
 

October 2005
ipug04_02.0

 

Viterbi Decoder

 

User’s Guide

ispLever
CORECORE

TM



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

2

 

Introduction

 

Lattice’s Viterbi Decoder core is a parameterizable core for decoding different combinations of convolutionally
encoded sequences. The decoder core supports various code rates, constraint lengths and generator polynomials.
The core also supports soft-decision decoding and is capable of decoding punctured codes. The architectural
details of the core are given in the next section.

 

Viterbi Decoder Basics

 

Viterbi decoding is an efficient algorithm for decoding convolutionally encoded sequences. In the decoder, the con-
volutional coded sequences, corrupted by channel noise, are decoded back to the original sequence. A digital
transmit-receive system is shown in Figure 1, which uses a Viterbi decoder for decoding the convolutionally coded
data. The digital data stream (e.g., voice, image or any packetized data) is first convolutionally encoded, modulated
and transmitted through a wired or wireless channel. The channel noise is symbolically denoted by a “noise” block
added to the channel. The data received from the channel at the receiver side is first demodulated and then
decoded using the Viterbi decoder. The decoded output is equivalent to the transmitted digital data stream.

 

Figure 1. Digital Transmit-Receive System

 

Convolutional Encoding

 

Convolutional encoding can be considered as a series of state transitions for every input symbol. The input and the
resulting state transition can be shown in a special state transition diagram called a “trellis tree” (Figure 2). 

 

Figure 2. Trellis Tree

 

In the above trellis, the branches for three transitions are drawn. The path of the trellis for a typical input sequence,
101, is highlighted in the figure. Any transmission error alters the path traversed in the trellis. In Viterbi decoding,
the trellis is formed in memory, where the metrics corresponding to every path are recorded. After constructing the
trellis for a sufficient length (called the traceback length), the traceback is continued from the node having the mini-
mum path metric. This will lead to a stating node on the trellis. From this point one can trace forward and decode
the original sequence.

Figure 3 shows an example of convolutional encoding. In this example, each input symbol has two corresponding
output symbols, hence the encoding is called 1/2 rate convolutional encoding. To generate the output, the encoder
uses three values of the input signal, one present and two past. The set of past values of input data is called a
“state”. The number of input data values used to generate the code is called the constraint length. In this case, the

Convolutional
Encoder

Transmitted
Data Stream

Received
Data Stream

Viterbi
Decoder

Modulator DemodulatorChannel

Noise

00

01

10

11

0/01 0/01 0/01

0/10 0/10 0/10

0/11 0/11 0/11

1/00 1/00 1/00

1/01 1/01 1/01

1/10 1/10 1/10

1/11 1/11 1/11

0/000/00 0/00

Trellis for 3 stages and constraint length = 3
Branches corresponding to input seq. 101 is highlighted



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

3

constraint length is 3. Each set of outputs is generated by XORing a pattern of current and shifted values of input
data. The patterns used to generate the coded output value can be expressed as binary strings called generator
polynomials (GP). In this example, the generator polynomials are 111 and 101. The MSB of the GP corresponds to
the input; the LSBs of the GP correspond to the state as shown in Figure 3. A bit value of ‘1’ in the generator poly-
nomial represents a used XOR bit and a value of ‘0’ signifies an unused bit.

 

Figure 3. Convolutional Encoding

 

Punctured Codes and Depuncturing

 

After convolutional encoding, some of the encoded symbols can be selectively removed before transmission. This
process, called “puncturing”, is a data compression method used to reduce the number of bits transmitted. Figure 4
shows an example of puncturing.

 

Figure 4. Puncturing Process

 

If puncturing is employed in the encoder, the decoder will have to “depuncture” the data before decoding. Depunc-
turing is done by inserting NULL symbols for the punctured symbols. NULL symbols are chosen to be equidistant
from either ‘0’ or ‘1’.

