i_ AN3262
YI Application note

Using the over-the-air bootloader with STM32W108 devices

March 2011

Introduction

This document describes the over-the-air bootloader provided for STM32W108 devices. The
over-the-air (OTA) bootloader is a modified version of the USART-based bootloader
specified in application note AN3155 in order to deal with an 802.15.4 wireless
communication channel rather than a USART cable.

For more information, please refer to application note AN3155 USART protocol used in the
STM32 bootloader available from www.st.com/stm32w.

This document applies to the following STM32W108xx kits:

® STM32W108xx starter kit (part number: STM32W-SK)

® STM32W108xx extension kit (part number: STM32W-EXT)

® STM32W108xx low-cost RF control kit (part number: STM32W-RFCKIT).

Overview

The purpose of the OTA bootloader application is to enable any node to receive a firmware
image over the air using the 802.15.4 interface and write it in Flash memory. In this context,
nodes willing to update their Flash contents with the new image are referred as bootloader
device nodes, while those in charge of transmitting the image over the air will be called
bootloader host nodes.

Figure 1. Memory layout

Application (Up to 116 Kbytes)

OTA Bootloader (12 Kbytes)

Total of 128 Kbytes

Figure 1 shows the memory layout of a bootloader device node; in order to be defined as
such it needs an OTA bootloader application image loaded right from the beginning at the
base of the STM32W Flash area (0x08000000) and any user application to run on the node
will have to sit on the top of the OTA bootloader. The bootloader takes 12 Kbytes leaving up
to 116 Kbytes free for user applications. At chip reset, control is passed to the bootloader
which in turn jumps to the application if present in Flash memory, or else it will just remain in
its main loop waiting for valid image packets sent by a host from the 802.15.4 RF interface. It
is also possible to override the default ‘jump to application’ behavior by forcing a bootloader
startup using a user-defined action (for example, a button press after reset). The bootloader
can eventually be started up from the application as well, but it depends on the application;
details related to bootloader activation criteria are out of the scope of the bootloader code.

Doc ID 17845 Rev 2 1/27

www.st.com

http://www.st.com

Contents AN3262

Contents

1 Introduction i i i it a e 1

2 Communication protocolcoiiiiiiiiiiiiaiinnnns 3

3 Bootloadercommandset i i i 4
3.1 Getcommand e 5
3.2 Get Version & Read Protection Status command 8
3.3 GetIDcommand e 11
3.4 Read Memory command i 13
3.5 Gocommand e 16
3.6 Write Memory command 19
3.7 Erase Memorycommand 22
3.8 Write Incremental Memory command 25

4 Revisionhistoryttt ittt 26

2/27 Doc ID 17845 Rev 2 KYI

AN3262

Communication protocol

2

Communication protocol

A bootloading session consists of exchanges of commands codes and related data between
bootloader device (target) and host (transmitter) nodes. The protocol chosen for this
purpose is the same one as specified in application note AN3155 for STM32 USART
bootloader; its commands are a subset of those specified. The command set is further
described in the next section. The replacement of USART (universal
synchronous/asynchronous receiver/transmitter) with the 802.15.4 standard for point-to-
point transmission of bits over the air, implies the deployment of all the well-known features
to cope with lossy channels such as CRC check, MAC level ACK detection and packet
retries in addition to all the functions that the (higher level) protocol provides to improve the
reliability of communication as described in the next section.

Commands and data are sent in the 802.15.4 payload which is variable in size according to
the specific information to be sent. 802.15.4 packets can be sent unicast and broadcast.
Broadcast packet are supported by a subset of commands and they are useful to discover
nodes in bootloader mode.

Figure 2 shows the selected format for a unicast 802.15.4 packet.

Figure 2. 802.15.4 packet format for unicast packet transmission
Frame N —_—
Control Sequence | Destination | Destination Source Payload FCS
(2 bytes) I(\I1UE>n ?:)r (5 ?Jnt:a[')s) (zaEtl;»J l?et) (aEtL)J I:5(343) (variable) | (2 bytes)
0x61 OXCC y y y y
Figure 3 shows the selected format for a broadcast 802.15.4 packet.
Figure 3. 802.15.4 packet format for broadcast packet transmission
Frame Sequence Destination Deztg;ilon Source
Control q Pan ID Payload FCS
Number Address EUI64 .
(2 bytes) (1 byte) (2 bytes) (2 bytes) (8 bytes) (variable) (2 bytes)
0x01 OxC8 y oxFFFF | [Y y

The communication channel (between channels 11 and 26) and the PAN ID can be freely
chosen by the application before it launches the bootloader. In the case, where the
bootloader is not started by the application, it will run on a default channel (15) and default

bootloader PAN ID 0xB0OB.

