

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

August 2014

FDFS6N548

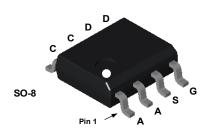
Integrated N-Channel PowerTrench® MOSFET and Schottky Diode 30V, 7A, 23m Ω

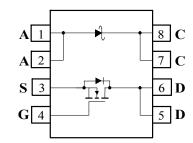
Features

- Max $r_{DS(on)}$ = 23m Ω at V_{GS} = 10V, I_D = 7A
- Max $r_{DS(on)}$ = 30m Ω at V_{GS} = 4.5V, I_D = 6A
- V_F < 0.45V @ 2A

V_F < 0.28V @ 100mA

- Schottky and MOSFET incorporated into single power surface mount SO-8 package
- Electrically independent Schottky and MOSFET pinout for design flexibility
- Low Miller Charge


General Description


The FDFS6N548 combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO-8 package.

This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low on-state resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Application

■ DC/DC Conversion

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		30	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current -Continuous (Note 1a)		7	۸
ID	-Pulsed		30	— A
D	Power Dissipation for Dual Operation		2	w
P_{D}	Power Dissipation for Single Operation	(Note 1a)	1.6	VV
E _{AS}	Drain-Source Avalanche Energy	(Note 3)	12	mJ
V_{RRM}	Schottky Repetitive Peak Reverse Voltage		30	V
I _O	Schottky Average Forward Current	(Note 1a)	2	Α
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	40	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDFS6N548	FDFS6N548	SO-8	330mm	12mm	2500 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V,$ $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1 250	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V, V _{DS} = 0V			±100	nA

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.2	1.8	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		-5		mV/°C
		V _{GS} = 10V, I _D = 7A		19	23	
r _{DS(on)}	Drain to Source On-Resistance	$V_{GS} = 4.5V, I_D = 6A$		23	30	mΩ
		V_{GS} = 10V, I_D = 7A, T_J = 125°C		26	31	
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 7A$		20		S

Dynamic Characteristics

C _{iss}	Input Capacitance	\\ -45\\\\ -0\\	525	700	pF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	100	133	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112	65	100	pF
R_g	Gate Resistance	f = 1MHz	0.8		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	., ,_,,	6	12	ns
t _r	Rise Time	V_{DD} = 15V, I_{D} = 7A, V_{GS} = 10V, R_{GEN} = 6 Ω	2	10	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} - 10V, K _{GEN} - 052	14	25	ns
t _f	Fall Time		2	10	ns
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{DS} = 15V, I _D = 7A	9	13	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 10V	1.5		nC
Q_{gd}	Gate to Drain "Miller" Charge		2		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 7A$	(Note2)	0.90	1.25	V
t _{rr}	Reverse Recovery Time	I _E = 7A. di/dt = 100A/μs		23	35	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 7A$, $dI/dt = 100A/\mu s$		14	21	nC

Schottky Diode Characteristics

V_R	Reverse Breakdown Voltage	$I_R = -1mA$		-30			V
I _R Reverse Leakage	Deverage Leakers	\/ - 10\/	$T_J = 25^{\circ}C$		-39	-250	μА
	V _R = -10V	$T_J = 125^{\circ}C$		-18		mA	
V _F		I _E = 100mA	$T_J = 25^{\circ}C$		225	280	
	Forward Voltage	IF - TOOTIA	$T_J = 125^{\circ}C$		140		mV
	Forward voltage	I _F = 2A	T _J = 25°C		364	450	IIIV
			T _J = 125°C		290		

FDFS6N548 Rev.B1 2 www.fairchildsemi.com

Notes:

 $R_{\theta IA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta IC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper

ωψψω b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper

c) 135°C/W when mounted on a minimun pad

- 2: Pulse Test: Pulse Width < $300\mu\text{s}$, Duty cycle < 2.0%.
- 3: Starting $T_J = 25$ °C, L = 1mH, $I_{AS} = 5.0$ A, $V_{DD} = 27$ V, $V_{GS} = 10$ V.