 

Viterbi Decoder Core Description

 

Internal Architecture

 

Figure 5 shows the modules of the Viterbi decoder and their interconnectivity. Below is a brief description of the
modules.

data in D Q D Q
data out

1/2 convolutional coding with constraint length = 3
and generator polynomials 111 and 101

i0 i1 i2 i3 i4 i5 i6

a0

b0

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5
b6

a0 b0 b1 a2 a3 b3 b4

1

1

0 1

1 0

a0

b0

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5
b6

a5

Input data
After convolutional coding

Puncture pattern
superimposedPuncture pattern

Final punctured output



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

4

 

Figure 5. Internal Architecture of the Viterbi Decoder

 

Branch Metric Unit (BMU)

 

The BMU receives input data from the channel and computes a metric for each state and input combination. The
metric is the Hamming distance for hard-decision encoded data, or l1 norm (sum of absolute values) for soft-deci-
sion encoded data.

 

Add, Compare and Select (ACS) Unit

 

The ACS unit adds the current metric to the accumulated metric for each path and determines the least metric for
each state of the trellis. The ACS retrieves the accumulated metric from the register files, then adds the current
metric. The result is stored back in the register files. The ACS unit also writes the survivor trellis path (the previous
state information) in memory.

 

Trace Back Unit (TBU)

 

The traceback unit traces back the trellis after a block of data (determined by the trace back length) has been pro-
cessed by the ACS. First, the TBU establishes an optimal path by starting from the node of minimum metric and
traces back the path in the trellis all the way to the beginning of the trellis tree. Then, the original data correspond-
ing to the encoded data is determined.

 

Memory (MEM)

 

The memory stores the accumulated metric and the previous state information (trace-back information).

 

Memory Management Unit (MMU)

 

The MMU generates addresses and read/write signals for the memory during different phases of operation.

 

Bit Error Rate (BER) Monitor

 

This optional module is used to estimate the bit error rate of the channel. The bit error rate is estimated by encoding
the decoded output symbols using the same generator polynomials, then comparing them with the delayed input to
the Viterbi decoder. Assuming that the error in decoding is zero or negligible, the error determined by BER is equal
to the channel error.

 

Signal Descriptions

 

The top-level representation of the Viterbi Decoder is shown in Figure 6. Table 1 contains the signal description.
Timing diagrams for the signals are shown in the Timing Diagram section.

BMU

MMU MEM

ACS TBU

BER

din dout

BER



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

5

 

Figure 6. Top Level Block Diagram

Table 1. Core Signals

 

Viterbi Decoder Configuration Options

 

Configurable Parameters

 

The following core parameters give the user the capability to tailor the core to realize different configurations of the
Viterbi decoder. 

 

Constraint Length:

 

 The value can be any integer from 3 to 8.

 

Code Rate:

 

 This is the symbol output rate of the encoder, defined as the number of output bits per input bit in the
encoder. For non-punctured codes, this can be equal to 1/2 or 1/3. For punctured codes, this parameter defines the
code rate for the mother code and is fixed to 1/2.

 

Traceback Length:

 

 This is the length of the survivor sequence in the traceback through the Viterbi trellis. It can be
any value from 8 to 128.

 

Generator Polynomials:

 

 GP0, GP1 and GP2 are generator polynomials. GP2 is only used in non-punctured
decoders with a code rate of 3.

 

Implementation Methods:

 

 In the parallel implementation, the processing of data symbols is completed in one
cycle. In the hybrid implementation, it is completed in 2

 

hybrid index

 

 cycles.

 

Decoder Inputs:

 

 The decoder supports hard and soft decision decoding. For soft decision decoding, the width
(soft width) can be any integer from 3 to 8. The soft decision decoder also supports either signed or unsigned data
types. For non-punctured codes, the decoder can be configured either as a hard-decision or soft-decision decoder,
whereas for punctured codes, the decoder can only be a soft-decision decoder.

 

Port Bits I/O Description

 

clk

 

1 Input System clock. The clock speed is equal to the input symbol rate.

 

reset_n

 

1 Input System-wide asynchronous active-low reset signal.

 

pd_start

 

1 Input Punctured data block start. This indicates the start of a new block of 
punctured data. Not available while decoding non-punctured codes

 

din_0, 
din_1, 
din_2

 

1 or
3 to 8 (each)

Input Data input buses. 
• The buses become one-bit inputs for hard decision decoding. 
• The buses are equal to the soft width for soft decision decoding. 
• For punctured codes, the number of buses is one. 
• For non-punctured codes, the number of buses corresponds to the 

code rate: two for 1/2 rate codes, three for 1/3 rate codes. 

