HMC475ST89 / 475ST89E v02.0710 ### InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4.5 GHz ### Typical Applications The HMC475ST89 / HMC475ST89E is an ideal RF/IF gain block & LO or PA driver: - Cellular / PCS / 3G - Fixed Wireless & WLAN - CATV, Cable Modem & DBS - Microwave Radio & Test Equipment - IF and RF Applications ### **Features** P1dB Output Power: +22 dBm Gain: 21.5 dB Output IP3: +35 dBm Cascadable 50 Ohm I/Os Single Supply: +8V to +12V Industry Standard SOT89 Package ### **Functional Diagram** ### **General Description** The HMC475ST89(E) is a InGaP Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT amplifier covering DC to 4.5 GHz. Packaged in an industry standard SOT89, the amplifier can be used as a cascadable 50 Ohm RF/IF gain stage as well as a LO or PA driver with up to +25 dBm output power. The HMC475ST89(E) offers 21.5 dB of gain and +35 dBm output IP3 at 850 MHz while requiring only 110 mA from a single positive supply. The Darlington topology results in reduced sensitivity to normal process variations and excellent gain stability over temperature while requiring a minimal number of external bias components. ## Electrical Specifications, Vs= 8.0 V, Rbias= 9.1 Ohm, $T_A = +25^{\circ}$ C | Parameter | | Min. | Тур. | Max. | Units | |--|---------------|------|-------|-------|--------| | | DC - 1.0 GHz | 19.5 | 21.5 | | dB | | | 1.0 - 2.0 GHz | 17.5 | 19.5 | | dB | | Gain | 2.0 - 3.0 GHz | 14.5 | 16.5 | | dB | | | 3.0 - 4.0 GHz | 11.5 | 13.5 | | dB | | | 4.0 - 4.5 GHz | 9 | 12 | | dB | | Gain Variation Over Temperature | DC - 4.5 GHz | | 0.008 | 0.012 | dB/ °C | | | DC - 1.0 GHz | | 11 | | dB | | Input Return Loss | 1.0 - 2.0 GHz | | 14 | | dB | | | 2.0 - 4.5 GHz | | 14 | | dB | | Outsid Batilian Land | DC - 1.0 GHz | | 13 | | dB | | Output Return Loss | 1.0 - 4.5 GHz | | 10 | | dB | | Reverse Isolation | DC - 4.5 GHz | | 25 | | dB | | | DC - 1.0 GHz | 19.0 | 22.0 | | dBm | | | 1.0 - 2.0 GHz | 18.0 | 21.0 | | dBm | | Output Power for 1 dB Compression (P1dB) | 2.0 - 3.0 GHz | 17.5 | 19.5 | | dBm | | | 3.0 - 4.0 GHz | 13.0 | 16.0 | | dBm | | | 4.0 - 4.5 GHz | 11.0 | 14.0 | | dBm | | Output Third Order Intercept (IP3) | DC - 2.5 GHz | | 35 | | dBm | | (Pout= 0 dBm per tone, 1 MHz spacing) | 2.5 - 4.5 GHz | | 30 | | dBm | | Noice Figure | DC - 3.0 GHz | | 3.5 | | dB | | Noise Figure | 3.0 - 4.5 GHz | | 3.8 | | dB | | Supply Current (Icq) | | | 110 | 135 | mA | Note: Data taken with broadband bias tee on device output. ## InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4.5 GHz ### **Broadband Gain & Return Loss** ### Gain vs. Temperature ### Input Return Loss vs. Temperature ### **Output Return Loss vs. Temperature** ### Reverse Isolation vs. Temperature ### Noise Figure vs. Temperature ## InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4.5 GHz ### P1dB vs. Temperature ### Psat vs. Temperature ### Output IP3 vs. Temperature # Gain, Power & OIP3 vs. Supply Voltage for Constant Icc= 110 mA @ 850 MHz # Vcc vs. Icc Over Temperature for Fixed Vs= 8V, RBIAS= 9.1 Ohms # InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4.5 GHz ### **Absolute Maximum Ratings** | Collector Bias Voltage (Vcc) | +8.0 Vdc | | |--|----------------|--| | RF Input Power (RFIN)(Vcc = +7.2 Vdc) | +17 dBm | | | Junction Temperature | 150 °C | | | Continuous Pdiss (T = 85 °C)