Doc ID 17845 Rev 2

3/27

Bootloader command set AN3262

3

4/27

Bootloader command set

Table 1 lists commands supported by the OTA bootloader. A detailed command-by-
command protocol description follows.

Table 1. OTA bootloader commands
Command Command code Command description
Ger (1 0x00 Gets version number and list of commands allowed.
GET Version (1) 0x01 tc:t?: It;c;ﬁtlrﬁzcrisorr\gersion and Read Protection status of
GeTID ™M 0x02 Gets chip ID of device.
ERASE 0x43 Erases memory pages of selected device.
WRITE MEMORY 0x31 Writes up to 96 bytes in memory of selected device.

Writes up to 96 bytes in memory of selected device

WRITE INCREMENTAL
0x36 incrementing next write address on device

MeMORY @) .
automatically.

READ MEMORY oxd 1 Reac_is_ up to 96 bytes of memory starting from a user-
specified address.

Go 0x21 Starts the code at a given location for a given device.

1. This command is supported by unicast and broadcast packets, while all the other are unicast only.

2. The WRITE INCREMENTAL MEMORY command is the only one not included in the original USART bootloader
command set.

Communication safety

All communications from the Host to the device are verified by:

® Checksum: received blocks of data bytes are XORed. A byte containing the computed
XOR of all previous bytes is added to the end of each communication (checksum byte).
By XORing all received bytes, data + checksum, the result at the end of the packet
must be 0x00.

® For each command, the host sends a byte and its complement (XOR = 0x00).
Each packet is either accepted (ACK) or discarded (NACK):

® ACK=0x79

e NACK=0x1F

Doc ID 17845 Rev 2 KYI

AN3262 Bootloader command set

3.1 GET command

The GET command is used to determine the version of the bootloader and the supported
commands. When the bootloader receives the GET command, it transmits the bootloader
version and the supported command codes to the host as shown in the figures below.

Figure 4. GET command (host side)

Start Get

v

Send 0x00 + OxFF

Wait for ACK
or NACK

Receive the number of bytes
(version+commands)

v

Receive the bootloader version

v

Receive the supported commands

or NACK

A

ACK

End of Get AH4631

IYI Doc ID 17845 Rev 2 5/27

Bootloader command set

AN3262

6/27

Figure 5. GET command (device side)

Start Get

Received
byte = 0x00+0xFF?

NOo L I™ Send NACK byte

Send ACK byte

v

Send the number of bytes

(version+commands)

v

Send the bootloader version

v

Send

the supported commands

v

Send ACK byte

F

End of Get

Ai14632

All information sent by the device starting from the first ACK/NACK to the last ACK/NACK is
contained inside a single 802.15.4 packet as shown in Figure 6.

The STM32 sends the following bytes:

Byte 1:
Byte 2:

Byte 3:
Byte 4:
Byte 5:

Byte 6:

Byte 7:

Byte 8:

Byte 9:

Byte 10:

Byte 11:

Last byte (15):

ACK

N = 09 (the number of bytes to follow — 1)

(Doe

s not include the current byte and ACKs.)

Bootloader version (0 < Version < 255)

0x00
0x01

0x02
Ox11
0x21
0x31
0x43
0x36
ACK

GET command

GET VERSION; and

READ PROTECTION STATUS

GETID

READ MEMORY command

Go command

WRITE MEMORY command

ERASE command

WRITE MEMORY INCREMENTAL command

Doc ID 17845 Rev 2 KYI

Bootloader command set

AN3262

GET packet example (unicast)

Figure 6.

