

IGBT

SGF40N60UF

Ultra-Fast IGBT

General Description

Fairchild's Insulated Gate Bipolar Transistor(IGBT) UF series provides low conduction and switching losses. UF series is designed for the applications such as motor control and general inverters where High Speed Switching is required.

Features

- High Speed Switching
- Low Saturation Voltage : $V_{CE(sat)} = 2.1 \text{ V } @ I_C = 20 \text{A}$
- High Input Impedance

Application

AC & DC Motor controls, General Purpose Inverters, Robotics, Servo Controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGF40N60UF	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
lo	Collector Current	@ T _C = 25°C	40	А
	Collector Current	@ T _C = 100°C	20	А
I _{CM (1)}	Pulsed Collector Current		160	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	100	W
	Maximum Power Dissipation	@ T _C = 100°C	40	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
$\Delta B_{VCES}/$ ΔT_J	Temperature Coeff. of Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I_{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 20$ mA, $V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_C = 20A$, $V_{GE} = 15V$		2.1	2.6	V
$V_{CE(sat)}$	Saturation Voltage	$I_C = 40A$, $V_{GE} = 15V$		2.6		V
•	c Characteristics			4.400		
C _{ies}	Input Capacitance	$V_{CE} = 30V_{V_{GE}} = 0V_{V_{GE}}$		1430		pF
C _{oes} C _{res}	Output Capacitance Reverse Transfer Capacitance	f = 1MHz		170 50		pF pF
O:4 - I-:-	Ob					
Switchi	ng Characteristics					
Switchii	ng Characteristics Turn-On Delay Time			15		ns
t _{d(on)}				15 30		ns ns
t _{d(on)} t _r	Turn-On Delay Time	V _{CC} = 300 V, I _C = 20A,			 130	
t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time Rise Time	$R_G = 10\Omega, V_{GE} = 15V,$		30		ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f	Turn-On Delay Time Rise Time Turn-Off Delay Time			30 65	130	ns ns
t _{d(on)} t _r t _{d(off)} t _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_G = 10\Omega, V_{GE} = 15V,$		30 65 50	130 150	ns ns
t _{d(on)} t _r t _{d(off)} t _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_G = 10\Omega, V_{GE} = 15V,$	 	30 65 50 160	130 150 	ns ns ns uJ
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} E _{ts}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_G = 10\Omega, V_{GE} = 15V,$	 	30 65 50 160 200	130 150 	ns ns ns uJ uJ
t _{d(on)} t _r t _r t _{d(off)} t _f E _{on} E _{off} E _{ts} t _{d(on)}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_G = 10\Omega, V_{GE} = 15V,$	 	30 65 50 160 200 360	130 150 600	ns ns ns uJ uJ
$t_{d(on)}$ t_r t_r $t_{d(off)}$ t_f t_{on} t_{off} t_{ts} $t_{d(on)}$ t_r	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$R_G = 10\Omega, V_{GE} = 15V,$	 	30 65 50 160 200 360 30	130 150 600	ns ns ns uJ uJ uJ
td(on) tr td(off) tf Eon Eoff Ets td(on) tr	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 20A$, $I_C = 100$	 	30 65 50 160 200 360 30 37	130 150 600	ns ns ns uJ uJ uJ ns
td(on) tr td(off) tf Eon Eoff Ets td(on) tr	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	30 65 50 160 200 360 30 37 110	130 150 600 200	ns ns ns uJ uJ uJ ns ns
td(on) tr td(off) tf Eon Ets td(on) tr td(off) tf Ets	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 20A$, $I_C = 100$	 	30 65 50 160 200 360 30 37 110	130 150 600 200 250	ns ns ns uJ uJ uJ ns ns ns
td(on) tr td(off) tf Eon Eoff td(on) tr td(on) tr td(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 20A$, $I_C = 100$	 	30 65 50 160 200 360 30 37 110 144 310	130 150 600 200 250	ns ns ns uJ uJ ns ns ns
td(on) tr td(off) te Eon Eoff Ets td(on) tr td(on) tr td(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- On Switching Loss	$R_{G}=10\Omega,\ V_{GE}=15V,$ Inductive Load, $T_{C}=25^{\circ}C$ $V_{CC}=300\ V,\ I_{C}=20A,$ $R_{G}=10\Omega,\ V_{GE}=15V,$ Inductive Load, $T_{C}=125^{\circ}C$	 	30 65 50 160 200 360 37 110 144 310 430	130 150 600 200 250 	ns ns uJ uJ ns ns ns ns uJ uJ uJ uJ uJ uJ uJ uJ
td(on) tr td(off) tf Eon Ets td(on) tr td(off) Ets Cd(on) tr td(off) tf Eon Eoff Eon	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- On Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Switching Loss	$R_{G} = 10\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_{C} = 20A,$ $R_{G} = 10\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 125^{\circ}C$ $V_{CE} = 300 \text{ V}, I_{C} = 20A,$	 	30 65 50 160 200 360 30 37 110 144 310 430 740	130 150 600 200 250 1200	ns ns ns Lu Lu Lu sn ns ns ns ns Lu
	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Switching Loss Total Gate Charge	$R_{G}=10\Omega,\ V_{GE}=15V,$ Inductive Load, $T_{C}=25^{\circ}C$ $V_{CC}=300\ V,\ I_{C}=20A,$ $R_{G}=10\Omega,\ V_{GE}=15V,$ Inductive Load, $T_{C}=125^{\circ}C$		30 65 50 160 200 360 37 110 144 310 430 740	130 150 600 200 250 1200 150	ns ns ns uJ uJ ns ns ns uJ uJ nr ns

