PNP - MJ15023, MJ15025*

*MJ15025 is a Preferred Device

Silicon Power Transistors

The MJ15023 and MJ15025 are PowerBase power transistors designed for high power audio, disk head positioners and other linear applications.

Features

- High Safe Operating Area (100\% Tested) -2 A @ 80 V
- High DC Current Gain $-\mathrm{h}_{\mathrm{FE}}=15$ (Min) @ $\mathrm{I}_{\mathrm{C}}=8$ Adc
- $\mathrm{Pb}-$ Free Packages are Available*

MAXIMUM RATINGS

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
[^0]
ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

16 AMPERES

 SILICON POWER TRANSISTORS 200 - 250 VOLTS, 250 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

MJ1502x	$=$ Device Code
	$x=3$ or 5
G	$=$ Pb-Free Package
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
MEX	$=$ Country of Origin

ORDERING INFORMATION

Device	Package	Shipping
MJ15023	TO-204	100 Units / Tray
MJ15023G	TO-204 (Pb-Free)	100 Units / Tray
MJ15025	TO-204	100 Units / Tray
MJ15025G	TO-204 (Pb-Free)	100 Units / Tray

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 2) $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	MJ15023 MJ15025	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	-	-
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=200 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE} \text { (off) })}=1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=250 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}(\text { off })=1.5 \mathrm{Vdc}\right) \end{aligned}$	MJ15023 MJ15025	$I_{\text {CEX }}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=150 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=200 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	MJ15023 MJ15025	$I_{\text {CEE }}$	-	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	Both	$\mathrm{l}_{\text {ebo }}$	-	500	$\mu \mathrm{Adc}$

SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{t}=0.5 \mathrm{~s}\right.$ (non-repetitive)) $\left(\mathrm{V}_{\mathrm{CE}}=80 \mathrm{Vdc}, \mathrm{t}=0.5 \mathrm{~s}\right.$ (non-repetitive))

$\mathrm{I}_{\mathrm{S} / \mathrm{b}}$			Adc
	5 2	-	

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \left(I_{C}=8 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=16 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	15 5	60	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(I_{C}=8 \mathrm{Adc}, I_{\mathrm{B}}=0.8 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=16 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=3.2 \mathrm{Adc}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$		1.4 4.0	Vdc
Base-Emitter On Voltage $\left(I_{C}=8 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=4 \mathrm{Vdc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	2.2	Vdc

DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=1\right.$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}_{\text {test }}=1 \mathrm{MHz}\right)$	f_{T}	4	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}_{\text {test }}=1 \mathrm{MHz}\right)$	C_{ob}	-	600	pF

2. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

Figure 1. Active-Region Safe Operating Area

There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=200^{\circ} \mathrm{C}$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

PNP - MJ15023, MJ15025*

TYPICAL CHARACTERISTICS

Figure 2. Capacitances

Figure 4. DC Current Gain

Figure 3. Current-Gain - Bandwidth Product

Figure 5. "On" Voltages

PACKAGE DIMENSIONS

TO-204 (TO-3)
CASE 1-07
ISSUE Z

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.550 REF		39.37 REF	
B	---	1.050	---	26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
E	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
H	0.215 BSC		5.46 BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N	---	0.830	---	21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
V	0.131	0.188	3.33	4.77

STYLE 1:
PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