Peryton- 7 Peryion-Moniior : HONAME @ Capiure 445 anl : Mact’ 4

Message View Network View Tme Vs DeviossView Took . Windows Help
10

Pl
Gl s @ S BORT DG S
@Tmeml
 Grouping: Source ID sElLBe =t 008

‘i

ODE0ELIZ000N0EE _
‘u E |
1
“

0020EL 02 000005ER

DOCELI2NO00SEE OOBOEIO200000056 POS0900 DIUZ1 121 I1364379

GET packet example (broadcast)

Peryton-M16, Peryton-Moniter : NONAME : Capture_271.anl : Mac15.4 : 2 Rules active [Ackdatency AddMossages]

Figure 7.

Bl Messags View MeteockView T View Devicesiew Dol Windows Help

NG @SR RHG5 8

€2 Time iew | 4 b
i Goung: sowce 10 slElLEG] =] 2o a8

wsessozooncosio | 5 |

POSOEL0Z0M0004ES [| -

Sovrcaand Crstckd Data

OCEE | (E000E§0 FFFF

Doc ID 17845 Rev 2 7/27

J

Bootloader command set AN3262

3.2 GET VERSION & READ PROTECTION STATUS command

The GET VERSION & READ PROTECTION STATUS command is used to get the bootloader
version and the read protection status. When the bootloader receives the command, it
transmits the information described below (version, read protection: number of times it was
enabled and disabled) to the host.

Figure 8. Get Version & Read Protection Status command: host side

Start Gv(1)

v

Send 0x01+0xFE

Wait for ACK
or NACK

Receive the bootloader version

Y

Receive the number of times the
read protection was disabled

Y
Receive the number of times the
read protection was enabled

or NACK

ACK
End of GV(1)

Ai14633

1. GV = Get Version & Read Protection Status.

8/27 Doc ID 17845 Rev 2 K‘YI

AN3262 Bootloader command set

Figure 9. Get Version & Read Protection Status command: device side

Start GV(1)

Received
byte = 0x01+0xFE?

No

Send NACK byte

Send ACK byte

v

Send the bootloader version

Y
Option byte 1

v

Option byte 2

v

Send ACK byte

Lt
v
End of GV(1)

Ai14634

1. GV = Get Version & Read Protection Status.
The STM32 device sends the following bytes:
Byte 1: ACK
Byte 2: Bootloader version (0 < Version < 255)

Byte 3: Option byte 1: 0x00 to keep the compatibility with generic
bootloader protocol

Byte 4: Option byte 2: 0x00 to keep the compatibility with generic
bootloader protocol

Byte 5: ACK

IYI Doc ID 17845 Rev 2 9/27

Bootloader command set

AN3262

Figure 10. GET VERSION packet example (unicast)

Peryton-M18, Peryton-Manitor : NOMAME : Capture_226.anl : Mac15.4 : 2 Rules active [AckLatency AddMess... [= |rE||'>_(
(T HE @S RO B QIR 8

€2 Time View | b
: = W i = " e
£ oupng:. source D wElLEe i ELee
-~
0080E10200000433 8
0020EL0Z000004B5 i O
T T T T T

aEms 12ms tams 16.8ms o ¥
£ kd
Message View L

“Wan [2]

i 1o i LoulEmEL o t@
Sourceddd Destiid Daka Lisk
D0S0E10200000465 OOEOE102000004583 73030000 79 1C

DOSOEI0Z00000483 OOB0E10200000MES O1FE
4 X

Figure 11.

GET VERSION packet example (broadcast)

Peryton-M16, Peryton-Monitor : NOMAME : Capture_227.anl : Mac15.4 : 2 Rules active [AckLatency AddMess... _r. |rEI|')_<
S e =@ | D OBRE R ARG

@ 1|'||—Uie|'| 4 %
£ Grovping: Source ID sELEse = ElLae
-~
nos0EL0200000483 B]
0020E102000004B% I
T
!.QIIH' IﬂInF IQ.J-IK IS.&!JE wims ¥
% £
Man [2]
13 LoalEmEL @ |
Sourceddd Distadd Data
O0S0E10200000483 FRFF [ill;3
O0S0E102000004E5 OOSOE1CR00000483 79030000 79
< >

10/27

Doc ID 17845 Rev 2

4

AN3262

Bootloader command set

3.3

GET ID command

The GET ID command is used to get the version of the chip ID (identification). When the

bootloader receives the command, it transmits the device ID to the host.

The STM32 device sends the following bytes:
Byte 1: ACK
Byte 2: N = the number of bytes - 1

(N = 1 for STM32), except for current byte and ACKs.

Bytes 3-4: PID (Byte 3 = 0x09, Byte 4 = 0xA8)
Byte 5: ACK

All information sent by the device starting from the first ACK/NACK to the last ACK/NACK is

contained inside a single 802.15.4 packet as shown in Figure 14.

Figure 12. GET ID command (host side)

Start GID(1)

v

Send 0x02+0xFD

Receive N = number of bytes — 1

v

Receive PID

or NACK

A

ACK
End of GID(")

Ai14635

1. GID = Get ID command.

Doc ID 17845 Rev 2

11/27

Bootloader command set

AN3262

Figure 13. GET ID command (device side)

Start GID(1)

Received

Byte = 0x02+0xFD?> 2| Send NACK byte

Send ACK byte

v

Send N = number of bytes — 1

v

Send product ID

v

Send ACK byte
T«

v
End of GID(")

Ai14636

1. GID = Get ID command.

Figure 14. GET ID packet example (unicast)

Peryton- 7 Perylon-Moniter : MOMNAME : Caplure 446.anl @ MacTh 4

A0S0EL0200000058 _

OCB0ELOS 000005

r
ERE- 12488
4
|

Fle Messagaview NetworkVew TH Vew Dol Todk Wdows Help
(S = (@ B ORE D8
@ Time view |
| mouping: Seures 1D .-B,“- :-a'Ei.a"J‘- @
i |

Main [2]
i { 3 i el P i@a

Dstadd Data
3

Seircendd

DOELGA000005EE RO0EICCO00000EE PROL0OAS PO

Doc ID 17845 Rev 2

12/27

AN3262

Bootloader command set

Figure 15. GET ID packet example (broadcast)

* Peryton-M16, Parylon-Manitor : NDNAME : Capture_222.anl : Mac15.4 : 2 Rules active [AckLatency,AddMessages]
Bl Message View DeteorkWiew Tene View [evicesview Tooks Windows Help
i) S L d S BORTB 5450

€2 Time View |

fovprg oo s [BlOfE O] =] 2] 50

sosbElOZ000M0ELD | B m————

———t

PR = I
| [} [}

A ms 12.108ms 1330 b
¢ »
Message Wiew g x
Main [2]

= = i+ 8
Sour cafund Drstadd Data List
OOE0E | (00010 FRFF DEFD DLCBOOFF FFRFRFGE EOLOOSDO DODZE LED 0OCZFD9 12
OCE0E | (E0000CHES GOEDE | DZOCCOCSLD TOL0RAE 79 BICCOI0E BN O0S00 DOOZE 150 7010

3.4

READ MEMORY command

The READ MEMORY command reads data from any valid memory address in RAM, Flash

memory and the information block (System memory or option byte areas).

When the bootloader receives the READ MEMORY command, it transmits the ACK byte to the
application. After sending the ACK byte, the bootloader waits for an address (4 bytes, where
Byte 1 is the address MSB and Byte 4 is the LSB) and a checksum byte. Then it checks the

received address. If the address is valid and the checksum is correct, the bootloader
transmits an ACK byte, otherwise it transmits a NACK byte and aborts the command.

When the address is valid and the checksum is correct, the bootloader waits for the number
of bytes to be transmitted — 1 (N bytes) and for its complemented byte (checksum). If the
checksum is correct, it then transmits the needed data ((N + 1) bytes) to the application,
starting from the received address. If the checksum is not correct, it sends a NACK before

aborting the command.
The host sends bytes to the STM32 as follows:

Bytes 1-2: 0x11+0xEE

Wait for ACK

Bytes 3 to 6: Start address (Byte 3 is MSB and Byte 6 is LSB)
Byte 7: Checksum (XOR value of Bytes 3 to 6)

Wait for ACK

Byte 8: The number of bytes to be read — 1 (0 < N < 95);
Byte 9: Checksum (XOR value (complement) of Byte 8)

Doc ID 17845 Rev 2

13/27

Bootloader command set AN3262

Figure 16. READ MEMORY command (host side)

Start RM(1)

v

Send 0x11+0xEE

Send the start address (4 bytes) with
checksum

Send the number of bytes to be read (1 byte)
and a checksum (1 byte)

or NACK

Receive data from the BL

A4
End of RM(1)

Ai14637

1. BM = READ MEMORY command.

14/27 Doc ID 17845 Rev 2 [‘II

AN3262

Bootloader command set

Figure 17. READ MEMORY command (device side)

Start RM(1)

Received byte =, NO

0x11+0xEE

ROP active Yes

Send ACK byte

v

Receive the start address (4 bytes)
with checksum

Address valid No

checksum OK?

