E5053A Microwave Downconverter

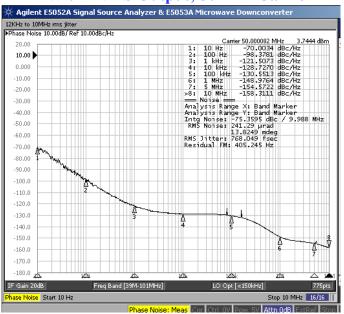
With LVDS Output; 10MHz Carrier

With LVDS Output; 25MHz Carrier

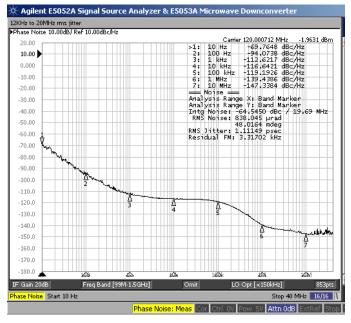
Start 10 Hz

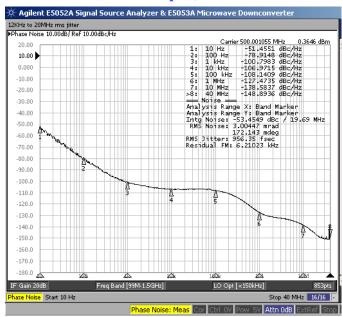
Stop 5 MHz 16/16




9.0 x 7.0 x 2.24 mm

TYPICAL PHASE NOISE & JITTER CHARACTERISTICS

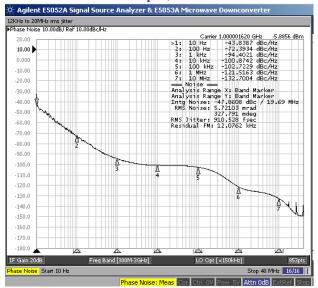

With LVCMOS Output; 50MHz Carrier

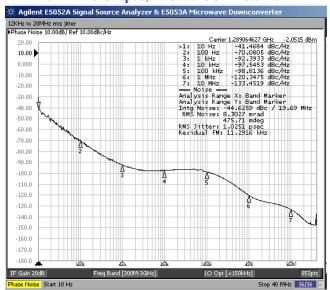

With LVDS Output; 50MHz Carrier

With LVCMOS Output; 120MHz Carrier

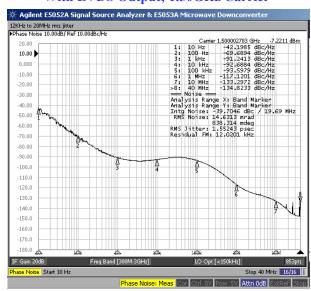
With LVPECL Output; 500MHz Carrier

ABRACON IS ISO9001:2008 CERTIFIED




9.0 x 7.0 x 2.24 mm

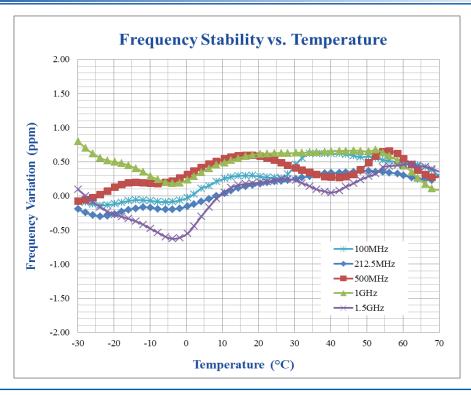
TYPICAL PHASE NOISE & JITTER CHARACTERISTICS

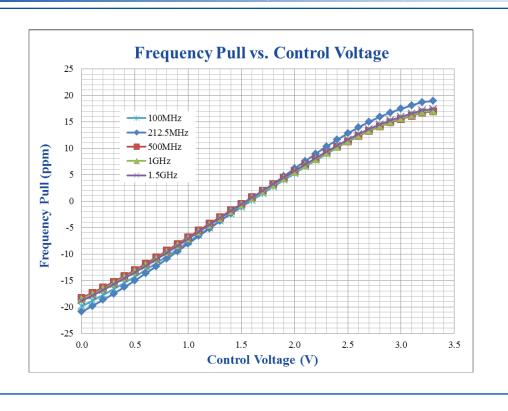

With LVDS Output; 1.00GHz Carrier

With LVDS Output; 1.2890625GHz Carrier

With LVDS Output; 1.50GHz Carrier

Carrier	RF Output	rms Phase Jitter	Integration Bandwidth
10.00MHz	LVDS	992 fs	12kHz to 5MHz
25.00MHz	LVDS	774 fs	12kHz to 5MHz
50.00MHz	LVDS	768 fs	12kHz to 10MHz
120.00MHz	LVCMOS	1.1 ps	12kHz to 20MHz
500.00MHz	LVPECL	956 fs	12kHz to 20MHz
1.00GHz	LVDS	911 fs	12kHz to 20MHz
1.2890625GHz	LVDS	1.03 ps	12kHz to 20MHz
1.50GHz	LVDS	1.55 ps	12kHz to 20MHz