(derate 16.86 mW/°C above 85 °C) | 1.09 W | | | Thermal Resistance (junction to lead) | 59.3 °C/W | | | Storage Temperature | -65 to +150 °C | | | Operating Temperature | -40 to +85 °C | | ### **Outline Drawing** #### NOTES: - 1. PACKAGE BODY MATERIAL: - MOLDING COMPOUND MP-180S OR EQUIVALENT. - 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING. - 3. LEAD PLATING: 100% MATTE TIN. - 4. DIMENSIONS ARE IN INCHES [MILLIMETERS] - ⚠DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. - DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE. - 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND. ### Package Information | Part Number | Package Body Material | Lead Finish | MSL Rating | Package Marking [3] | | |-------------|--|---------------|------------|---------------------|--| | HMC475ST89 | Low Stress Injection Molded Plastic | Sn/Pb Solder | MSL1 [1] | H475
XXXX | | | HMC475ST89E | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2] | <u>H475</u>
XXXX | | - [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$ - [2] Max peak reflow temperature of 260 °C - [3] 4-Digit lot number XXXX # InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4.5 GHz ### **Pin Descriptions** | Pin Number | Function | Description | Interface Schematic | |------------|----------|---|---------------------| | 1 | IN | This pin is DC coupled.
An off chip DC blocking capacitor is required. | RFOUT | | 3 | ОИТ | RF output and DC Bias (Vcc) for the output stage. | | | 2, 4 | GND | These pins and package bottom must be connected to RF/DC ground. | ♥ GND
= | ### **Application Circuit** # Recommended Bias Resistor Values for Icc= 110 mA, Rbias= (Vs - Vcc) / Icc | Supply Voltage (Vs) | 8V | 9V | 10V | 12V | |---------------------|-------|------|------|------| | RBIAS VALUE | 9.1 Ω | 18 Ω | 27 Ω | 43 Ω | | RBIAS POWER RATING | 1/4 W | ½ W | ½ W | 1 W | #### Note: - 1. External blocking capacitors are required on RFIN and RFOUT. - 2. RBIAS provides DC bias stability over temperature. ### **Recommended Component Values for Key Application Frequencies** | Component | Frequency (MHz) | | | | | | | |-----------|-----------------|--------|--------|--------|--------|--------|--------| | Component | 50 | 900 | 1900 | 2200 | 2400 | 3500 | 4500 | | L1 | 270 nH | 56 nH | 18 nH | 18 nH | 15 nH | 8.2 nH | 6.8 nH | | C1, C2 | 0.01 μF | 100 pF | ### InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4.5 GHz ### **Evaluation PCB** ### List of Materials for Evaluation PCB 116092 [1] | Item | Description | | |---------|------------------------------|--| | J1 - J2 | PCB Mount SMA Connector | | | J3 - J4 | DC Pin | | | C1, C2 | Capacitor, 0402 Pkg. | | | C3 | 100 pF Capacitor, 0402 Pkg. | | | C4 | 1000 pF Capacitor, 0603 Pkg. | | | C5 | 2.2 µF Capacitor, Tantalum | | | R1 | Resistor, 1206 Pkg. | | | L1 | Inductor, 0603 Pkg. | | | U1 | HMC475ST89 / HMC475ST89E | | | PCB [2] | 107368 Evaluation PCB | | $^{\[1\]}$ Reference this number when ordering complete evaluation PCB The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request. ^[2] Circuit Board Material: Rogers 4350