Send ACK byte

v

Receive the number of bytes to be read (1 byte)
and a checksum (1 byte)

Checksum OK? No

y

Send ACK byte

Send NACK byte

Send data to the host

e
A J
End of RM(")

Ai14638

1. RBM = READ MEMORY command.

The last ACK/NACK is sent before the data block to be read within the same 802.15.4
packet payload (while other ACK/NACKSs are sent in independent packets).

Doc ID 17845 Rev 2

15/27

Bootloader command set AN3262

Figure 18. READ MEMORY packet example

¥ Peryton1. Peryton-Monitor : read.wik : Caplure 45B.anl : Mac15.4
Fie MessagsView NetworkVien Toe Vee Deviossdien Tooks Widows Help

S @ S dB RSO SE T @

€D Time Yiew |

£ Eroping: - Source ID o 21 P 1 R e il) P e -

-~
0020EL0Z0NCO005E | i 4 i & | 4 4
I B GO B EEENE a
O0E0EL0Z00GODSER . . _ 4 . _ i . _
T T T T 1
4 T2 (. 8 i EELN ELE “
£ s
Meszage e LIRS
Han [6]
£ :T-'TI-_ p! + 8 |
Sourceddd Distidd Cista List
D0A0EL 1200000056 DOE0EINEN0000GER 11EE SEOCEOD8
DOEELNRD00MITES MOGOEIMEN0000EE 7Y
D0S0EL 1200000056 OCEOE10Z00000E60 (003000 36 sice 00560000
DOSOEL 200000566 QOS0EIED00D005E 79 BOSS0000

DOMELIZO00005E (R0EINCDO000SEE O3FC
DOS0EL E200000566 NS0EIED0000056 7010203 (4

3.5 Go command

The Go command is used to execute the downloaded code or any other code by branching
to an address specified by the application. When the bootloader receives the Go command,
it transmits the ACK byte to the application. After sending the ACK byte, the bootloader waits
for an address (4 bytes, where Byte 1 is the address MSB and Byte 4 is LSB) and a
checksum byte, then it checks the received address. If the address is valid and the
checksum is correct, the bootloader transmits an ACK byte; otherwise, it transmits a NACK
byte and aborts the command.

When the address is valid and the checksum is correct, the bootloader firmware performs

the following:
® ltinitializes the registers of the peripherals used by the bootloader to their default reset
values.

® ltinitializes the user application's main stack pointer.

® It jumps to the memory location programmed in the received ‘address + 4’ (which
corresponds to the address of the application's reset handler).

For example, if the received address is 0x0800 0000, the bootloader will jump to the
memory location programmed at address 0x0800 0004.

In general, the host should send the base address where the application to jump to is
programmed.

16/27 Doc ID 17845 Rev 2 I‘!I

AN3262

Bootloader command set

Note:

Figure 19. Go command (host side)

Send 0x21 + OxDE

Y

Wait for ACK NACK

or NACK

Send the Start Address
(4 bytes) & Checksum

Wait for ACK NACK

or NACK

Wait for ACK NACK

or NACK

End of EER

Ai14639b

1 Valid addresses for the Go command are in RAM or Flash memory. All other addresses are
considered not valid and are NACKed by the device.

2 When an application is loaded infto RAM and then a jump is made to it, the program must be
configured to run with an offset to avoid overlapping with the first RAM memory used by the
bootloader firmware.

3 The jump to the application works only if the user application correctly sets the vector table
to point to the application address.

Doc ID 17845 Rev 2 17/27

Bootloader command set AN3262

Figure 20. Go command (device side)

Start Go

Received bytes = No

0x21+0xDE?