Typical Characteristics T_J = 25°C unless otherwise noted

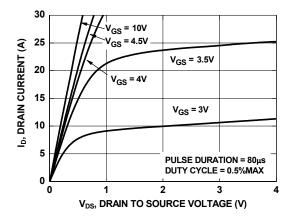


Figure 1. On Region Characteristics

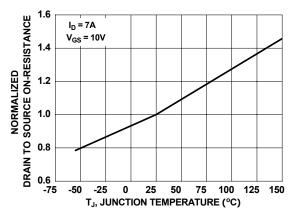


Figure 3. Normalized On-Resistance vs Junction Temperature

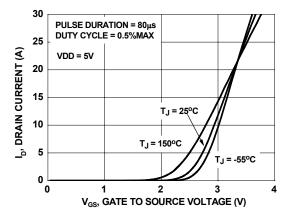


Figure 5. Transfer Characteristics

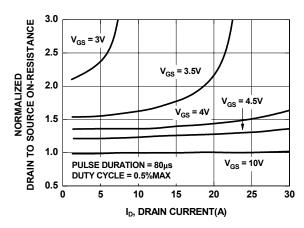


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

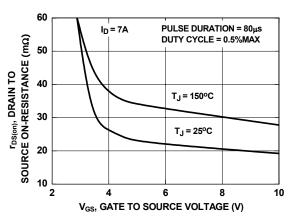


Figure 4. On-Resistance vs Gate to Source Voltage

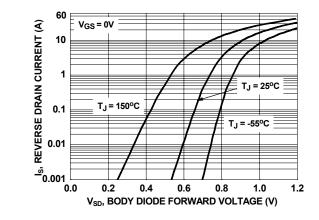


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

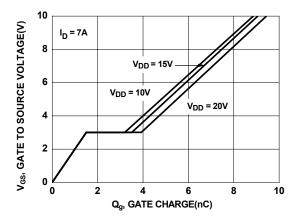


Figure 7. Gate Charge Characteristics

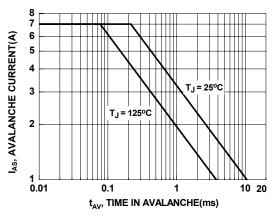


Figure 9. Unclamped Inductive Switching Capability

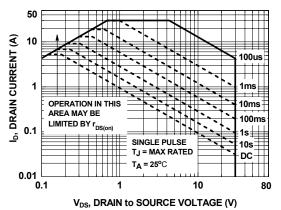


Figure 11. Forward Bias Safe Operating Area

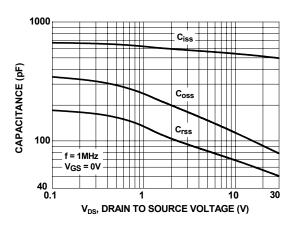


Figure 8. Capacitance vs Drain to Source Voltage

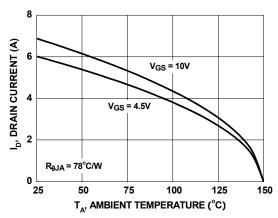


Figure 10. Maximum Continuous Drain Current vs Ambient Temperature

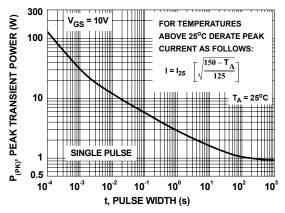
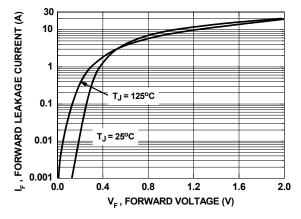



Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25°C unless otherwise noted

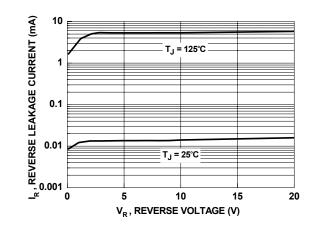


Figure 13. Schottky Diode Forward Characteristics

Figure 14. Schottky Diode Reverse Characteristics

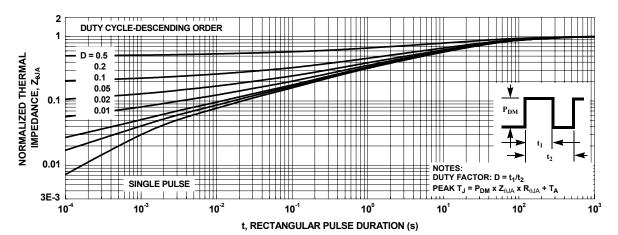
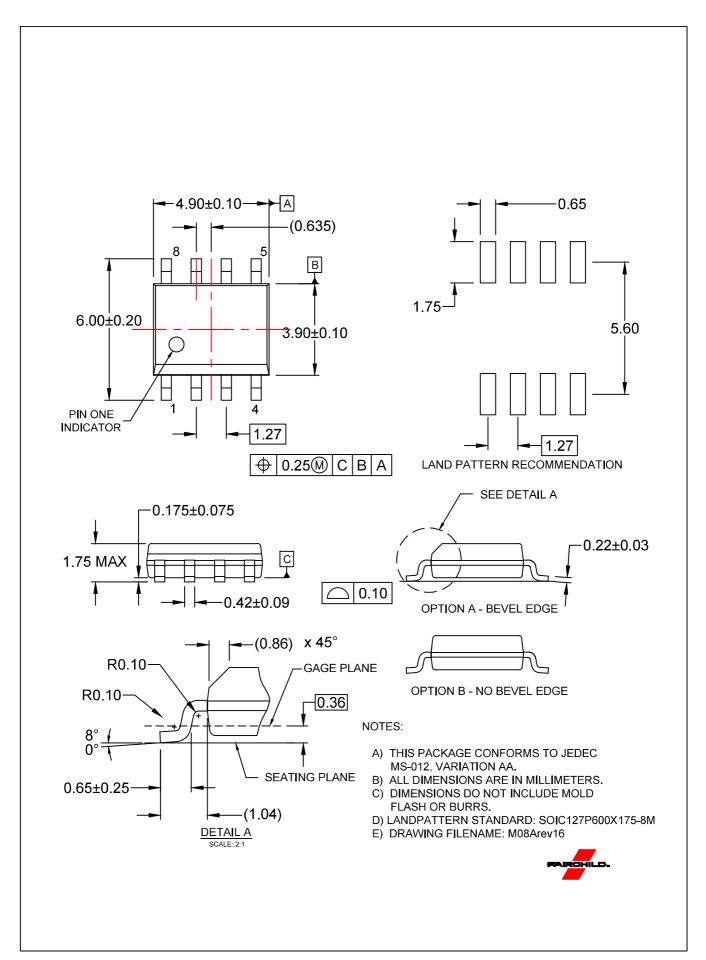



Figure 15. Transient Thermal Response Curve

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative