36-Mbit (1 M × 36) Flow-Through SRAM #### **Features** - Supports 133-MHz bus operations - 1 M × 36 common I/O - 3.3 V core power supply - 2.5 V or 3.3 V I/O power supply - Fast clock-to-output times □ 6.5 ns (133-MHz version) - Provide high-performance 2-1-1-1 access rate - User-selectable burst counter supporting Intel[®] Pentium[®] interleaved or linear burst sequences - Separate processor and controller address strobes - Synchronous self-timed write - Asynchronous output enable - CY7C1441AV33 available in JEDEC-standard Pb-free 100-pin TQFP package, Pb-free 165-ball FBGA package. - IEEE 1149.1 JTAG-Compatible Boundary Scan - "ZZ" Sleep Mode option ## **Functional Description** The CY7C1441AV33 are 3.3 V, 1 M × 36 Synchronous Flow-through SRAMs, respectively designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 6.5 ns (133-MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive-edge-triggered Clock Input (CLK). The synchronous inputs include all addresses, all data inputs, address-pipelining Chip Enable ($\overline{\text{CE}}_1$), depth-expansion Chip Enables ($\overline{\text{CE}}_2$ and $\overline{\text{CE}}_3$), Burst Control inputs ($\overline{\text{ADSC}}$, $\overline{\text{ADSP}}$, and $\overline{\text{ADV}}$), Write Enables ($\overline{\text{BW}}_x$, and $\overline{\text{BWE}}$), and Global Write ($\overline{\text{GW}}$). Asynchronous inputs include the Output Enable ($\overline{\text{OE}}$) and the ZZ pin. The CY7C1441AV33 allows either interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence, while a LOW selects a linear burst sequence. Burst <u>acces</u>ses can be initiated with the Processor <u>Address</u> Strobe (ADSP) or the cache Controller Address Strobe (ADSC) inputs. Address <u>advancement</u> is controlled by the Address Advancement (ADV) input. Addresses and chip enables are registered at rising edge of clock when either Address Strobe Processor (ADSP) or Address Strobe Controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the Advance pin (ADV). The CY7C1441AV33 operates from a +3.3 V core power supply while all outputs may operate with either a +2.5 or +3.3 V supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible. For a complete list of related documentation, click here. # **Selection Guide** | Description | 133 MHz | Unit | |------------------------------|---------|------| | Maximum Access Time | 6.5 | ns | | Maximum Operating Current | 310 | mA | | Maximum CMOS Standby Current | 120 | mA | Cypress Semiconductor Corporation Document Number: 38-05357 Rev. *M # **Logic Block Diagram – CY7C1441AV33** ## Contents | Pin Configurations | 4 | |---|----| | Pin Definitions | 6 | | Functional Overview | 7 | | Single Read Accesses | 7 | | Single Write Accesses Initiated by ADSP | | | Single Write Accesses Initiated by ADSC | 7 | | Burst Sequences | 8 | | Sleep Mode | 8 | | Interleaved Burst Address Table | 8 | | Linear Burst Address Table | 8 | | ZZ Mode Electrical Characteristics | 8 | | Truth Table | | | Truth Table for Read/Write | 10 | | IEEE 1149.1 Serial Boundary Scan (JTAG) | 11 | | Disabling the JTAG Feature | | | Test Access Port (TAP) | | | PERFORMING A TAP RESET | 11 | | TAP REGISTERS | | | TAP Instruction Set | | | TAP Controller State Diagram | | | TAP Controller Block Diagram | | | TAP Timing | | | TAP AC Switching Characteristics | | | 3.3 V TAP AC Test Conditions | | | 3.3 V TAP AC Output Load Equivalent | | | 2.5 V TAP AC Test Conditions | | | 2.5 V TAP AC Output Load Equivalent | 16 | | TAP DC Electrical Characteristics and Operating | | | Conditions | 16 | | Identification Register Definitions | 17 | |---|----| | Scan Register Sizes | | | Identification Codes | | | Boundary Scan Order | 18 | | Maximum Ratings | 19 | | Operating Range | 19 | | Electrical Characteristics | 19 | | DC Electrical Characteristics | 19 | | Capacitance | 20 | | Thermal Resistance | 20 | | AC Test Loads and Waveforms | 21 | | Switching Characteristics | 22 | | Timing Diagrams | 23 | | Ordering Information | 27 | | Ordering Code Definitions | 27 | | Package Diagrams | 28 | | Acronyms | 30 | | Document Conventions | 30 | | Units of Measure | 30 | | Document History Page | 31 | | Sales, Solutions, and Legal Information | 34 | | Worldwide Sales and Design Support | 34 | | Products | | | PSoC® Solutions | | | Cypress Developer Community | 34 | | Technical Support | 3/ | # **Pin Configurations** Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout # Pin Configurations (continued) Figure 2. 165-ball FBGA (15 \times 17 \times 1.4 mm) pinout # CY7C1441AV33 (1 M × 36) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |---|------------------|--------|--------------------|-----------------------------------|-------------------|-----------------|----------|----------|-----------|--------|---------| | Α | NC/288M | Α | CE ₁ | \overline{BW}_C | \overline{BW}_B | CE ₃ | BWE | ADSC | ADV | Α | NC | | В | NC/144M | Α | CE ₂ | $\overline{\text{BW}}_{\text{D}}$ | \overline{BW}_A | CLK | GW | OE | ADSP | Α | NC/576M | | С | DQP _C | NC | V_{DDQ} | V_{SS} | V _{SS} | V _{SS} | V_{SS} | V_{SS} | V_{DDQ} | NC/1G | DQPB | | D | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | E | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | F | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | G | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | Н | NC | NC | NC | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | NC | NC | ZZ | | J | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | K | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | L | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | M | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | N | DQP_D | NC | V_{DDQ} | V_{SS} | NC | Α | NC | V_{SS} | V_{DDQ} | NC | DQP_A | | Р | NC | NC/72M | Α | Α | TDI | A1 | TDO | Α | Α | Α | Α | | R | MODE | Α | Α | Α | TMS | A0 | TCK | Α | Α | Α | Α | # **Pin Definitions** | Name | I/O | Description | |--|----------------------------|--| | A ₀ , A ₁ , A | Input-
Synchronous | Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are sampled active. $A_{[1:0]}$ feed the 2-bit counter. | | BW _A , BW _B ,
BW _C , BW _D | Input-
Synchronous | Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK. | | GW | Input-
Synchronous | Global Write Enable Input, Active LOW . When asserted LOW on the rising edge of CLK, a global write is conducted (ALL bytes are written, regardless of the values on BW_X and BWE). | | CLK | Input-
Clock | Clock Input . <u>Used</u> to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW, during a burst operation. | | CE ₁ | Input-
Synchronous | Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_2 and CE_3 to select/deselect the device. ADSP is ignored if CE_1 is HIGH. CE_1 is sampled only when a new external address is loaded. | | CE ₂ | Input-
Synchronous | Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}_1}$ and $\overline{\text{CE}_3}$ to select/deselect the device. $\overline{\text{CE}_2}$ is sampled only when a new external address is loaded. | | CE ₃ | Input-
Synchronous | Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}_1}$ and CE ₂ to select/deselect the device. CE ₃ is assumed active throughout this document for BGA. CE ₃ is sampled only when a new external address is loaded. | | ŌĒ | Input-
Asynchronou
s | Output Enable, Asynchronous Input, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state. | | ADV | Input-
Synchronous | Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automatically increments the address in a burst cycle. | | ADSP |
Input-
Synchronous | Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. $A_{[1:0]}$ are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when \overline{CE}_1 is deasserted HIGH | | ADSC | Input-
Synchronous | Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. | | BWE | Input-
Synchronous | Byte Write Enable Input, Active LOW . Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write. | | ZZ | Input-
Asynchronou
s | ZZ "sleep" Input, Active HIGH. When asserted HIGH places the device in a non-time-critical "sleep" condition with data integrity preserved. For normal operation, this pin must be LOW or left floating. ZZ pin has an internal pull down. | | DQ_s | I/O-
Synchronous | Bidirectional Data I/O lines . As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQ_s and DQP_X are placed in a tri-state condition. The outputs are automatically tri-stated during the data portion of a write sequence, during the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of \overline{OE} . | | DQP _X | I/O-
Synchronous | Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQ_s . During write sequences, DQP_x is controlled by $\overline{BW}_{[A:H]}$ correspondingly. | | MODE | Input-Static | Selects Burst Order . When tied to GND selects linear burst sequence. When tied to V _{DD} or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode Pin has an internal pull up. | | V_{DD} | Power Supply | Power Supply Inputs to the Core of the Device. | ### Pin Definitions (continued) | Name | I/O | Description | |--|--------------------------------------|--| | $V_{\rm DDQ}$ | I/O Power
Supply | Power Supply for the I/O Circuitry. | | V _{SS} | Ground | Ground for the Core of the Device. | | V_{SSQ} | I/O Ground | Ground for the I/O Circuitry. | | TDO | JTAG serial
output
Synchronous | Serial Data-Out to the JTAG Circuit . Delivers data on the negative edge of TCK. If the JTAG feature is not being utilized, this pin should be left unconnected. This pin is not available on TQFP packages. | | TDI | JTAG serial
input
Synchronous | Serial Data-In to the JTAG Circuit . Sampled on the rising edge of TCK. If the JTAG feature is not being utilized, this pin can be left floating or connected to V_{DD} through a pull up resistor. This pin is not available on TQFP packages. | | TMS | JTAG serial
input
Synchronous | Serial Data-In to the JTAG Circuit . Sampled on the rising edge of TCK. If the JTAG feature is not being utilized, this pin can be disconnected or connected to V _{DD} . This pin is not available on TQFP packages. | | TCK | JTAG-Clock | Clock Input to the JTAG Circuitry. If the JTAG feature is not being utilized, this pin must be connected to V_{SS} . This pin is not available on TQFP packages. | | NC | _ | No Connects . Not internally connected to the die. 72M, 144M and 288M are address expansion pins are not internally connected to the die. | | NC/72M,
NC/144M,
NC/288M,
NC/576M,
NC/1G | _ | No Connects . Not internally connected to the die. NC/72M, NC/144M, NC/288M, NC/576M and NC/1G are address expansion pins are not internally connected to the die. | ### **Functional Overview** All synchronous inputs pass through input registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{CDV}) is 6.5 ns (133-MHz device). The CY7C1441AV33 supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486™ processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user-selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the Processor Address Strobe (ADSP) or the Controller Address Strobe (ADSC). Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access. Byte write operations are qualified with the Byte Write Enable (BWE) and Byte Write Select (BW $_{\rm X}$) inputs. A Global Write Enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry. Three synchronous Chip Selects $(\overline{CE}_1, CE_2, \overline{CE}_3)$ and an asynchronous Output Enable (\overline{OE}) provide for easy bank selection and output tri-state control. ADSP is ignored if \overline{CE}_1 is HIGH. ### Single Read Accesses A single read access is initiated when the <u>following</u> conditions are satisfied at clock rise: (1) CE_1 , CE_2 , and CE_3 are all asserted active, and (2) $\overline{\text{ADSP}}$ or $\overline{\text{ADSC}}$ is asserted LOW (if the access is initiated by $\overline{\text{ADSC}}$, the write inputs must be deasserted during this first cycle). The address presented to the address inputs is latched into the address register and the burst counter/control logic and presented to the memory core. If the $\overline{\text{OE}}$ input is asserted LOW, the requested data is available at the data outputs a maximum to t_{CDV} after clock rise. $\overline{\text{ADSP}}$ is ignored if $\overline{\text{CE}}_1$ is HIGH. ### Single Write Accesses Initiated by ADSP This access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, $\overline{\text{CE}}_3$ are all asserted active, and (2) ADSP is asserted LOW. The addresses presented are loaded into the address register and the burst inputs (GW, BWE, and $\overline{\text{BW}}_X$) are ignored during this first clock cycle. If the write inputs are asserted active (see Write Cycle Descriptions table for appropriate states that indicate a write) on the next clock rise, the appropriate data is latched and written into the device. Byte writes are allowed. All IOs are tri-stated during a byte write. Since this is a common I/O device, the asynchronous $\overline{\text{OE}}$ input signal must be deasserted and the IOs must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated once a write cycle is detected, regardless of the state of $\overline{\text{OE}}$. ### Single Write Accesses Initiated by ADSC This write access is initiated when the following