Yes

ROP active

Send ACK byte

!

Receive the start address (4 bytes)
& checksum

v

Send ACK byte

y

Send NACK byte

Address valid &
checksum
OK?

Send ACK byte Y
l End of Go

Jump to user application Ai14640b

The host sends the following bytes to the STM32 device:

Byte 1: 0x21

Byte 2: OxDE

Wait for ACK

Bytes 3 to 6: Start address (Byte 3 is the MSB and Byte 6 is the LSB)
Byte 7: Checksum (XOR value of Bytes 3 to 6)

The second and third ACK/NACKSs are sent by the device within the same 802.15.4 packet
while the first is sent independently.

18/27 Doc ID 17845 Rev 2 [‘II

AN3262

Bootloader command set

Figure 21.

Go command example

¥ Peryton- M1, Peryton-Moniter © go.wrk : Captare. 455.anl : Mac15.4

Fie Messageview NetworeView Teme Vem [evicesview Took Widows: Help
(SR @SB CRT O 5T@
€0 Time view | -
i Grouping: Source 1D -|_|, JEE;"& =@
~
et o EE— -
e - .

1 'J,I!M " 5’:4‘1“ “lls"nl "5 ﬁlﬁm IE"IS«b" " Iéﬁn; a4
< »
Meseags ey 4 x
Main [4]

;] el @ J
Sourcnddd Drstiude] Data st
DOS0E| (200000056 (NEOEICN0000SEE 240€ £4CC3308. DORELB0
COMELI200000SEE OOEOEIOCLO000CEE 72 .} L |
DOOE| (200000056 (DEOEICCO0000SEE 05003000 35 BHCCIAOE] BTSN
BOSCELO200000SEE ODROE1OZCOD0O0EE 7ITe i mla 2]} =0
3.6 WRITE MEMORY command

Note:

Note:

1

1

The WRITE MEMORY command writes data to any valid memory address (see note below) of
RAM, Flash memory or Option byte area.

When the bootloader receives the WRITE MEMORY command, it transmits the ACK byte to
the application. After sending the ACK byte, the bootloader waits for an address (4 bytes,
where Byte 1 is the address MSB and Byte 4 is the LSB) and a checksum byte, it then
checks the received address. For the Option byte area, the start address must be the base
address of the Option byte area (see note) to prevent unwanted writing to this area.

Write operations to Flash memory/SRAM must be word (32-bit) aligned and data should be
in multiples of four bytes. If less data are written, the remaining bytes should be filled by
OxFF.

If the received address is valid and the checksum is correct, the bootloader transmits an
ACK byte; otherwise, it transmits a NACK byte and aborts the command. When the address
is valid and the checksum is correct, the bootloader:

® receives a byte (N) containing the number of data bytes to be received,

® receives the user data ((N + 1) bytes) and the checksum (XOR of N and of all data
bytes),

® programs the user data to memory starting from the received address,

@ at the end of the command, if the write operation was successful, the bootloader
transmits the ACK byte; otherwise it transmits a NACK byte to the application and
aborts the command.

The maximum length of the block to be written for STM32W devices is 96 bytes.

If the WRITE MEMORY command is issued to the Option byte area, all options are erased
before writing the new values.

When writing to the RAM, you should take care not to overlap the first RAM memory used by
the bootloader firmware.

2 No error is returned when performing write operations on write-protected sectors.
3 No error is returned when the start address is invalid.

Doc ID 17845 Rev 2 19/27

Bootloader command set

AN3262

20/27

Figure 22. WRITE MEMORY command (host side)

Start WM()

v

Send 0x31+0xCE

Send the start address (4 bytes)
& checksum

A4

Send the number of bytes to be written
(1 byte), the data (N + 1 bytes)(? and checksum

A4

End of WM(1)

Ai14641b

1. WM = WRITE MEMORY command.
2. N+1 should always be a multiple of 4.

Doc ID 17845 Rev 2

AN3262

Bootloader command set

Figure 23. WRITE MEMORY command (device side)

Start WM(1) |

No

No

ROP inactive?

| Send ACK byte |

v

checksum

Receive the start address (4 bytes) &

Checksum OK?

No

| Send ACK byte |

!

