Features

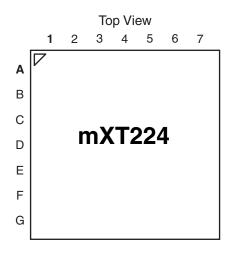
- maXTouch[™] Touchscreen
 - True 12-bit multi-touch with independent XY tracking for up to 10 concurrent touches in real time with touch size reporting
 - Up to 4.3 inch diagonal screen size supported with 10 mm "pinch" separation
 - Up to 10.1 inch support with correspondingly wider "pinch"
- Number of Channels
 - Up to 224 (subject to other configuration limitations)
 - Electrode grid configurations up to 20 X by 10 Y lines supported (subject to 30 total pins and a maximum of 14 Y lines)
- maXTouch Touch Key Support
 - Up to 32 channels can be allocated as fixed keys (subject to other configurations)
- Zero Additional Part Count
 - 16 X by 14 Y matrix (224 channels) implementable with power bypass capacitors only
- Signal Processing
 - Advanced digital filtering using both hardware engine and firmware
 - Self-calibration
 - Auto drift compensation
 - Adjacent Key Suppression[®] (AKS[™]) technology
 - Grip and face suppression
 - Reports one-touch and two-touch gestures
 - Down-scaling and clipping support to match LCD resolution
 - Ultra-fast start-up and calibration for best user experience
 - Supports axis flipping and axis switch-over for portrait and landscape modes
- Scan Speed
 - Maximum single touch >250Hz, subject to configuration
 - Configurable to allow power/speed optimization
 - Programmable timeout for automatic transition from active to idle states
- Response Times
 - Initial latency <10 ms for first touch from idle, subject to configuration
- Sensors
 - Works with PET or glass sensors
 - Works with all proprietary sensor patterns recommended by Atmel®
 - Works with passive stylus
- Panel Thickness
 - Glass up to 3 mm, screen size dependent
 - Plastic up to 1.5 mm, screen size dependent
- Interface
 - I²C-compatible slave mode 400 kHz
- Dual-rail Power
 - Interface 1.8V to 3.3V nominal, analog 2.7V to 3.3V nominal
- Power Consumption
 - Idle 80Hz: <1.8 mW, subject to configuration
 - One Touch Active 80Hz: 3.9 mW, subject to configuration
 - Sleep: 4.5 μW
- Package
 - 49-ball UFBGA 5 x 5 x 0.6 mm, 0.65 ball pitch
 - 49-ball VFBGA 5 x 5 x 1 mm, 0.65 ball pitch

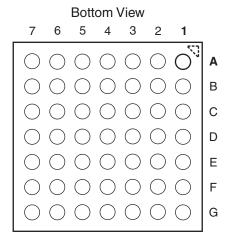
maXTouch[™] 224-channel Touchscreen Sensor IC

mXT224 (AT42QT602240)

Summary

Note: This is a summary document. A complete document is available under NDA. For more information contact www.atmel.com/touchscreen.


9530AS-AT42-09/09



1. Pinout and Schematic

1.1 Pinout Configuration

1.2 Pinout Descriptions

Table 1-1. Pin Listing

Ball	Name	Туре	Comments	If Unused, Connect To
A1	AVDD	Р	Analog power	_
A2	Y12	I/O	Y line connection or X line in extended mode	Leave open
А3	Y10	I/O	Y line connection or X line in extended mode	Leave open
A4	Y8	I	Y line connection	Leave open
A 5	Y6	ı	Y line connection	Leave open
A6	Y4	ı	Y line connection	Leave open
A7	Y2	ı	Y line connection	Leave open
B1	X8	0	X matrix drive line	Leave open
B2	GND	Р	Ground	-
В3	Y11	I/O	Y line connection or X line in extended mode	Leave open
B4	Y9	I	Y line connection	Leave open
B5	Y5	I	Y line connection	Leave open
B6	Y1	ı	Y line connection	Leave open
В7	Y0	I	Y line connection	Leave open
C1	X10	0	X matrix drive line	Leave open
C2	X9	0	X matrix drive line	Leave open
СЗ	Y13	I/O	Y line connection or X line in extended mode	Leave open
C4	Y7	I	Y line connection	Leave open
C5	Y3	I	Y line connection	Leave open
C6	GND	Р	Ground	_