 

dout

 

1 Output Decoded data output.

 

valid

 

1 Output This indicates the data currently presented on 

 

dout

 

 is valid. 

 

pd_out

 

1 Output Punctured decoder output. This indicates the data currently presented on 

 

dout

 

 is valid. Not available while decoding non-punctured codes.

 

ber

 

16 Output Bit-error rate output

 

ber_valid

 

1 Output This indicates valid data is being presented at the 

 

ber

 

 output port. This 
signal goes high at the end of every block of BER Period clocks.

Viterbi
Decoder

din_0

din_1
din_2

dout

clk
reset_n

valid

ber

ber_validpd_start

pd_out



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

6

 

Punctured Data Support:

 

 The decoder supports punctured or non-punctured data. For punctured data, the block
size (punctured block size) can be any value from 2 to 12. The core allows the puncture patterns PP0 and PP1 to
be user defined.

 

BER Support:

 

 The optional BER monitor can be turned on or off. The BER Period parameter determines the
period for which the BER is counted and is equal to log2 of the period. After this period, the BER value is reset and
the system starts counting again.

 

Generic Core Configurations

 

Table 2 shows the description of the available core configurations.

 

Table 2. Core Configurations

 

Timing Diagrams

 

The top-level timing diagrams for various configurations are given in the following figures. 

 

Configuration #1

 

Constraint Length 7

Code Rate 2

Traceback Length 42

 

Generator Polynomials

 

GP0 (Octal) 171

GP1 (Octal) 133

GP2 (Octal) —

 

Implementation Method

 

Parallel/Hybrid Parallel

Hybrid Index —

 

Decoder Inputs

 

Hard/Soft Decision Soft

Soft Width 3

Data Type Signed

 

Punctured Data Support

 

Punctured Decoder No

Punctured Block Size —

Puncture Pattern - PP0 —

Puncture Pattern - PP1 —

 

BER

 

BER Monitor No

BER Period —



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

7

 

Figure 7. Timing Diagram for a Parallel, Non-punctured Decoder

Figure 8. Timing Diagram for a Parallel, Punctured (Rate = 2/3) Decoder

Figure 9. Timing Diagram for a Hybrid (2 Cycles), Non-punctured Decoder

clk

din

dout

x 1 ... m

x x xx 1 2

valid

xxx

2

... mx x

x xx x xx x

output latency

clk

din

dout

x 1 3 1

x x x x 1 2

valid

x x x

2

x 1 2 x

x x2 3 xx x

output latency

pd_start

pd_out

x

x

clk

din

dout

x 1 2

x x 1 2

valid

x x x

xx xx

output latency



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

8

 

Figure 10. Timing Diagram for a Hybrid (2 Cycles), Punctured (Rate = 2/3) Decoder

clk

din

dout

x 1 31

x x 1 2

valid

x

2

1x

23

output latency

pd_start

pd_out



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

9

 

Viterbi Decoder Core Design Flow

 

Figure 11 illustrates the software flow model used when designing with a Viterbi Decoder core.

 

Figure 11. IP Evaluation Flow

Install and launch ispLEVER software

IP Core Netlist

Start

Simulation
Model

Obtain desired IP package (download
Core Evaluation package or purchase

IP package)

Install IP package

Perform functional simulation with
the provided core model

Synthesize top-level design with the
IP black box declaration

Place and route the design

Run static timing analysis

Done



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

10

 

Viterbi Decoder File Hierarchy

 

Table 3. File Hierarchy

 

IPexpress™

 

The Lattice IP configuration tool, IPexpress, is incorporated in the ispLEVER

 

®

 

 software. IPexpress includes a GUI
for entering the required parameters to configure the core. For more information on using IPexpress and the
ispLEVER design software, refer to the software help and tutorials included with ispLEVER. For more information
on ispLEVER, see the Lattice web site at: www.latticesemi.com/software.

 

Implementing a Viterbi Decoder Core Design

 

Synthesis

 

For design synthesis, either the OEM synthesis tools included with the ispLEVER software or a third-party synthe-
sis tool can be used. When using an OEM synthesis tool, a design project must be created using the ispLEVER
Project Navigator. For more information on how to create a project using ispLEVER Project Navigator, refer to the
ispLEVER online documentation.