Receive the number of bytes to be written
(1 byte), the data (N + 1 bytes)(@ and checksum

Checksum OK?

No

Flash memory
address?

Yes
RAM address?

Option
byte address?

Write the received data to Flash
memory from the start address

Write the received data to RAM
from the start address

Write the Keys for Option byte
area access

v

Write the received data to

Option byte area from start address

Y

¢ Send || Send
ACK || NACK
| Send ACK byte | byte byte
T I
A
| End of WM(1) | Ai14642d

WM = WRITE MEMORY command.
2. N+1 should always be a multiple of 4.

Doc ID 17845 Rev 2

21/27

Bootloader command set

AN3262

The host sends the following bytes to the STM32W device:

Byte 1: 0x31
Byte 2: 0xCE
Wait for ACK
Bytes 3 to 6: Start address (Byte 3 is the MSB and Byte 6 is the LSB)
Byte 7: Checksum (XOR value of Bytes 3 to 6)
Wait for ACK
Byte 8: Number of bytes to be received (0 < N < 95)
N +1 data bytes (maximum of 96 bytes)
Byte 9: Checksum (XOR value of N, N+1 data bytes)

Figure 24. WRITE MEMORY packet example

He MgV WatwoVen Trslew Dedoesden Dok rdows bep
MRRER R A TN AR =t WSl c B Sl)

@ Time view |

{ Grouging: - Seurce 10 ‘|__._’—_-_j,“ .;E;‘-J— = <)

sesomocrcooss| ERRERNNNR - — ‘u ‘"

T
EREE 12750 G120 EE 20 :Fkrra
4

Man [£]

O0E0ELNZ000ODERE i . 1;_ | l '_ i . _

23 R
Sourceddd Distidd Dats

, . -EJ-":IICF. e
DOS0ELD000005EE MOE0EIEN0000056 73
DOMELGZO0000056 (OE0EICCDO0000SEE 09003000 38 L=

DOS0EL (200000556 (OEOEINZ00000056 79 CDED
DOS0E 10200000056 OOE0E1OZCOD0OEEE 03010203 (407 BHOCAROR BOEROSO0 D00 EA0 COSA0M00 O
(NS0E| L2000005E6 (OSOEIE00000056 79 SHCCO908

3.7 ERASE MEMORY command

The ERASE MEMORY command enables the host to erase Flash memory pages. When the
bootloader receives the ERASE MEMORY command, it transmits the ACK byte to the host.
After sending the ACK byte, the bootloader receives one byte (the number of pages to be
erased), the Flash memory page codes and a checksum byte. If the checksum is correct,
the bootloader erases the memory and sends an ACK byte to the host; otherwise, it sends a

NACK byte to the host and the command is aborted.

ERASE MEMORY command specifications:

® The bootloader receives one byte containing N, the number of pages to be erased — 1.

(For 0 <N <115, N + 1 pages are erased.)
® The bootloader receives (N + 1) bytes, each byte containing a page number.

Note: No error is returned when performing erase operations on write-protected sectors.

22/27 Doc ID 17845 Rev 2

AN3262 Bootloader command set

Figure 25. ERASE MEMORY command (host side)

Start ER(1)

v

Send 0x43+0xBC

Send the number of pages
to be erased (1 byte)

Send the page numbers|

v

Send checksum

or NACK

ACK ¢*

End of ER(1)

Ai14643c

1. ER = ERASE MEMORY command.

IYI Doc ID 17845 Rev 2 23/27

Bootloader command set

AN3262

24/27

Figure 26. ERASE MEMORY command (device side)

Start ER(1)

No

Yes
ROP active

Send ACK byte

v

Receive the number of pages
to be erased (1 byte)

v

Receive the page codes

v

Receive the checksum

Checksum No

OK?

Erase the corresponding pages

>¢ I

Y

A

Send ACK byte Send NACK byte

<
<
y

End of ER(

Ai14644c

1. ER = ERASE MEMORY command.
The host sends bytes to the STM32 as follows:

Byte 1:
Byte 2:
Wait for ACK
Byte 3:

Byte 4:

0x43
0xBC

Number of pages to be erased — 1
(0 £ N < maximum number of pages)

N + 1 bytes (page numbers)
and then checksum (XOR value of N, N+1 bytes)

Doc ID 17845 Rev 2

AN3262

Bootloader command set

Figure 27. ERASE MEMORY packet example

e

Perylon-M1, Perylon-Monilor - erase.wrk : Capture 447 anl : Macts.4

SN @ B RO ST @

Mesags View etk View T Vs DecsWien Tooks Widdes Halp

€2 Time vicw |

10
| Grouping: Source 1D -m,"« .-.E;"& =Y -]

i M I ‘.
soacmszoose ‘.