conditions are satisfied at <u>clock</u> rise: (1) $\overline{CE_1}$, $\overline{CE_2}$, and $\overline{\underline{CE_3}}$ are all asserted active, (2) \overline{ADSC} is asserted LOW, (3) $\overline{\underline{ADSP}}$ is deasserted HIGH, and (4) the write input signals ($\overline{\underline{GW}}$, $\overline{\underline{BWE}}$, and $\overline{\underline{BW}}_X$) indicate a write access. $\overline{\underline{ADSC}}$ is ignored if $\overline{\underline{ADSP}}$ is active LOW. The addresses presented are loaded into the address register and the burst counter/control logic and delivered to the memory core. The information presented to DQ_S is written into the specified address location. Byte writes are allowed. All IOs are tri-stated when a write is detected, even a byte write. Since this is a common I/O device, the asynchronous OE input signal must be deasserted and the IOs must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated once a write cycle is detected, regardless of the state of OE . ### **Burst Sequences** The CY7C1441AV33 provides an on-chip two-bit wraparound burst counter inside the SRAM. The burst counter is fed by A_[1:0], and can follow either a linear or interleaved burst order. The burst order is determined by the state of the MODE input. A LOW on MODE selects a linear burst sequence. A HIGH on MODE selects an interleaved burst order. Leaving MODE unconnected causes the device to default to a interleaved burst sequence. ### Sleep Mode The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the "sleep" mode. \overline{CE}_1 , \overline{CE}_2 , $\overline{\text{CE}_3}$, $\overline{\text{ADSP}}$, and $\overline{\text{ADSC}}$ must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW. ### **Interleaved Burst
Address Table** (MODE = Floating or V_{DD}) | First
Address
A1:A0 | Second
Address
A1:A0 | Third
Address
A1:A0 | Fourth
Address
A1:A0 | |---------------------------|----------------------------|---------------------------|----------------------------| | 00 | 01 | 10 | 11 | | 01 | 00 | 11 | 10 | | 10 | 11 | 00 | 01 | | 11 | 10 | 01 | 00 | ### **Linear Burst Address Table** (MODE = GND) | First
Address
A1:A0 | Second
Address
A1:A0 | Third
Address
A1:A0 | Fourth
Address
A1:A0 | |---------------------------|----------------------------|---------------------------|----------------------------| | 00 | 01 | 10 | 11 | | 01 | 10 | 11 | 00 | | 10 | 11 | 00 | 01 | | 11 | 00 | 01 | 10 | #### **ZZ Mode Electrical Characteristics** | Parameter | Description | Test Conditions | Min | Max | Unit | |--------------------|-----------------------------------|---------------------------------|-------------------|-------------------|------| | I_{DDZZ} | Sleep mode standby current | $ZZ \ge V_{DD} - 0.2 \text{ V}$ | _ | 100 | mA | | t _{ZZS} | Device operation to ZZ | $ZZ \ge V_{DD} - 0.2 \text{ V}$ | _ | 2t _{CYC} | ns | | t _{ZZREC} | ZZ recovery time | ZZ ≤ 0.2 V | 2t _{CYC} | - | ns | | t_{ZZI} | ZZ active to sleep current | This parameter is sampled | _ | 2t _{CYC} | ns | | t _{RZZI} | ZZ Inactive to exit sleep current | This parameter is sampled | 0 | - | ns | Document Number: 38-05357 Rev. *M Page 8 of 34 ## **Truth Table** The truth table for CY7C1441AV33 follows. [1, 2, 3, 4, 5] | Cycle Description | Address Used | CE ₁ | CE ₂ | CE ₃ | ZZ | ADSP | ADSC | ADV | WRITE | ŌE | CLK | DQ | |------------------------------|--------------|-----------------|-----------------|-----------------|----|------|------|-----|-------|----|-----|-----------| | Deselected Cycle, Power down | None | Н | Х | Х | L | Х | L | Х | Х | Х | L–H | Tri-State | | Deselected Cycle, Power down | None | L | L | Х | L | L | Х | Х | Х | Х | L–H | Tri-State | | Deselected Cycle, Power down | None | L | Х | Н | L | L | Х | Х | Х | Χ | L–H | Tri-State | | Deselected Cycle, Power down | None | L | L | Х | L | Н | L | Х | Х | Χ | L–H | Tri-State | | Deselected Cycle, Power down | None | Х | Х | Х | L | Н | L | Х | Х | Χ | L–H | Tri-State | | Sleep Mode, Power down | None | Х | Х | Х | Н | Х | Х | Х | Х | Χ | Х | Tri-State | | Read Cycle, Begin Burst | External | L | Н | L | L | L | Х | Χ | Х | L | L–H | Q | | Read Cycle, Begin Burst | External | L | Н | L | L | L | Х | Χ | Х | Н | L–H | Tri-State | | Write Cycle, Begin Burst | External | L | Н | L | L | Н | L | Χ | L | Χ | L–H | D | | Read Cycle, Begin Burst | External | L | Н | L | L | Н | L | Χ | Н | Ш | Ŧ | Q | | Read Cycle, Begin Burst | External | L | Н | L | L | Н | L | Х | Н | Н | L–H | Tri-State | | Read Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | Н | L | L–H | Q | | Read Cycle, Continue Burst | Next | Χ | Χ | Χ | L | Н | Н | L | Н | Ι | L- | Tri-State | | Read Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | Н | L | L–H | Q | | Read Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | Н | Н | L–H | Tri-State | | Write Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | L | Χ | L–H | D | | Write Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | L | Χ | L–H | D | | Read Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | Н | L | L–H | Q | | Read Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | Н | Н | L–H | Tri-State | | Read Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | Н | L | L–H | Q | | Read Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | Н | Н | L–H | Tri-State | | Write Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | L | Χ | L–H | D | | Write Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | L | Х | L–H | D | #### Notes - Notes X = "Don't Care." H = Logic HIGH, L = Logic LOW. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW_X. Writes may occur only on subsequent clocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care for the remainder of the write cycle. - OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW). # **Truth Table for Read/Write** | Function (CY7C1441AV33) [6, 7] | GW | BWE | BW _D | BW _C | \overline{BW}_B | BW _A | |---|----|-----|-----------------|-----------------|-------------------|-----------------| | Read | Н | Н | Х | Х | Х | Х | | Read | Н | L | Н | Н | Н | Н | | Write Byte A (DQ _A , DQP _A) | Н | L | Н | Н | Н | L | | Write Byte B(DQ _B , DQP _B) | Н | L | Н | Н | L | Н | | Write Bytes A, B (DQ _A , DQ _B , DQP _A , DQP _B) | Н | L | Н | Н | L | L | | Write Byte C (DQ _C , DQP _C) | Н | L | Н | L | Н | Н | | Write Bytes C, A (DQ _C , DQ _A , DQP _C , DQP _A) | Н | L | Н | L | Н | L | | Write Bytes C, B (DQ _C , DQ _B , DQP _C , DQP _B) | Н | L | Н | L | L | Н | | Write Bytes C, B, A (DQ_C , DQ_B , DQ_{A_1} , DQP_C , DQP_B , DQP_A) | Н | L | Н | L | L | L | | Write Byte D (DQ _D , DQP _D) | Н | L | L | Н | Н | Н | | Write Bytes D, A (DQ _D , DQ _A , DQP _D , DQP _A) | Н | L | L | Н | Н | L | | Write Bytes D, B (DQ _D , DQ _A , DQP _D , DQP _A) | Н | L | L | Н | L | Н | | Write Bytes D, B, A (DQ_D , DQ_B , DQ_{A_1} , DQP_D , DQP_B , DQP_A) | Н | L | L | Н | L | L | | Write Bytes D, B (DQ _D , DQ _B , DQP _D , DQP _B) | Н | L | L | L | Н | Н | | Write Bytes D, B, A (DQ_D , DQ_C , DQ_{A_i} , DQP_D , DQP_C , DQP_A) | Н | L | L | L | Н | L | | Write Bytes D, C, A (DQ_D , DQ_B , DQ_{A_i} , DQP_D , DQP_B , DQP_A) | Н | L | L | L | L | Н | | Write All Bytes | Н | L | L | L | L | L | | Write All Bytes | L | Х | Х | Х | Х | Х | Notes 6. X = "Don't Care." H = Logic HIGH, L = Logic LOW. 7. Table only lists a partial listing of the byte write combinations. Any Combination of BW_X is valid Appropriate write is done based on which byte write is active. ## IEEE 1149.1 Serial Boundary Scan (JTAG) The CY7C1441AV33 incorporates a serial boundary scan test access port (TAP). This part is fully compliant with 1149.1. The TAP operates using JEDEC-standard 3.3 V or 2.5 V I/O logic levels. The CY7C1441AV33 contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. ### Disabling the JTAG Feature It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (V_{SS}) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternately be connected to VDD through a pull up resistor. TDO should be left unconnected. Upon power up, the device comes up in a reset state which does not interfere with the operation of the device. ### **Test Access Port (TAP)** ### Test Clock (TCK) The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. ### Test Mode Select (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. It is allowable to leave this ball unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level. ### Test Data-In (TDI) The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. ### Test Data-Out (TDO) The TDO output ball is used to serially clock data-out from the registers. The output is active depending upon the current state of the TAP state machine. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. ### Performing a TAP Reset A RESET is performed by forcing TMS HIGH (V_{DD}) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating. At power up, the TAP is reset internally to ensure that TDO comes up in a High Z state. #### **TAP Registers** Registers are connected between the TDI and TDO balls and scan data into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK. ### Instruction Register Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO balls as shown in the TAP Controller Block Diagram on page 14. Upon power up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary "01" pattern to allow for fault isolation of the board-level serial test data path. ### Bypass Register To save time when serially
shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This shifts data through the SRAM with minimal delay. The bypass register is set LOW (V_{SS}) when the BYPASS instruction is executed. ### Boundary Scan Register The boundary scan register is connected to all the input and bidirectional balls on the SRAM. The length of the boundary scan register for the SRAM in different packages is listed in the Scan Register Sizes on page 17. The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions can be used to capture the contents of the I/O ring. The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. ### Identification (ID) Register The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions on page 17. ### **TAP Instruction Set** ### Overview Eight different instructions are possible with the three bit instruction register. All combinations are listed in the Identification Codes on page 17. Three of these instructions are listed as RESERVED and should not be used. The other five instructions are described in this section in detail. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller must be moved into the Update-IR state. #### **IDCODE** The IDCODE instruction loads a vendor-specific, 32-bit code into the instruction register. It also places the instruction register between the TDI and TDO balls and shifts the IDCODE out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power up or whenever the TAP controller is given a test logic reset state. ### SAMPLE Z The SAMPLE Z instruction connects the boundary scan register between the TDI and TDO pins when the TAP controller is in a Shift-DR state. The SAMPLE Z command puts the output bus into a High Z state until the next command is given during the "Update IR" state. #### SAMPLE/PRELOAD SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When the SAMPLE/PRELOAD instructions are loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 20 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output undergoes a transition. The TAP may then try to capture a signal while in transition (metastable state). This does not harm the device, but there is no guarantee as to the value that is captured. Repeatable results may not be possible. To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture setup plus hold times (t_{CS} and t_{CH}). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CK and \overline{CK} captured in the boundary scan register. After the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. PRELOAD places an initial data pattern at the latched parallel outputs of the boundary scan register cells prior to the selection of another boundary scan test operation. The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required – that is, while data captured is shifted out, the preloaded data can be shifted in. #### **BYPASS** When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. #### **EXTEST** The EXTEST instruction drives the preloaded data out through the system output pins. This instruction also connects the boundary scan register for serial access between the TDI and TDO in the shift-DR controller state. #### EXTEST OUTPUT BUS TRI-STATE IEEE Standard 1149.1 mandates that the TAP controller be able to put the output bus into a tri-state mode. The boundary scan register has a special bit located at bit #89 (for 165-ball FBGA package) or bit #138 (for 209-ball FBGA package). When this scan cell, called the "extest output bus tri-state", is latched into the preload register during the "Update-DR" state in the TAP controller, it directly controls the state of the output (Q-bus) pins, when the EXTEST is entered as the current instruction. When HIGH, it enables the output buffers to drive the output bus. When LOW, this bit places the output bus into a High Z condition. This bit can be set by entering the SAMPLE/PRELOAD or EXTEST command, and then shifting the desired bit into that cell, during the "Shift-DR" state. During "Update-DR", the value loaded into that shift-register cell latches into the preload register. When the EXTEST instruction is entered, this bit directly controls the output Q-bus pins. Note that this bit is pre-set HIGH to enable the output when the device is powered-up, and also when the TAP controller is in the "Test-Logic-Reset" state. #### Reserved These instructions are not implemented but are reserved for future use. Do not use these instructions. # **TAP Controller State Diagram** The 0/1 next to each state represents the value of TMS at the rising edge of TCK. # **TAP Controller Block Diagram** # **TAP Timing** Figure 3. TAP Timing # **TAP AC Switching Characteristics** Over the Operating Range | Parameter [9, 10] | Description | Min | Max | Unit | |-------------------|-------------------------------|-----|-----|------| | Clock | | | | | | t _{TCYC} | TCK Clock Cycle Time | 50 | _ | ns | | t _{TF} | TCK Clock Frequency | _ | 20 | MHz | | t _{TH} | TCK Clock HIGH time | 20 | _ | ns | | t _{TL} | TCK Clock LOW time | 20 | _ | ns | | Output Times | | | | | | t _{TDOV} | TCK Clock LOW to TDO Valid | _ | 10 | ns | | t _{TDOX} | TCK Clock LOW to TDO Invalid | 0 | _ | ns | | Setup Times | | | | | | t _{TMSS} | TMS Setup to TCK Clock Rise | 5 | - | ns | | t _{TDIS} | TDI Setup to TCK Clock Rise | 5 | _ | ns | | t _{CS} | Capture Setup to TCK Rise | 5 | - | ns | | Hold Times | | | | | | t _{TMSH} | TMS Hold after TCK Clock Rise | 5 | _ | ns | | t _{TDIH} | TDI Hold after Clock Rise | 5 | _ | ns | | t _{CH} | Capture Hold after Clock Rise | 5 | _ | ns | ^{9.} t_{CS} and t_{CH} refer to the setup and hold time requirements of latching data from the boundary scan register. 10. Test conditions are specified using the load in TAP AC test Conditions. $t_R/t_F = 1$ ns. ## 3.3 V TAP AC Test Conditions | Input pulse levels | V _{SS} to 3.3 V | |--------------------------------------|--------------------------| | Input rise and fall times | 1 ns | | Input timing reference levels | 1.5 V | | Output reference levels | 1.5 V | | Test load termination supply voltage | 1.5 V | ## 2.5 V TAP AC Test Conditions | Input pulse levels | V _{SS} to 2.5 V | |--------------------------------------|--------------------------| | Input rise and fall time | 1 ns | | Input timing reference levels | 1.25 V | | Output reference levels | 1.25 V | | Test load termination supply voltage | 1.25 V | # 3.3 V TAP AC Output Load Equivalent # 2.5 V TAP AC Output Load Equivalent # **TAP DC Electrical Characteristics and Operating Conditions** (0 °C < T_A < +70 °C; V_{DD} = 3.135 V to 3.6 V unless otherwise noted) | Parameter [11] | Description | Cond | itions | Min | Max | Unit | |------------------|---------------------|--------------------------------|--------------------------|------------|-----------------------|------| | V _{OH1} | Output HIGH Voltage | I _{OH} = -4.0 mA | V _{DDQ} = 3.3 V | 2.4 | _ | V | | | | $I_{OH} = -1.0 \text{ mA}$ | V _{DDQ} = 2.5 V | 2.0 | _ | V | | V_{OH2} | Output HIGH Voltage | I _{OH} = –100 μA | V _{DDQ} = 3.3 V | 2.9 | _ | V | | | | | V _{DDQ} = 2.5 V | 2.1 | _ | V | | V _{OL1} | Output LOW Voltage | I _{OL} = 8.0 mA | V _{DDQ} = 3.3 V | _ | 0.4 | V | | | | I _{OL} = 1.0 mA | V _{DDQ} = 2.5 V | _ | 0.4 | V | | V _{OL2} | Output LOW Voltage | I _{OL} = 100 μA | V _{DDQ} = 3.3 V | _ | 0.2 | V | | | | | V _{DDQ} = 2.5 V | _ | 0.2 | V | | V_{IH} | Input HIGH Voltage | | V _{DDQ} = 3.3 V | 2.0 | V _{DD} + 0.3 | V | | | | | V _{DDQ} = 2.5 V | 1.7 | V _{DD} + 0.3 | V | | V _{IL} | Input LOW Voltage | | V _{DDQ} = 3.3 V | -0.3 | 0.8 | V | | | | | V _{DDQ} = 2.5 V | -0.3 | 0.7 | V | | I _X | Input Load Current | $GND \leq V_{IN} \leq V_{DDQ}$ | | – 5 | 5 | μA | ^{11.} All voltages referenced to V_{SS} (GND). # **Identification Register
Definitions** | Instruction Field | CY7C1441AV33 (1 M × 36) | Description | | |--------------------------------------|-------------------------|--|--| | Revision Number (31:29) | 000 | Describes the version number. | | | Device Depth (28:24) | 01011 | Reserved for Internal Use | | | Architecture/Memory Type(23:18) [12] | 000001 | Defines memory type and architecture | | | Bus Width/Density(17:12) | 100111 | Defines width and density | | | Cypress JEDEC ID Code (11:1) | 00000110100 | Allows unique identification of SRAM vendor. | | | ID Register Presence Indicator (0) | 1 | Indicates the presence of an ID register. | | # Scan Register Sizes | Register Name | Bit Size (× 36) | |---|-----------------| | Instruction Bypass | 3 | | Bypass | 1 | | ID | 32 | | Boundary Scan Order (165-ball FBGA package) | 89 | # **Identification Codes** | Instruction | Code | Description | |----------------|------|--| | EXTEST | 000 | Captures I/O ring contents. | | IDCODE | 001 | Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operations. | | SAMPLE Z | 010 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High Z state. | | RESERVED | 011 | Do Not Use: This instruction is reserved for future use. | | SAMPLE/PRELOAD | 100 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation. | | RESERVED | 101 | Do Not Use: This instruction is reserved for future use. | | RESERVED | 110 | Do Not Use: This instruction is reserved for future use. | | BYPASS | 111 | Places the bypass register between TDI and TDO. This operation does not affect SRAM operations. | #### Note ^{12.} Bit #24 is "1" in the ID Register Definitions for both 2.5 V and 3.3 V versions of this device. # **Boundary Scan Order** 165-ball FBGA [13, 14] # CY7C1441AV33 (1 M × 36) | Bit # | Ball ID | |--------|---------| | 1 | N6 | | 2 | N7 | | 3 | N10 | | 4 | P11 | | 5 | P8 | | 6 | R8 | | 7 | R9 | | 8 | P9 | | 9 | P10 | | 10 | R10 | | 11 | R11 | | 12 | H11 | | 13 | N11 | | 14 | M11 | | 15 | L11 | | 16 | K11 | | 17 J11 | | | 18 | M10 | | 19 | L10 | | 20 | K10 | | 21 | J10 | | 22 | H9 | | 23 | H10 | | 24 | G11 | | 25 F11 | | | Bit # | Ball ID | |-------|---------| | 26 | E11 | | 27 | D11 | | 28 | G10 | | 29 | F10 | | 30 | E10 | | 31 | D10 | | 32 | C11 | | 33 | A11 | | 34 | B11 | | 35 | A10 | | 36 | B10 | | 37 | A9 | | 38 | В9 | | 39 | C10 | | 40 | A8 | | 41 B8 | | | 42 | A7 | | 43 | B7 | | 44 | В6 | | 45 | A6 | | 46 | B5 | | 47 | A5 | | 48 | A4 | | 49 | B4 | | 50 | B3 | | Bit# | Ball ID | |------|---------| | 51 | A3 | | 52 | A2 | | 53 | B2 | | 54 | C2 | | 55 | B1 | | 56 | A1 | | 57 | C1 | | 58 | D1 | | 59 | E1 | | 60 | F1 | | 61 | G1 | | 62 | D2 | | 63 | E2 | | 64 | F2 | | 65 | G2 | | 66 | H1 | | 67 | H3 | | 68 | J1 | | 69 | K1 | | 