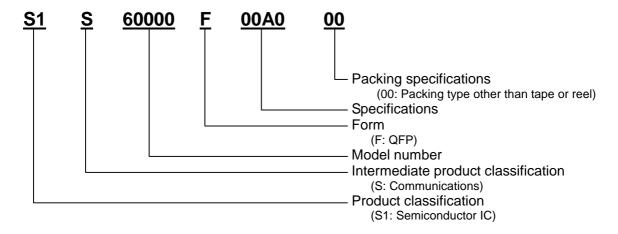
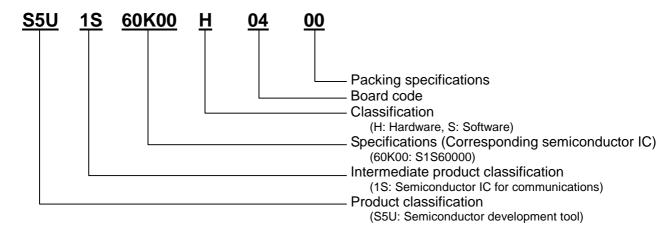


Intelligent Network Controller for Embedded Systems \$156000


Evaluation Board Technical Manual (S5U1S60K00H0400)

NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. All other product names mentioned herein are trademarks and/or registered trademarks of their respective


companies.

Product Model Number System

ODEVICES

Development Tools

I

CONTENTS

1. Overview	1
2. Components	1
3. Overall Block Diagram	1
4. Mechanical Specifications	2
5. External Pins	3
5.1 Interface connector layout	3
5.2 Power supply connector (CN6)	3
5.3 Host interface connector (CN1)	
5.4 Serial interface connector (CN3)	3
5.5 General-purpose connector (GPIO 0-15)	
5.6 Ethernet connector (CN2)	3
6. Mode Selector Switches	4
6.1 Host interface type setting DIP switch (SW1)	4
6.2 Reset switch (SW2)	4
7. Jumpers	4
7.1 External board power supply jumper (J3)	4
8. Mounted Devices	5
8.1 Ethernet Physical Layer (PHY)	5
8.2 E ² PROM (3-wire connection)	5
8.3 RS232C driver IC (UART connection)	6
9. Power Supply	7
10. Verifying Operation	7
Appendix 1: Circuit Diagrams	8
Revision History	11

1. OVERVIEW

This product, the S1S60000 Evaluation Board Kit, is an evaluation board for the Seiko Epson S1S60000 network controller chip and includes an Ethernet physical layer IC (PHY), an RS232C driver IC, E²PROM, and the required interface connectors.

2. COMPONENTS

Network controller IC: S1S60000

E²**PROM**: Three-wire E2PROM (SII S-93C46BR01-J8V1G)

Ethernet block: MII connection 10/100BaseT

Built-in transformer RJ45 connector (J0011D21B) ↔ KSZ8721BL

Serial interface: An RS232C driver IC and a D-sub connector are provided

Host interface: A 50-pin connector is provided **Power supply voltage:** Supplied from a 5 V jack

3. OVERALL BLOCK DIAGRAM

Figure 3-1 shows the block diagram for this evaluation board.

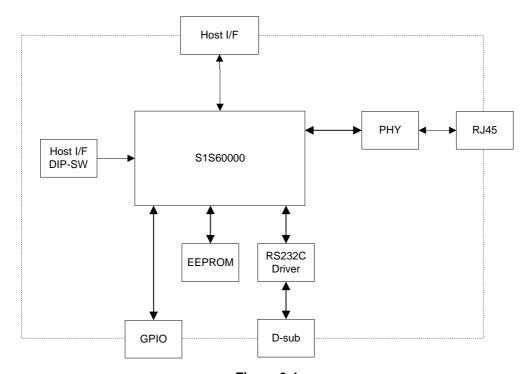


Figure 3-1

4. MECHANICAL SPECIFICATIONS

Figure 4-1 shows the dimensional drawing for this evaluation board.