4

T T
4772w 10 5Tns AT 16, F3ma. 17355 139 55

Han[4]
EREL 6 |
Sourceadd Drstiadd Dats List

T T
O0S0E| FA000005E6 UE0EICE00000086 79
DOMELOA0000%, GORODEICCO000CEES OE0CMD0E 00
OEE0E | (0000566 OB0EIET000005E 7R

3.8 WRITE INCREMENTAL MEMORY command
The WRITE INCREMENTAL MEMORY command has the same purpose of the WRITE MEMORY
command but can be used to save some bandwidth by avoiding having to transmit the write
address each time we wish to write a block. It only works when writing to consecutive
memory blocks. The device has a write pointer as an initial memory address for incremental
write operations. When the command is received, the device writes the command data in
memory and then increments the pointer by an amount of bytes equal to the write data
length. The write pointer update is also affected by the ordinary write command after which
the new address offset is the sum of the write address (provided as command parameter)
and the write data block length. The write pointer is initially set to the base of the application
address (0x08003000).
Figure 28. WRITE INCREMENTAL MEMORY packet example
Peryton-M7, Peryton-Monitor : NONAME : Capture_462.anl: Mac15.4

Bt MesagoWew letworkView JmeVew DevicesView ook Windows Heb

=g | e @R A 5170

2 e view | 18

 @mpng: serce D sEBloEoBliEE -t 080

D03 0ELAZ DO0A0EES _ . _ .

0080ELOZ D000 SEE .. “ I.. _

:._‘_o:s_a.w.“m % ;

Main [£]

i EREes e

Sourcatcd Distiidd Dats List

17 Doc ID 17845 Rev 2 25/27

Revision history

AN3262

4

26/27

Revision history

Table 2. Document revision history
Date Revision Changes
23-Aug-2010 1 Initial release.
Mar. Updated STM32W website URL and added support for
04-Mar-2011 2 STM32W108xx kits.

Doc ID 17845 Rev 2

AN3262

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

IYI Doc ID 17845 Rev 2 27/27

	1 Introduction
	Figure 1. Memory layout

	2 Communication protocol
	Figure 2. 802.15.4 packet format for unicast packet transmission
	Figure 3. 802.15.4 packet format for broadcast packet transmission

	3 Bootloader command set
	Table 1. OTA bootloader commands
	3.1 Get command
	Figure 4. Get command (host side)
	Figure 5. Get command (device side)
	Figure 6. Get packet example (unicast)
	Figure 7. Get packet example (broadcast)

	3.2 Get Version & Read Protection Status command
	Figure 8. Get Version & Read Protection Status command: host side
	Figure 9. Get Version & Read Protection Status command: device side
	Figure 10. Get Version packet example (unicast)
	Figure 11. Get Version packet example (broadcast)

	3.3 Get ID command
	Figure 12. Get ID command (host side)
	Figure 13. Get ID command (device side)
	Figure 14. Get ID packet example (unicast)
	Figure 15. Get ID packet example (broadcast)

	3.4 Read Memory command
	Figure 16. Read Memory command (host side)
	Figure 17. Read Memory command (device side)
	Figure 18. Read Memory packet example

	3.5 Go command
	Figure 19. Go command (host side)
	Figure 20. Go command (device side)
	Figure 21. Go command example

	3.6 Write Memory command
	Figure 22. Write Memory command (host side)
	Figure 23. Write Memory command (device side)
	Figure 24. Write Memory packet example

	3.7 Erase Memory command
	Figure 25. Erase Memory command (host side)
	Figure 26. Erase Memory command (device side)
	Figure 27. Erase Memory packet example

	3.8 Write Incremental Memory command
	Figure 28. Write Incremental Memory packet example

	4 Revision history
	Table 2. Document revision history