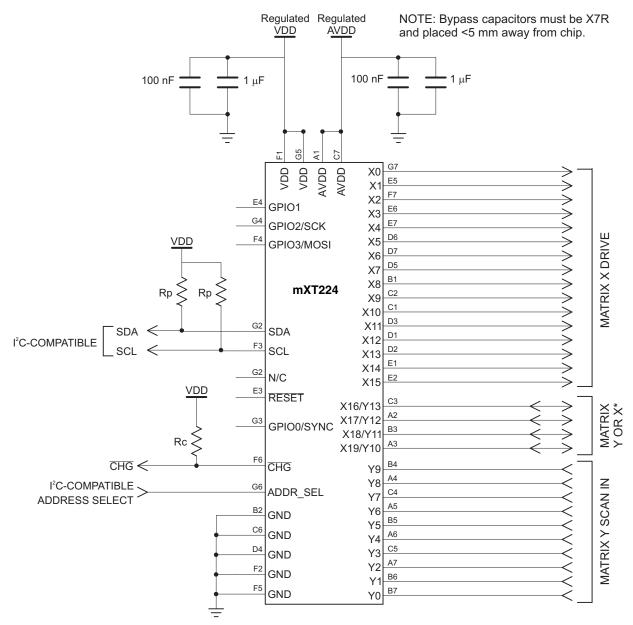
 Table 1-1.
 Pin Listing (Continued)

Ball	Name	Туре	Comments	If Unused, Connect To
C7	AVDD	Р	Analog power	_
D1	X12	0	X matrix drive line	Leave open
D2	X13	0	X matrix drive line	Leave open
D3	X11	0	X matrix drive line	Leave open
D4	GND	Р	Ground	-
D5	X7	0	X matrix drive line	Leave open
D6	X5	0	X matrix drive line	Leave open
D7	X6	0	X matrix drive line	Leave open
E1	X14	0	X matrix drive line	Leave open
E2	X15	0	X matrix drive line	Leave open
E3	RESET	I	Reset low; has internal 30 k Ω to 60 k Ω pull-up resistor	Leave open or Vdd
E4	GPIO1	I/O	General purpose I/O	Input: GND Output: leave open
E5	X1	0	X matrix drive line	Leave open
E6	Х3	0	X matrix drive line	Leave open
E7	X4	0	X matrix drive line	Leave open
F1	VDD	Р	Digital power	_
F2	GND	Р	Ground	_
F3	SCL	OD	Serial Interface Clock	_
F4	GPIO3/ MOSI	I/O	General purpose I/O / Debug data	Input: GND Output: leave open
F5	GND	Р	Ground	_
F6	CHG	OD	State change interrupt	_
F7	X2	0	X matrix drive line	Leave open
G1	N/C	_	No connection	Leave open
G2	SDA	OD	Serial Interface Data	_
G3	SYNC/GPIO0	I	General purpose I/O	GND
G4	GPIO2/ SCK	I/O	General purpose I/O / Debug clock	Input: GND Output: leave open
G5	VDD	Р	Digital power	-
G6	ADDR_SEL	I	I ² C-compatible address select	-
G7	X0	0	X matrix drive line	Leave open

I Input only

O Output only, push-pull

P Ground or power


I/O Input and output

OD Open drain output

1.3 Schematic

* NOTE: Y10 to Y13 scan lines may be used as additional X drive lines in extended mode (a 100Ω resistor must be added to each additional line).

2. Overview of the mXT224

2.1 Introduction

The mXT224 (AT42QT602240) uses a unique charge-transfer acquisition engine to implement the QMatrix[™] capacitive sensing method patented by Atmel[®]. This allows the measurement of up to 224 mutual capacitance nodes in under 1 ms. Coupled with a state-of-the-art XMEGA[™] CPU, the entire touchscreen sensing solution can measure, classify and track a single finger touch every 4 ms if required.

The acquisition engine uses an optimal measurement approach to ensure almost complete immunity from parasitic capacitance on the receiver inputs (Y lines). The engine includes sufficient dynamic range to cope with touchscreen mutual capacitances spanning 0.5 pF to 5 pF, allowing great flexibility for use with Atmel's proprietary ITO pattern designs. One and two layer ITO sensors are possible using glass or PET substrates.

The main AVR® XMEGA CPU has, under its control, two powerful, yet low power, microsequencer coprocessors. These combine to allow the signal acquisition, preprocessing, postprocessing and housekeeping to be partitioned in an efficient and flexible way. This gives ample scope for to sensing algorithms, touch tracking or advanced shape-based filtering. An in-circuit reflash can be performed over the chip's hardware-driven two-wire interface (l²C-compatible).

Overall, the mXT224 represents a step improvement over competing technologies, providing a near optimal mix of low power, small size and low part count, while offering unrivalled true multitouch performance.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 01-05 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369

Touch Technology Division

1 Mitchell Point Ensign Way Hamble Southampton Hampshire SO31 4RF United Kingdom Tel: (44) 23-8056-5600 Fax: (44) 23-8045-3939 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-

Yvelines Cedex France

Atmel Europe

Le Krebs

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support touch@atmel.com

Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®] and others are registered trademarks, maXTouch[™], Adjacent Key Suppression[™], AKS[™], QMatrix[™], XMEGA[™] and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be registered trademarks or trademarks of others.