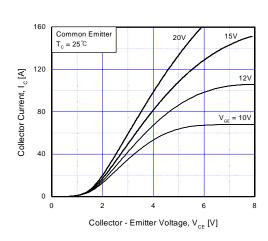
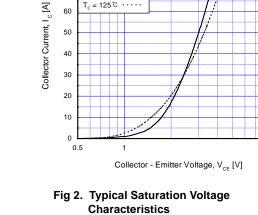



Fig 1. Typical Output Characteristics

80

70

60

50

Common Emitter

T_c = 125°C ·····

 $V_{GE} = 15V$ $T_{C} = 25^{\circ}C$

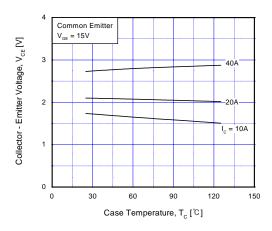


Fig 3. Saturation Voltage vs. Case **Temperature at Variant Current Level**

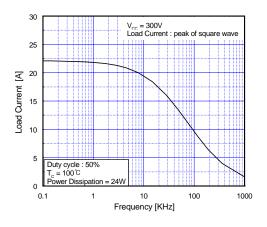


Fig 4. Load Current vs. Frequency

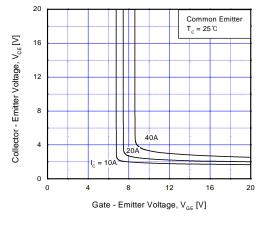


Fig 5. Saturation Voltage vs. V_{GE}

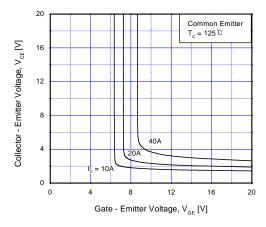
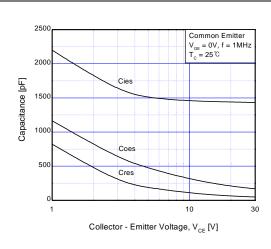



Fig 6. Saturation Voltage vs. V_{GE}

SGF40N60UF Rev. A


©2001 Fairchild Semiconductor Corporation

Gate Resistance, $R_{_{\rm G}}[\Omega]$

Fig 7. Capacitance Characteristics

Fig 8. Turn-On Characteristics vs.
Gate Resistance

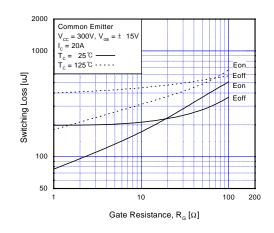
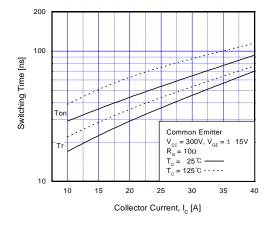