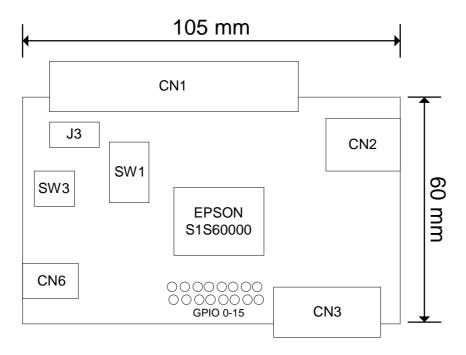


Figure 4-1

5. EXTERNAL PINS

5.1 Interface connector layout

See figure 4-1 for the locations of the external interface connectors (CN) provided by this evaluation board.

5.2 Power supply connector (CN6)

The 5 V power supply is provided to the DC jack, CN6. AC/DC adapters with a plug inner diameter of 2.1 mm and an outer diameter of 5.5 mm can be used as the DC plug.

5.3 Host interface connector (CN1)

The 3M 2550-5002 or equivalent connector is used.

Pin	Signal Name						
1	Reserved	14	GND	27	HD14	40	HD5
2	Reserved	15	Reserved	28	HD15	41	HD2
3	Reserved	16	Reserved	29	HD12	42	HD3
4	Reserved	17	Reserved	30	HD13	43	GND
5	3.3V	18	Reserved	31	HD10	44	GND
6	3.3V	19	Reserved	32	HD11	45	HD0
7	Reserved	20	HINT	33	GND	46	HD1
8	Reserved	21	HRD0#	34	GND	47	HA2
9	GND	22	HRD1#	35	HD8	48	HCS#
10	GND	23	GND	36	HD9	49	HA0
11	Reserved	24	GND	37	HD6	50	HA1
12	Reserved	25	HWR0#	38	HD7	_	_
13	GND	26	HWR1#	39	HD4	_	_

5.4 Serial interface connector (CN3)

The JAE DELC-J9PAF-10L9E or equivalent D-sub is used. The S1S60000's UART signals are connected though the RS232C driver IC.

Pin	Signal Name	Pin	Signal Name
1	DCD (Unused)	6	DSR
2	RXD	7	RTS (Unused)
3	TXD	8	CTS
4	DTR (Unused)	9	RI (Unused)
5	GND	10	_

5.5 General-purpose connector (GPIO 0-15)

This connector has 2.54 mm pitch through holes. It is used to connect the S1S60000's GPIO0-15 signals.

5.6 Ethernet connector (CN2)

The Pulse Engineering Inc. J0011D21B or equivalent connector is used. This connector includes a built-in pulse transformer.

Pin	Signal Name	Pin	Signal Name
1	TXP	5	Reserved (*1)
2	TXN	6	RXN
3	RXP	7	Reserved (*1)
4	Reserved (*1)	8	Reserved (*1)

^{*1:} This pin is connected internally in the connector. See the connector specifications for details.

6. MODE SELECTOR SWITCHES

See figure 4-1 for the position of the mode selector switches provided by this evaluation board.

6.1 Host interface type setting DIP switch (SW1)

This switch is provided to set the board to match the host CPU connected to the S1S60000. When this switch is set to ON, 0 is input to the S1S60000, and when set to OFF, 1 is input. See section 13, Host Interface (HIF) in the S1S60000 Technical Manual for details on the host interface.

SW	Host Interface Signal Name	Function	Description
1	HIFSEL0		3: 2: 1 ON: ON: ON Type0 SH-3/4 ON: ON: OFF Type1 MC68000
2	HIFSEL1	Host interface type setting	ON: OFF: ON Type2 MC68030, MC68040 ON: OFF: OFF Type3 Generic OFF: ON: ON Reserved
3	HIFSEL2		OFF: ON: ON Reserved OFF: ON: OFF Type5 MIPS, ISA OFF: OFF: ON Type6 PCMCIA OFF: OFF: OFF Reserved
4	HMUX	Multiplexed bus setting	ON : Multiplex Bus OFF: Separate Bus
5	HINTPOL	Interrupt signal polarity	ON : Low Active OFF: High Active
6	HENDIAN	Endian setting	ON : Little endian OFF: Big endian
7	HSIZE	Bus width setting	ON: 16-bit bus OFF: 8-bit bus
8	SERIAL MODE	Serial mode	ON : Serial to Ethernet conversion OFF: Hardware control

6.2 Reset switch (SW2)

This switch outputs a reset pulse and inputs a reset signal to the ICs on this board.