 

Synthesizing a Design with Synplify

 

®

 

1. Launch the Synplify Pro 7.1 Window (Figure 12).

 

File Name Description

Parameter Files

 

vterb_deco_o4_1_00x_params.v All configurable parameters.

 

Core Files

 

vterb_deco_o4_1_00x.ngo Core database file for ORCA

 

®

 

 Series 4 devices.

vterb_deco_o4_1_00x.prf Core preference file for ORCA Series 4 devices.

conv_enco_sp_1_00x.ld2 Core database file for ispXPGA

 

®

 

 devices.

conv_enco_sp_1_00x.lct Core constraint file for ispXPGA devices.

 

Verilog Instantiation Files

 

vd_wrap.v Verilog user design template for synthesis.

vterb_deco_o4_1_00x.v Verilog synthesis model for the core.

 

Testbench Files

 

tb_vd_wrap_fsim.v Testbench for RTL simulation.



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

11

 

Figure 12. Synplify Pro Window

 

2. Click 

 

Open Project

 

. The Open Project Window is shown in Figure 13. Click 

 

Project Wizard

 

. The 

 

New Project 
Window

 

 is shown in Figure 14. Enter a project name and select the project directory. Click 

 

Next

 

. The 

 

File 
Order Window

 

 is shown in Figure 15. 

 

Figure 13. Open Project Window



 

Lattice Semiconductor Viterbi Decoder User’s Guide

 

12

 

Figure 14. New Project Window

Figure 15. File Order Window

 

3. In the 

 

File Order Window

 

, click 

 

Add Files

 

 to open the 

 

Select Files to Add to Project Window

 

 (Figure 19). 
Add parameters.v, top-level design file, verilog synthesis model for the core, and other design files. The top-
level design file must be the last file on the list. Click 

 

OK

 

. Click 

 

Finish in the File Order Window

 

.

4. Click 

 

Impl Options

 

 in the Synplify Pro 7.1 Window. The 

 

Options for Implementation Window

 

 is shown in 
Figure 16. Select the 

 

Technology

 

, 

 

Part

 

, 

 

Speed

 

 and 

 

Package. Click OK.



Lattice Semiconductor Viterbi Decoder User’s Guide

13

Figure 16. Options for Implementation Window

5. In the Synplify Pro 7.1 Window, Click Run to compile and map the design to the target technology. If there are 
no errors in the synthesis process, the word Done will appear in the window.

Figure 17. Select Files to Add to Project Window

Functional Simulation with Modelsim
A sample script file (do_vd_fsim.do) and testbench template (tb_vd_wrap_fsim.v) are provided with the Viterbi
Decoder core. For additional information, refer to the readme.html file in the Viterbi Decoder core directory.



Lattice Semiconductor Viterbi Decoder User’s Guide

14

Place and Route
Place and route engines are included in the ispLEVER software. The place and route options are available inside
the Constraint Editor. If an OEM synthesis tool is used for design synthesis, the same project can be used to com-
plete the design place and route. If a non-OEM synthesis tool is used for design synthesis, a project must be cre-
ated using the ispLEVER Project Navigator. 

ispLEVER Software Flow for ORCA Series 4 Devices
1. Create a project directory.

2. Copy the synthesized design EDIF file and the Convolutional Encoder core netlist to the project directory.

3. Launch the ispLEVER software. Figure 18 shows the ispLEVER Project Navigator Window.

Figure 18. ispLEVER Project Navigator Window

4. Select File > New Project and to create a new project or browse the project directory. All the design files will 
be generated in this directory. Figure 19 shows the New Project Creation Dialog Box. Type project name and 
select EDIF as a project type.

Figure 19. New Project Creation Dialog Box



Lattice Semiconductor Viterbi Decoder User’s Guide

15

5. Double click the device name in the Process Window of the Project Navigator and select the device. Figure 20 
shows the Device Selection Dialog Box.

Figure 20. Device Selection Dialog Box

6. Select Source > Import. The Import File Dialog Box is shown in Figure 21. Enter the EDIF file name and 
click Open. The Import EDIF Dialog Box is shown in Figure 22. Select the EDIF vendor type and click OK. 
The EDIF file will be added to the project. 

Figure 21. Import File Dialog Box



Lattice Semiconductor Viterbi Decoder User’s Guide

16

Figure 22. Import EDIF Dialog

7. Double click Build Database. This will read the EDIF netlist and generate the design database. If there are no 
errors in this process, you will see a green mark next to the Build Database process (Figure 23).

Figure 23. Project Navigator Window with Successfully Completed Processes for ORCA Flow

8. Double click on the Constraint Editor. You can enter the required preferences, including pin locking, using the 
constraint editor. You can also create an ASCII preference file using a text editor. For additional details on the 
ispLEVER preference language, refer to the ispLEVER online documentation.

9. Double click on Map Design. This will map the design into the physical elements of the target device. If there 
are no errors in this process, you will see a green mark next to the Map Design process (Figure 23).



Lattice Semiconductor Viterbi Decoder User’s Guide

17

10. Double click on Place & Route Design. This will place and route the mapped design. If there are no errors in 
this process, a green mark appears next to the Place & Route Design process (Figure 23).

11. Double click on Generate Timing Simulation Files. This generates the files for the optional back-end timing 
simulation (project_name.v and project_name.sdf). If there are no errors in this process, a green mark appears 
next to the Generate Timing Simulation process (Figure 23).

12. Double click on Generate Bitstream Data. This generates the bitstream file used to program the target device. 
If there are no errors in this process, a green mark appears next to the Generate Bitstream Data process 
(Figure 23).

ispLEVER Software Flow for ispXPGA Devices
The following steps illustrate ispLEVER software flow for XPGA devices:

1. Create a project directory.

2. Copy the synthesized design EDIF file and the Viterbi Decoder core netlist to the project directory.

3. Launch the ispLEVER software. Figure 18 shows the ispLEVER Project Navigator Window.

4. Select File > New Project and create or browse to the project directory. All the design files will be generated in 
this directory. Figure 19 shows the New Project Creation Dialog Box. Type the project name and select EDIF 
as a project type.

5. Double click on the device name in the Process Window of the Project Navigator and select the device. 
Figure 20 shows the Device Selection Dialog Box.

6. Select Source > Import. The Import File Dialog Box as shown in Figure 21. Enter the EDIF filename and 
click Open. The Import EDIF Dialog Box as shown in Figure 22. Select the EDIF vendor type and click OK. 
The EDIF file will then be added to the project. 

7. Double click on the Build Database. This will read the EDIF netlist and generate the design database. If there 
are no errors in the process, you will see a green mark next to the Build Database process (Figure 24).

8. Double click on the Constraint Editor. You can enter the required preferences including the pin locking using 
the Constraint Editor. You can also create ASCII constraint file using a text editor. For additional details on the 
XPGA constraints, refer to ispLEVER online documentation.

9. Double click on the Pack & Place Design. This will pack and place the design into the physical elements. If 
there are no errors in the process, you will see a green mark next to the Pack & Place Design process 
(Figure 24).

10. Double click on the Route Design. This will route the pack and placed design. If there are no errors in the pro-
cess, you will see a green mark next to the Route Design process (Figure 24).

11. Double click on the Timing Analysis. This will execute static timing analyzer on the routed design. If there are 
no errors in the process, you will see a green mark next to the Timing Analysis process (Figure 24).

12. Double click on the Generate Timing Simulation Files. This will generate the files (project_name.vo and 
project_name.sdf) for the back-end timing simulation. If there are no errors in the process, you will see a green 
mark next to the Generate Timing Simulation process (Figure 24).

13. Double click on the Generate Bitstream Data. This will generate the bitstream file for programming. If there 
are no errors in the process, you will see a green mark next to the Generate Bitstream Data process 
(Figure 24).



Lattice Semiconductor Viterbi Decoder User’s Guide

18

Figure 24. Project Navigator Window with Successfully Completed Processes for ispXPGA Flow

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com



Lattice Semiconductor Viterbi Decoder User’s Guide

19

Appendix for ORCA Series 4 FPGAs
Table 4. Core Configurations for ORCA Series 4 FPGAs

Supplied Netlist Configurations
The Ordering Part Number (OPN) for all configurations of this core in ORCA Series 4 devices is VTERB-DECO-04-
N1. Table 5 lists the netlist configurations that are available in the Evaluation Package for this core, which can be
downloaded from the Lattice web site at www.latticesemi.com.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at www.latticesemi.com/software.

Table 5. Performance and Resource Utilization1

Configuration #1

Constraint Length 7

Code Rate 2

Traceback Length 42

Generator Polynomials

GP0 (Octal) 171

GP1 (Octal) 133

GP2 (Octal) —

Implementation Method

Parallel/Hybrid Parallel

Hybrid Index —

Decoder Inputs

Hard/Soft Decision Soft

Soft Width 3

Data Type Signed

Punctured Data Support

Punctured Decoder No

Punctured Block Size —

Puncture Pattern - PP0 —

Puncture Pattern - PP1 —

BER

BER Monitor No

BER Period —

Configuration 
ORCA 4 
PFUs2 LUTs Registers

External 
I/Os

SysMEM 
EBRs fMAX (MHz) Latency

vterb_deco_04_1_001.lpc 534 2104 997 10 8 71 174

1. Performance and utilization characteristics using ispLEVER® software and targeting the or4e04, package BM416, speed 2. 
2. Programmable Function Unit (PFU) is a standard logic block of Lattice devices. For more information, check the data sheet of the device. 



Lattice Semiconductor Viterbi Decoder User’s Guide

20

Appendix for ispXPGA FPGAs
Table 6. Core Configurations for ispXPGA FPGAs

Supplied Netlist Configurations
The Ordering Part Number (OPN) for all configurations of this core in ispXPGA devices is VTERB-DECO-XP-N1.
Table 7 lists the netlist configurations that are available in the Evaluation Package for this core, which can be down-
loaded from the Lattice web site at www.latticesemi.com.

You can use the IPexpress software tool to help generate new configurations of this IP core. IPexpress is the Lattice
IP configuration utility, and is included as a standard feature of the ispLEVER design tools. Details regarding the
usage of IPexpress can be found in the IPexpress and ispLEVER help system. For more information on the
ispLEVER design tools, visit the Lattice web site at www.latticesemi.com/software.

Table 7. Performance and Resource Utilization1

Configuration #1

Constraint Length 7

Code Rate 2

Traceback Length 42

Generator Polynomials

GP0 (Octal) 171

GP1 (Octal) 133

GP2 (Octal) —

Implementation Method

Parallel / Hybrid Parallel

Hybrid Index —

Decoder Inputs

Hard / Soft Decision Soft

Soft Width 3

Data Type Signed

Punctured Data Support

Punctured Decoder No

Punctured Block Size —

Puncture Pattern -PP0 —

Puncture Pattern -PP1 —

BER

BER Monitor No

BER period —

Config #
XPGA
PFUs2 LUT-4s Registers

External
I/Os

SysMem 
EBRs fMAX (MHz) Latency

vterb_deco_xp_1_001.lpc 1020 2879 1422 10 16 72 174

1. Performance and utilization characteristics are generated using LFX1200B, package FE680, speed 4 in Lattice’s ispLEVER v.3.x. software. 
The evaluation version of this IP core only works on this specific device density, package, and speed grade.

2. Programmable Function Unit (PFU) is a standard logic block of Lattice devices. For more information, check the data sheet of the device.


	Introduction
	Viterbi Decoder Basics
	Convolutional Encoding
	Punctured Codes and Depuncturing

	Viterbi Decoder Core Description
	Internal Architecture
	Branch Metric Unit (BMU)
	Add, Compare and Select (ACS) Unit
	Trace Back Unit (TBU)
	Memory (MEM)
	Memory Management Unit (MMU)
	Bit Error Rate (BER) Monitor

	Signal Descriptions
	Viterbi Decoder Configuration Options
	Configurable Parameters
	Generic Core Configurations


	Timing Diagrams
	Viterbi Decoder Core Design Flow
	Viterbi Decoder File Hierarchy

	IPexpress™
	Implementing a Viterbi Decoder Core Design
	Synthesis
	Synthesizing a Design with Synplify®

	Functional Simulation with Modelsim
	Place and Route
	ispLEVER Software Flow for ORCA Series 4 Devices
	ispLEVER Software Flow for ispXPGA Devices

	Technical Support Assistance
	Appendix for ORCA Series 4 FPGAs
	Supplied Netlist Configurations

	Appendix for ispXPGA FPGAs
	Supplied Netlist Configurations