70 | L1 | | 71 | M1 | | 72 | J2 | | 73 | K2 | | 74 | L2 | | 75 | M2 | | Bit # | Ball ID | | |-------|----------|--| | 76 | N1 | | | 77 | N2 | | | 78 | P1 | | | 79 | R1 | | | 80 | R2 | | | 81 | P3 | | | 82 | R3 | | | 83 | P2 | | | 84 | R4 | | | 85 | P4 | | | 86 | N5 | | | 87 | P6 | | | 88 | R6 | | | 89 | Internal | | Notes 13. Balls which are NC (No Connect) are preset LOW. 14. Bit# 89 is preset HIGH. # **Maximum Ratings** Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Storage Temperature-65 °C to +150 °C Ambient Temperature with Power Applied –55 °C to +125 °C Supply Voltage on V_{DD} Relative to GND-0.3 V to +4.6 V Supply Voltage on V_{DDQ} Relative to GND -0.3 V to $+V_{DD}$ DC Voltage Applied to Outputs in Tri-State-0.5 V to V_{DDQ} + 0.5 V | DC Input Voltage | –0.5 V to V _{DD} + 0.5 V | |---|-----------------------------------| | Current into Outputs (LOW) | 20 mA | | Static Discharge Voltage (per MIL-STD-883, Method 3015) | > 2001 V | | Latch-up Current | > 200 mA | # **Operating Range** | Range | Ambient
Temperature | V_{DD} | V _{DDQ} | |------------|------------------------|--------------|------------------| | Commercial | 0 °C to +70 °C | 3.3 V – 5% / | | | Industrial | –40 °C to +85 °C | + 10% | V_{DD} | ### **Electrical Characteristics** Over the Operating Range ### **DC Electrical Characteristics** Over the Operating Range | Parameter ^[15, 16] | Description | Test Conditions | | Min | Max | Unit | |-------------------------------|--|---|-----------------------------|------------|------------------|------| | V_{DD} | Power Supply Voltage | | | 3.135 | 3.6 | V | | V_{DDQ} | I/O Supply Voltage | for 3.3 V I/O | 3.135 | V_{DD} | V | | | | | for 2.5 V I/O | | 2.375 | 2.625 | V | | V _{OH} | Output HIGH Voltage | for 3.3 V I/O, I _{OH} = -4.0 mA | | 2.4 | - | V | | | | for 2.5 V I/O, I _{OH} = -1.0 mA | | 2.0 | _ | V | | V_{OL} | Output LOW Voltage | for 3.3 V I/O, I _{OL} = 8.0 mA | | _ | 0.4 | V | | | | for 2.5 V I/O, I _{OL} = 1.0 mA | | _ | 0.4 | V | | V _{IH} | Input HIGH Voltage ^[15] | for 3.3 V I/O | | 2.0 | $V_{DD} + 0.3 V$ | V | | | | for 2.5 V I/O | | 1.7 | $V_{DD} + 0.3 V$ | V | | V _{IL} | Input LOW Voltage ^[15] for 3.3 V I/O | | -0.3 | 0.8 | V | | | | | for 2.5 V I/O | -0.3 | 0.7 | V | | | I _X | Input Leakage Current except ZZ and MODE | $GND \le V_I \le V_{DDQ}$ | | - 5 | 5 | μА | | | Input Current of MODE | Input = V _{SS} | | -30 | _ | μΑ | | | | Input = V _{DD} | | _ | 5 | μΑ | | | Input Current of ZZ | Input = V _{SS} | | -5 | - | μΑ | | | | Input = V _{DD} | | _ | 30 | μΑ | | I _{OZ} | Output Leakage Current | $GND \le V_I \le V_{DDQ}$, Output Disable | ed | -5 | 5 | μΑ | | I _{DD} | V _{DD} Operating Supply Current | V_{DD} = Max, I_{OUT} = 0 mA,
$f = f_{MAX}$ = 1/ t_{CYC} 7.5-ns
cycle, 133
MHz | | _ | 310 | mA | | I _{SB1} | Automatic CE Power down
Current – TTL Inputs | | | _ | 180 | mA | | I _{SB2} | Automatic CE Power down
Current – CMOS Inputs | $\begin{array}{l} \text{Max V}_{DD}, \text{ Device Deselected,} \\ \text{V}_{IN} \geq \text{V}_{DD} - 0.3 \text{ V or V}_{IN} \leq 0.3 \text{ V,} \\ \text{f} = 0, \text{ inputs static} \end{array}$ | 7.5-ns
cycle, 133
MHz | _ | 120 | mA | ^{15.} Overshoot: $V_{IH(AC)} < V_{DD} + 1.5 \text{ V}$ (Pulse width less than $t_{CYC}/2$), undershoot: $V_{IL(AC)} > -2 \text{ V}$ (Pulse width less than $t_{CYC}/2$). 16. $T_{Power-up}$: Assumes a linear ramp from 0 V to $V_{DD(min)}$ within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$. # **Electrical Characteristics** (continued) Over the Operating Range # **DC Electrical Characteristics** (continued) Over the Operating Range | Parameter [15, 16] | Description | Test Conditions | | Min | Max | Unit | |--------------------|--|---|-----------------------------|-----|-----|------| | I _{SB3} | Automatic CE Power down
Current – CMOS Inputs | $\begin{array}{l} \text{Max V}_{DD}\text{, Device Deselected,} \\ \text{V}_{\text{IN}}\!\geq\!\text{V}_{DDQ}\!-0.3\text{V or V}_{\text{IN}}\!\leq\!0.3\text{V,} \\ \text{f}=\text{f}_{\text{MAX}}\text{, inputs switching} \end{array}$ | 7.5-ns
cycle, 133
MHz | _ | 180 | mA | | I _{SB4} | Automatic CE Power down
Current – TTL Inputs | $\begin{aligned} &\text{Max V}_{DD}, \text{ Device Deselected,} \\ &\text{V}_{IN} \geq \text{V}_{DD} - 0.3 \text{ V or V}_{IN} \leq 0.3 \text{ V,} \\ &\text{f = 0, inputs static} \end{aligned}$ | 7.5-ns
cycle, 133
MHz | _ | 135 | mA | # Capacitance | Parameter [17] | Description | Test Conditions | 100-pin TQFP
Max | 165-ball FBGA
Max | Unit | |------------------|--------------------------|---|---------------------|----------------------|------| | C _{IN} | Input capacitance | T _A = 25 °C, f = 1 MHz, | 6.5 | 7 | pF | | C _{CLK} | Clock input capacitance | $V_{DD} = 3.3 \text{ V}, V_{DDQ} = 2.5 \text{ V}$ | 3 | 7 | рF | | C _{IO} | Input/Output capacitance | | 5.5 | 6 | pF | # **Thermal Resistance** | Parameter [17] | Description | Test Conditions | 100-pin TQFP
Package | 165-ball FBGA
Package | Unit | |-------------------|---------------------------------------|---|-------------------------|--------------------------|------| | Θ_{JA} | , | Test conditions follow standard test methods and procedures for measuring | 25.21 | 20.8 | °C/W | | $\Theta_{\sf JC}$ | Thermal resistance (junction to case) | thermal impedance, per EIA/JESD51. | 2.28 | 3.2 | °C/W | **Note**17. Tested initially and after any design or process change that may affect these parameters. # **AC Test Loads and Waveforms** ### Figure 4. AC Test Loads and Waveforms ### 3.3 V I/O Test Load ## 2.5 V I/O Test Load # **Switching Characteristics** Over the Operating Range | Parameter [18, 19] | Description | -1 | 33 | Unit | |--------------------|---|-----|-----|------| | Parameter [10, 10] | Description | Min | Max | | | t _{POWER} | V _{DD} (typical) to the first access ^[20] | 1 | _ | ms | | Clock | | | • | _• | | t _{CYC} | Clock cycle time |