7. JUMPERS

7.1 External board power supply jumper (J3)

When J1 is connected, pins 5 and 6 in the CN1 connector will be connected to the 3.3 V power supply.

8. MOUNTED DEVICES

8.1 Ethernet Physical Layer (PHY)

The Micrel KSZ8721BL (with Auto MDIX support) is used. It is connected to the S1S60000's MII.

8.2 E²PROM (3-wire connection)

The SII S-93C46BR01-J8V1G or equivalent product is used.

The data words stored in the E²PROM are all 16 bits in length. The table below presents the data map when the evaluation board is shipped. The data at indices 01h to 27h are loaded into the S1S60000's internal registers after a reset.

Index	Data	Value	Description	
00h	ID	E0C3h	Fixed value: 0xE0C3	
01h	MAC0	0000h	The customer must acquire a unique MAC address to set the IC to. Set	
02h	MAC1	0000h	these locations to a usable address after acquiring this product.	
03h	MAC2	0000h	these locations to a dsable address after acquiring this product.	
04h	GENCR	0310h	Setting value for the GENCR register	
05h	HIFCR	0700h	Setting value for the HIFCR register	
06h	I2CSADR	0030h	Setting value for the I2CSADR register	
07h	I2CCONF	0235h	Setting value for the I2CCONF register	
08h	GPALT	FF84h	Setting value for the GPALT register	
09h	GPCFG	0000h	Setting value for the GPCFG register	
0Ah	GPDAT	0000h	Setting value for the GPDAT register	
0Bh	GPMSK	0000h	Setting value for the GPMSK register	
0Ch	EPMSK	0000h	Setting value for the EPMSK register	
0Dh	I2CMSK	0000h	Setting value for the I2CMSK register	
0Eh	PMWAIT	000Fh	Setting value for the PMWAIT register	
0Fh	PHYMODE	0200h	Setting value for the PHYMODE register	
10h	ANEGR	10EFh	Setting value for the ANEGR register	
11h	IPADRH	A8C0h	IP address: The initial value of the local IP address - 192.168.0.254	
12h	IPADRL	FE00h	TP address. The initial value of the local IP address - 192.106.0.254	
13h	SNMSKH	FFFFh	Subnet mask: The initial value of the subnet mask - 255.255.255.0	
14h	SNMSKL	00FFh	Subhet mask. The initial value of the subhet mask - 255.255.255.0	
15h	DGWH	A8C0h	Default gateway: The initial value of the default gateway: 192.168.0.1	
16h	DGWL	0100h	Delault gateway. The illitial value of the delault gateway. 192.106.0.1	
17h	DADR0H	A8C0h	Destination IP address 0: 192.168.0.2	
18h	DADR0L	0200h	Destination if address 0. 192.100.0.2	
19h	DADR1H	A8C0h	Destination IP address 1: 192.168.0.3	
1Ah	DADR1L	0300h	Destination if address 1. 192.100.0.3	
1Bh	DADR2H	A8C0h	Destination IP address 2: 192.168.0.4	
1Ch	DADR2L	0400h	Destination if address 2. 192.100.0.4	
1Dh	DADR3H	A8C0h	Destination IP address 3: 192.168.0.5	
1Eh	DADR3L	0500h	Destination in address 3. 192.100.0.3	
1Fh	PORT	00C0h	Setting value for the PORT register	
20h	DPORT	01C0h	Setting value for the DPORT register	
21h	SERMODE	00E1h	Setting value for the SERMODE register	
22h	TMOUT	4000h	Setting value for the TMOUT register	
23h	SOPAR	0070h	Setting value for the SOPAR register	
24h	COMN0	7570h	Setting value for the COMN0, COMN1, COMN2, and COMN3 registers.	
25h	COMN1	6C62h	These hold the community name that the SNMP agent can be set to. The	
26h	COMN2	6369h	default community name for the SNMP agent is "public", regardless of	
27h	COMN3	0000h	the internal registers.	
	00	000011	·	

Note 1: Write access from the network to the area from 00h to 0Fh is always disabled. Writes to this area must be performed from places other than the network (e.g. host interface or I²C interface).