Fig 9. Turn-Off Characteristics vs.
Gate Resistance

Fig 10. Switching Loss vs. Gate Resistance

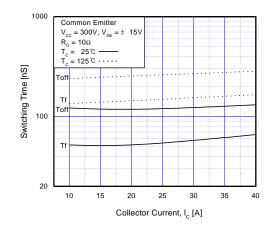
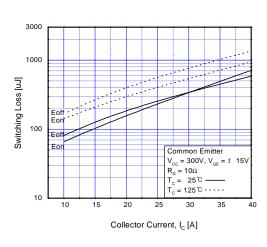



Fig 11. Turn-On Characteristics vs.
Collector Current

Fig 12. Turn-Off Characteristics vs. Collector Current

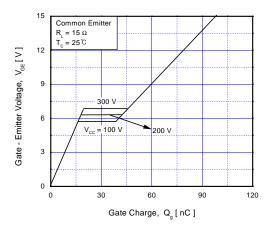
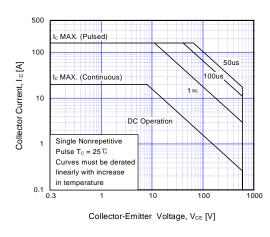



Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

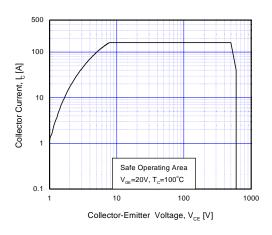


Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics

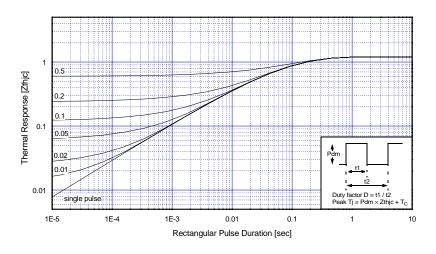
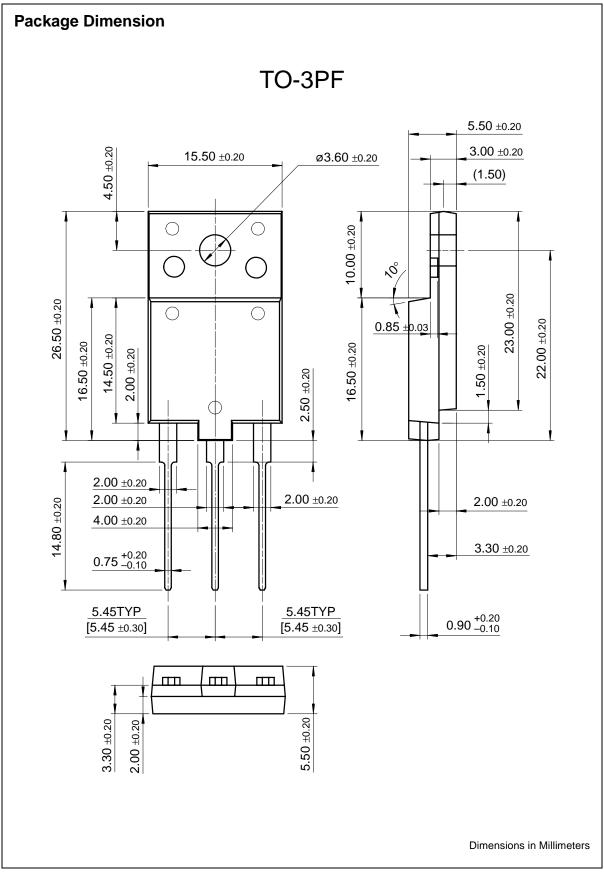



Fig 17. Transient Thermal Impedance of IGBT

©2001 Fairchild Semiconductor Corporation SGF40N60UF Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOLOGIC™	SMART START™	VCX^{TM}
Bottomless™	FASTr™	OPTOPLANAR™	STAR*POWER™	
CoolFET™	FRFET™	PACMAN™	Stealth™	
CROSSVOLT™	GlobalOptoisolator™	POP™	SuperSOT™-3	
DenseTrench™	GTO™	Power247™	SuperSOT™-6	
DOME™	HiSeC™	PowerTrench [®]	SuperSOT™-8	
EcoSPARK™	ISOPLANAR™	QFET™	SyncFET™	
E ² CMOS™	LittleFET™	QS TM	TruTranslation™	
EnSigna™	MicroFET™	QT Optoelectronics™	TinyLogic™	
FACT™	MicroPak™	Quiet Series™	UHC™	
FACT Quiet Series™	MICROWIRE™	SLIENT SWITCHER®	UltraFET [®]	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation Rev. H4