7.5 | _ | ns | | t _{CH} | Clock HIGH | 2.5 | _ | ns | | t _{CL} | Clock LOW | 2.5 | _ | ns | | Output Times | | - | • | | | t _{CDV} | Data output valid after CLK rise | _ | 6.5 | ns | | t _{DOH} | Data output hold after CLK rise | 2.5 | _ | ns | | t _{CLZ} | Clock to low Z [21, 22, 23] | 2.5 | _ | ns | | t _{CHZ} | Clock to high Z [21, 22, 23] | _ | 3.8 | ns | | t _{OEV} | OE LOW to output valid | _ | 3.0 | ns | | t _{OELZ} | OE LOW to output low Z [21, 22, 23] | 0 | _ | ns | | t _{OEHZ} | OE HIGH to output high Z [21, 22, 23] | _ | 3.0 | ns | | Setup Times | | - | • | | | t _{AS} | Address setup before CLK rise | 1.5 | _ | ns | | t _{ADS} | ADSP, ADSC setup before CLK rise | 1.5 | _ | ns | | t _{ADVS} | ADV setup before CLK rise | 1.5 | _ | ns | | t _{WES} | GW, BWE, BW _X setup before CLK rise | 1.5 | _ | ns | | t _{DS} | Data input setup before CLK rise | 1.5 | _ | ns | | t _{CES} | Chip enable setup | 1.5 | _ | ns | | Hold Times | | | • | _• | | t _{AH} | Address hold after CLK rise | 0.5 | _ | ns | | t _{ADH} | ADSP, ADSC hold after CLK rise | 0.5 | _ | ns | | t _{WEH} | GW, BWE, BW _X hold after CLK rise | 0.5 | _ | ns | | t _{ADVH} | ADV hold after CLK rise | 0.5 | _ | ns | | t _{DH} | Data input hold after CLK rise | 0.5 | _ | ns | | t _{CEH} | Chip enable hold after CLK rise | 0.5 | - | ns | ^{18.} Timing reference level is 1.5 V when V_{DDQ} = 3.3 V and is 1.25 V when V_{DDQ} = 2.5 V. 19. Test conditions shown in (a) of Figure 4 on page 21 unless otherwise noted. 20. This part has a voltage regulator internally; t_{POWER} is the time that the power must be supplied above V_{DD(minimum)} initially, before a read or write operation can be ^{21.} t_{CHZ}, t_{CLZ}, t_{OELZ}, and t_{OEHZ} are specified with AC test conditions shown in part (b) of Figure 4 on page 21. Transition is measured ±200 mV from steady-state voltage. 22. At any given voltage and temperature, t_{OEHZ} is less than t_{OELZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High Z prior to Low Z under the same system conditions. ^{23.} This parameter is sampled and not 100% tested. # **Timing Diagrams** Figure 5. Read Cycle Timing [24] 24. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW or \overline{CE}_3 is HIGH. Note # Timing Diagrams (continued) Figure 6. Write Cycle Timing [25, 26] #### Notes ^{25.} On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW or \overline{CE}_3 is HIGH. 26. Full width write can be initiated by either \overline{GW} LOW; or by \overline{GW} HIGH, \overline{BWE} LOW and \overline{BW}_X LOW # Timing Diagrams (continued) Figure 7. Read/Write Cycle Timing [27, 28, 29] ^{27.} On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW or \overline{CE}_3 is HIGH. 28. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by \overline{ADSP} or \overline{ADSC} . 29. \overline{GW} is HIGH. # Timing Diagrams (continued) Figure 8. ZZ Mode Timing $^{[30,\ 31]}$ ^{30.} Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device. 31. DQs are in high Z when exiting ZZ sleep mode. # **Ordering Information** Cypress offers other versions of this type of product in different configurations and features. The following table contains only the list of parts that are currently available. For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products, or contact your local sales representative. Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices. | Speed
(MHz) | Ordering Code Package Diagram | | Part and Package Type | |----------------|-------------------------------|----------|--| | 133 | CY7C1441AV33-133AXC | 51-85050 | 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free | | | CY7C1441AV33-133AXI | 51-85050 | 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free | | | CY7C1441AV33-133BZI | 51-85165 | 165-ball FBGA (15 × 17 × 1.4 mm) | | | CY7C1441AV33-133BZXI | 51-85165 | 165-ball FBGA (15 × 17 × 1.4 mm) Pb-free | ### **Ordering Code Definitions** # **Package Diagrams** Figure 9. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050 51-85050 *E # Package Diagrams (continued) Figure 10. 165-ball FBGA (15 \times 17 \times 1.40 mm) (0.45 Ball Diameter) Package Outline, 51-85165 51-85165 *E # **Acronyms** | Acronym | Description | | |---------|---|--| | CMOS | Complementary metal oxide semiconductor | | | FBGA | Fine-Pitch Ball Grid Array | | | I/O | Input/Output | | | JTAG | Joint Test Action Group | | | LSB | Least Significant Bit | | | MSB | Most Significant Bit | | | OE | Output Enable | | | SRAM | Static Random Access Memory | | | TAP | Test Access Port | | | TCK | Test Clock | | | TDI | Test Data-In | | | TDO | Test Data-Out | | | TMS | Test Mode Select | | | TQFP | Thin Quad Flat Pack | | # **Document Conventions** # **Units of Measure** | Symbol | Unit of Measure | |--------|-----------------| | °C | degree Celsius | | MHz | megahertz | | μA | microampere | | mA | milliampere | | mm | millimeter | | ms | millisecond | | ns | nanosecond | | Ω | ohm | | % | percent | | pF | picofarad | | V | volt | | W | watt | # **Document History Page** | ocument Number: 38-05357 | | | | | | | |--------------------------|---------|------------|--------------------|--|--|--| | Rev. | ECN No. | Issue Date | Orig. of
Change | Description of Change | | | | ** | 124459 | 03/06/03 | CJM | New data sheet. Part number changed from previous revision. New and old part number diff by the letter "A". | | | | *A | 254910 | See ECN | SYT | Updated Logic Block Diagram – CY7C1441AV33. Updated Logic Block Diagram – CY7C1443AV33. Updated Logic Block Diagram – CY7C1447AV33. Updated Identification Register Definitions (Added Note 12 (32-Bit Vendor I Code changed)). Added Boundary Scan Order Updated Electrical Characteristics (Updated DC Electrical Characteristics (Updated the values of I _X , I _{DD} , I _{SB1} , I _{SB2} , I _{SB3} , and I _{SB4} parameters)). Updated Switching Characteristics (Added t _{POWER} parameter and its detail Modified Timing Diagrams. Updated Package Diagrams (Removed 119-ball PBGA Package, changed 165-ball FBGA (15 × 17 × 1.20 mm) BB165C (spec 51-85165 **) to 165-ball FBGA (15 × 17 × 1.40 mm) BB165C (spec 51-85165 *A), changed 209-Lea PBGA (14 × 22 × 2.20 mm) BG209 (spec 51-85143) to 209-ball FBGA (14 22 × 1.76 mm) BB209A (spec 51-85167)). | | | | *B | 300131 | See ECN | SYT | Updated Features (Removed 150 MHz and 117 MHz frequencies related information). Updated Selection Guide (Removed 150 MHz and 117 MHz frequencies related information). Updated Electrical Characteristics (Updated DC Electrical Characteristics (Removed 150 MHz and 117 MHz frequencies related information)). Updated Thermal Resistance (Replaced values of $\Theta_{\rm JA}$ and $\Theta_{\rm JC}$ parameter from TBD to 25.21 °C/W and 2.58 °C/W respectively for 100-pin TQFP package). Updated Switching Characteristics (Removed 150 MHz and 117 MHz frequencies related information). Updated Ordering Information (Added Pb-free information for 100-pin TQF 165-ball FBGA and 209-ball FBGA Packages, added 'Pb-free BG and BZ packages availability' comment below the Ordering Information). | | | | *C | 320813 | See ECN | SYT | Updated Pin Configurations (Changed H9 pin from V_{SSQ} to V_{SS} for 209-bar FBGA). Updated Electrical Characteristics (Changed the test condition for V_{OL} parameter from V_{DD} = Min. to V_{DD} = Max., replaced the TBD's with their respective values for I_{DD} , I_{SB1} , I_{SB2} , I_{SB3} and I_{SB4} parameters). Updated Thermal Resistance (Replaced values of Θ_{JA} and Θ_{JC} parameter from TBD to respective Thermal Values for 165-ball FBGA and 209-ball FBG Packages). Updated Capacitance (Changed values of C_{IN} , C_{CLK} and $C_{I/O}$ parameters 6.5 pF, 3 pF and 5.5 pF from 5 pF, 5 pF and 7 pF for 100-pin TQFP Package Updated Ordering Information (Removed "Pb-free BG and BZ packages availability" comment below the Ordering Information). | | | # **Document History Page** (continued) | | t Number: 38