Note 2: The E²PROM data can be rewritten from the Ethernet, the host interface, or the serial interface.

8.3 RS232C driver IC (UART connection)

The Analog Devices ADM3222 is used. It is connected to the S1S60000's UART.

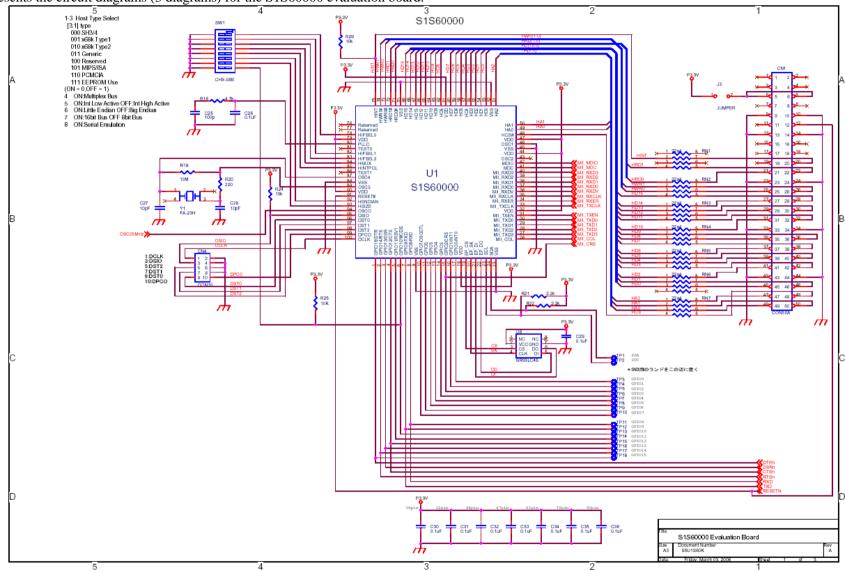
9. POWER SUPPLY

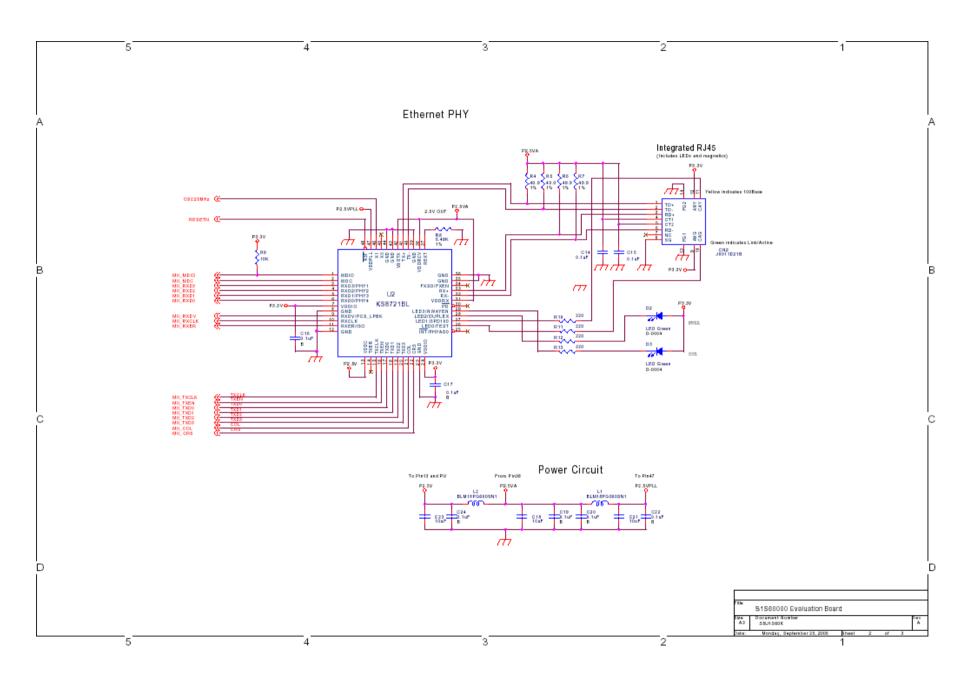
A 3.3 V power supply level is generated from the 5 V power supply input to the evaluation board's CN6 connector using a regulator.

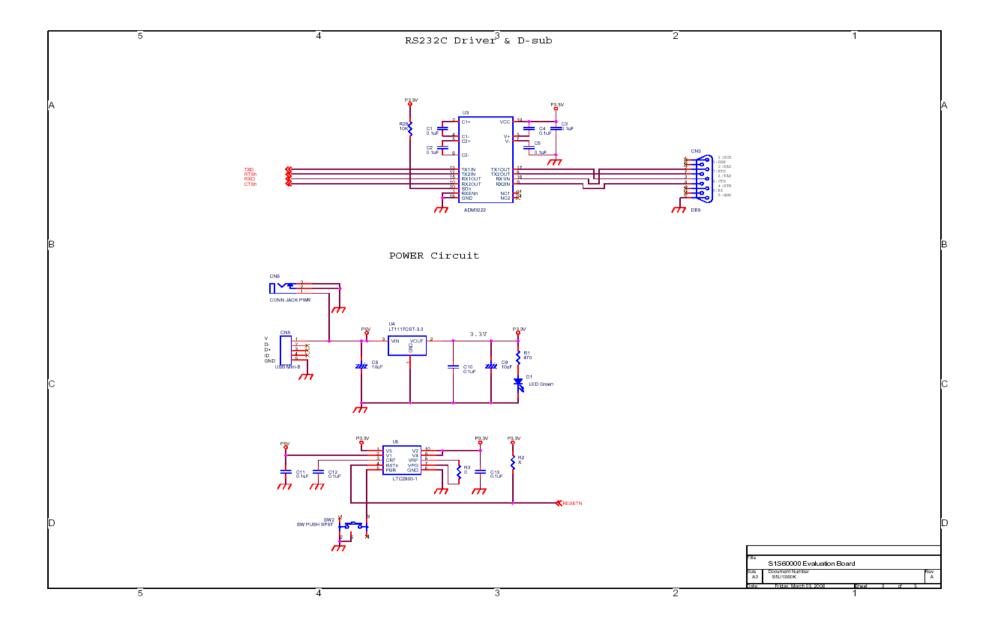
10. VERIFYING OPERATION

See the S1S60000 Application Notes for the procedure for verifying S1S60000 operation.

Application Note No. 1 Serial to Ethernet Conversion


Application Note No. 2 Ping Response Methods


Application Note No. 3 UDP/IP Communication Endpoint Usage


Application Note No. 4 TCP/IP Communication Endpoint Usage

APPENDIX 1: CIRCUIT DIAGRAMS

This section presents the circuit diagrams (3 diagrams) for the S1S60000 evaluation board.

REVISION HISTORY

	Rev. No.	Data	Page	Category	Contents
Ī	Rev 1.1	2007/xx/xx	All		
L					

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

2580 Orchard Parkway San Jose , CA 95131,USA

Phone: +1-800-228-3964 FAX: +1-408-922-0238

SALES OFFICES

Northeast

301 Edgewater Place, Suite 210 Wakefield, MA 01880, U.S.A.

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-89-14005-0 FAX: +49-89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-2171-5045-0 FAX: +49-2171-5045-10

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-1-64862350 FAX: +33-1-64862355

UK & IRELAND BRANCH OFFICE

8 The Square, Stockley Park, Uxbridge Middx UB11 1FW, UNITED KINGDOM Phone: +44-1295-750-216/+44-1342-824451

FAX: +44-89-14005 446/447

Scotland Design Center

Integration House, The Alba Campus
Livingston West Lothian, EH54 7EG, SCOTLAND
Phone: +44-1506-605040 FAX: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road,

Shanghai 200233, CHINA

Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 FAX: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON Electronic Technology Development (Shenzhen)

12/F, Dawning Mansion, Keji South 12th Road,

Hi- Tech Park, Shenzhen

Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road,

Taipei 110

Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place,

#03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA

GUMI OFFICE

2F, Grand B/D, 457-4 Songjeong-dong,

Gumi-City, KOREA

Phone: +82-54-454-6027 FAX: +82-54-454-6093

SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.

IC International Sales Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117