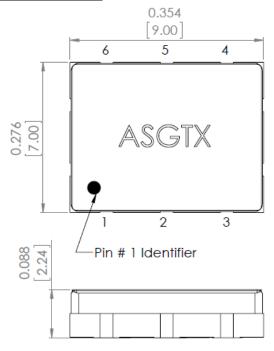




9.0 x 7.0 x 2.24 mm

> FREQUENCY STABILITY VS. TEMPERATURE

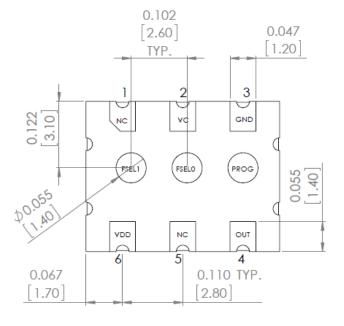
FREQUENCY PULL VS. CONTROL VOLTAGE (VCTCXO MODE)



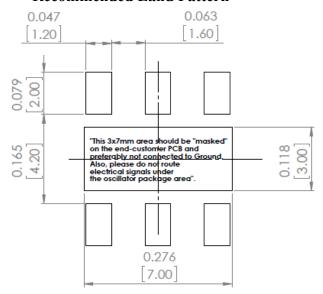
9.0 x 7.0 x 2.24 mm

OUTLINE DIMENSION:

LVCMOS output



Pin #	Pin Description					
PIII#	TCXO	VCTCXO				
1	N/C (1)					
2	By-Pass (2)	Vc (3)				
3	GND					
4	RF Output					
5	N/C (1)					
6	Vdd					

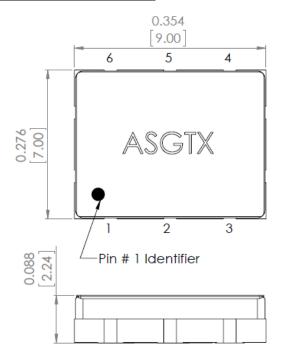

N/C ⁽¹⁾ = Please leave these pins electrically floating on the end-PCB

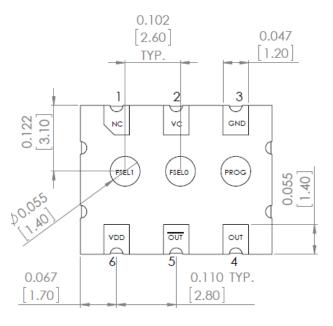
By-Pass ⁽²⁾ = In TCXO configuration, it is recommended that a 1,000pF COG by-pass capacitor is connected between Pin#2 and GND

 $\mathbf{Vc}^{(3)}$ = Please connect external voltage to pull the oscillator frequency

Recommended Land Pattern

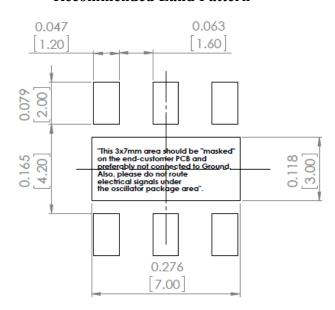
Dimensions: inches [mm]





9.0 x 7.0 x 2.24 mm

LVDS/LVPECL output


Din #	Pin Description					
Pin #	TCXO	VCTCXO				
1	N/C (1)					
2	By-Pass (2)	Vc (3)				
3	GND					
4	RF Output					
5	Complimentary RF Output					
6	Vdd					

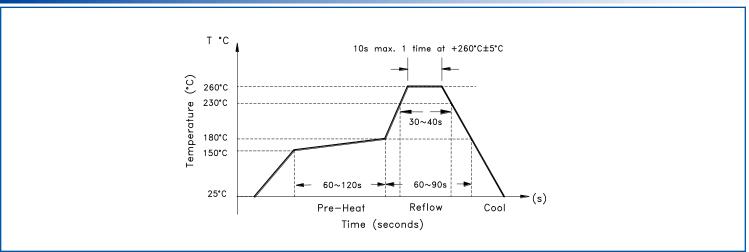
N/C ⁽¹⁾ = Please leave this pin electrically floating on the end-PCB

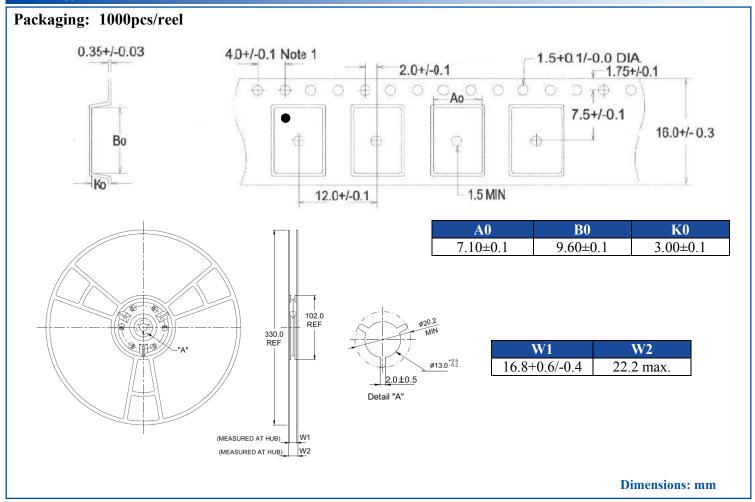
By-Pass ⁽²⁾ = In TCXO configuration, it is recommended that a 1,000pF COG by-pass capacitor is connected between Pin#2 and GND

 $\mathbf{Vc}^{(3)}$ = Please connect external voltage to pull the oscillator frequency

Recommended Land Pattern

Dimensions: inches [mm]





9.0 x 7.0 x 2.24 mm

REFLOW PROFILE:

► TAPE & REEL:

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