 | | 36) Flow-Through SRAM | |------|--------------|------------|--------------------|--| | Rev. | ECN No. | Issue Date | Orig. of
Change | Description of Change | | *D | 331551 | See ECN | SYT | Updated Pin Configurations (Modified Address Expansion balls in the pinou for 165-ball FBGA and 209-ball BGA Packages as per JEDEC standards). Updated Pin Definitions. Updated Functional Overview (Updated ZZ Mode Electrical Characteristics (Changed maximum value of I_{DDZZ} parameter from TBD to 100 mA)). Updated Operating Range (Added Industrial Temperature Range). Updated Electrical Characteristics (Updated test conditions for V_{OL} and V_{O} parameters, changed maximum value of I_{SB2} parameter from 100 mA to 120 mA, changed maximum value of I_{SB4} parameter from 110 mA to 135 m respectively). Updated Capacitance (Changed values of C_{IN} , C_{CLK} and $C_{I/O}$ parameters to 7 pF, 7 pF and 6 pF from 5 pF, 5 pF and 7 pF for 165-ball FBGA Package). Updated Ordering Information (By shading and unshading MPNs as per availability). | | *E | 417547 | See ECN | RXU | Changed status from Preliminary to Final. Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court". Updated Electrical Characteristics (Updated Note 16 (Changed test condition from $V_{IH} \leq V_{DD}$ to $V_{IH} < V_{DD}$), changed "Input Load Current except ZZ and MODE" to "Input Leakage Current except ZZ and MODE", changed minimulation of I_X parameter (corresponding to Input current of MODE (Input = V_{SS} from $-5~\mu A$ to $-30~\mu A$, changed maximum value of I_X parameter (corresponding to Input current of MODE (Input = V_{DD})) from 30 μA to $5~\mu A$ respectively, changed minimum value of I_X parameter (corresponding to Input current of Z (Input = V_{SS})) from $-30~\mu A$ to $-5~\mu A$, changed maximum value of I_X parameter (corresponding to Input current of ZZ (Input = V_{DD})) from $5~\mu A$ to $30~\mu A$ respectively). Updated Ordering Information (Updated part numbers, replaced Package Name column with Package Diagram in the Ordering Information table). Updated Package Diagrams. | | *F | 473650 | See ECN | VKN | Updated Maximum Ratings (Added the Maximum Rating for Supply Voltage on V_{DDQ} Relative to GND). Updated TAP AC Switching Characteristics (Changed minimum value of t_{TL} and t_{TL} parameters from 25 ns to 20 ns, changed maximum value of t_{TDOV} parameter from 5 ns to 10 ns). Updated Ordering Information (Updated part numbers). | | *G | 2447027 | See ECN | VKN /
AESA | Updated Logic Block diagram – CY7C1447AV33 (Corrected typo). Updated Ordering Information (Corrected typo in the Ordering Information table). | | *H | 2898501 | 03/24/2010 | NJY | Updated Ordering Information (Removed inactive part numbers). Updated Package Diagrams. | | * | 3263570 | 05/23/2011 | OSN | Added Ordering Code Definitions. Updated Package Diagrams. Added Acronyms and Units of Measure. Updated in new template. | # **Document History Page** (continued) | Rev. | ECN No. | Issue Date | Orig. of | Description of Change | |------|---------|------------|------------|--| | - | | | Change | · | | *J | 3592981 | 04/20/2012 | NJY / PRIT | Updated Features (Removed CY7C1443AV33, CY7C1447AV33 related information, removed 209-ball FBGA package related information). Updated Functional Description (Removed CY7C1443AV33, CY7C1447AV3: related information, removed the Note "For best-practices recommendations please refer to the Cypress application note <i>System Design Guidelines</i> on www.cypress.com." and its reference). Updated Selection Guide (Removed 100 MHz frequency related information Removed Logic Block Diagram – CY7C1443AV33. Removed Logic Block Diagram – CY7C1447AV33. Updated Pin Configurations (Removed CY7C1443AV33, CY7C1447AV33 related information, removed 209-ball FBGA package related information). Updated Pin Definitions. Updated Functional Overview (Removed CY7C1443AV33, CY7C1447AV33 related information). Updated Truth Table (Removed CY7C1443AV33, CY7C1447AV33) related information). Removed Truth Table for Read/Write (Corresponding to CY7C1443AV33, CY7C1447AV33). Updated IEEE 1149.1 Serial Boundary Scan (JTAG) (Removed CY7C1443AV33, CY7C1447AV33 related information). Updated Identification Register Definitions (Removed CY7C1443AV33, CY7C1447AV33 related information). Updated Scan Register Sizes (Removed Bit Size (× 18), Bit Size (× 72) columns). Updated Boundary Scan Order (Removed CY7C1443AV33 related information). Updated Boundary Scan Order (Removed 100 MHz frequency related information). Updated Capacitance (Removed 209-ball FBGA package related information). Updated Thermal Resistance (Removed 209-ball FBGA package related information). Updated Switching Characteristics (Removed 100 MHz frequency related information). Updated Switching Characteristics (Removed 100 MHz frequency related information). Updated Package Diagrams (spec 51-85165 (Changed revision from *B to *D) removed 209-ball FBGA package related information (spec 51-85167)). | | *K | 4010294 | 05/24/2013 | PRIT | Replaced all instances of IO with I/O across the document. No technical updates. Completing Sunset Review. | | *L | 4409607 | 06/16/2014 | PRIT | Updated Package Diagrams: spec 51-85050 – Changed revision from *D to *E. Completing Sunset Review. | | *M | 4571917 | 12/29/2014 | PRIT | Added related documentation hyperlink in page 1. Updated Package Diagrams: spec 51-85165 – Changed revision from *D to *E. | # Sales, Solutions, and Legal Information ### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. ### **Products** Automotive Clocks & Buffers Interface Lighting & Power Control Memory **PSoC** **Touch Sensing USB Controllers** Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless # PSoC® Solutions psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP ### **Cypress Developer Community** Community | Forums | Blogs | Video | Training ## **Technical Support** cypress.com/go/support © Cypress Semiconductor Corporation, 2003-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or
failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement.