
STBR3012

High voltage rectifier for bridge applications

Datasheet - production data

Features

- Ultra-low conduction losses
- Ultra-low reverse losses
- High junction temperature capability
- ECOPACK®2 compliant component

Description

The high quality design of this diode results in a device with consistently reproducible characteristics and intrinsic ruggedness. These characteristics make it ideal for heavy duty applications that demand long term reliability.

Thanks to its ultra-low conduction losses, this diode is especially suitable for use as input bridge diode.

Table 1: Device summary

Symbol	Value
I _{F(AV)}	30 A
Vrrm	1200 V
V _F (typ.)	0.95 V
T _j (max.)	175 °C

Characteristics STBR3012

1 Characteristics

Table 2: Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit	
V _{RSM}	Non-repetitive surge reverse voltage	1500	V	
V_{RRM}	Repetitive peak reverse voltage		1200	V
I _{F(RMS)}	Forward rms current	45	Α	
I _{F(AV)}	Average forward current	$T_C = 150 ^{\circ}\text{C},$ $\delta = 0.5 ^{\circ}\text{square wave}$	30	Α
I _{FSM}	Surge non repetitive forward current t _p = 10 ms sinusoidal		300	Α
T _{stg}	Storage temperature range	-65 to +175	°C	
Tj	Maximum operating junction temperatu	175	°C	

Table 3: Thermal parameters

Symbol	Parameter	Max. value	Unit
R _{th(j-c)}	Junction to case	0.6	°C/W

Table 4: Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I (1)	1 (1)		$V_R = V_{RRM}$	-		2	μΑ
I _R ⁽¹⁾ Reverse leakage current	T _j = 150 °C	-		10	100		
V _F ⁽²⁾	Forward voltage drop	T _j = 25 °C	I _F = 30 A	-	1.05	1.3	\/
		T _j = 150 °C		-	0.95	1.2	V

Notes:

 $^{(1)}$ Pulse test: t_p = 5 ms, δ < 2%

 $^{(2)}$ Pulse test: t_p = 380 μ s, δ < 2%

To evaluate the conduction losses, use the following equation:

 $P = 0.96 \text{ x } I_{F(AV)} + 0.008 \text{ x } I_{F^{2}(RMS)}$

STBR3012 Characteristics

1.1 Characteristics (curves)

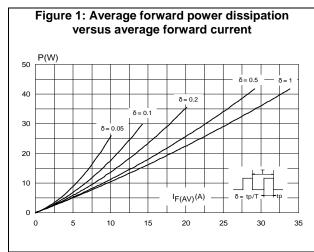
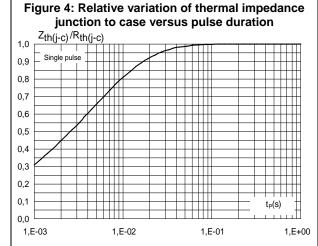
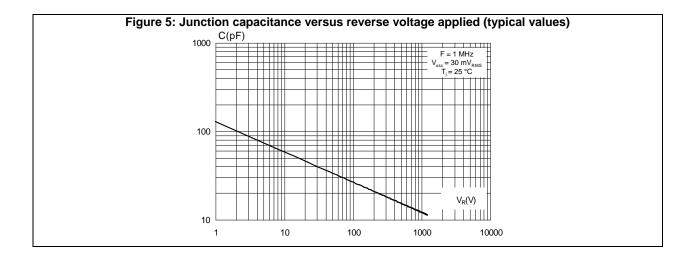




Figure 2: Forward voltage drop versus forward current (typical values) I_{FM}(A) 1.0E+03 1.0E+02 T_i = 150 °C 1.0E+01 1.0E+00 1.0E-01 $V_{FM}(V)$ 1.0E-02 0.0 0.5 1.0 1.5 2.0

Figure 3: Forward voltage drop versus forward current (maximum values) I_{FM}(A) 1.0E+03 1.0E+02 T_i = 150 °C 1.0E+01 1.0E+00 1.0E-01 1.0E-02 0.5 1.5 2.0 2.5 0.0 1.0

Package information STBR3012

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

• Epoxy meets UL94, V0

Cooling method: by conduction (C)
Recommended torque value: 0.55 N·m

• Maximum torque value: 1.0 N·m

STBR3012 Package information

2.1 DO-247 package information

Figure 6: DO-247 package outline

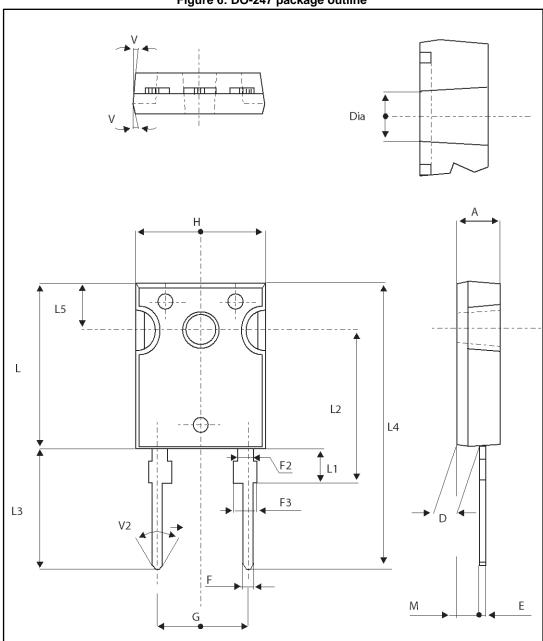


Table 5: DO-247 package mechanical data

Dimensions				
Ref.	Millimeters		Incl	nes
	Min.	Max.	Min.	Max.
Α	4.85	5.15	0.191	0.203
D	2.20	2.60	0.086	0.102
E	0.40	0.80	0.015	0.031
F	1.00	1.40	0.039	0.055
F2	2.00	typ.	0.078 typ.	
F3	2.00	2.40	0.078	0.094
G	10.90 typ.		0.429 typ.	
Н	15.45	15.75	0.608	0.620
L	19.85	20.15	0.781	0.793
L1	3.70	4.30	0.145	0.169
L2	18.50 typ.		0.728	B typ.
L3	14.20	14.80	0.559	0.582
L4	34.60 typ.		1.362	2 typ.
L5	5.50 typ.		0.216	S typ.
М	2.00	3.00	0.078	0.118
V	5°		5	0
V2	60°		60)°
Dia.	3.55	3.65	0.139	0.143

STBR3012 Ordering information

3 Ordering information

Table 6: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STBR3012W	STBR3012W	DO-247	4.4 g	30	Tube

4 Revision history

Table 7: Document revision history

Date	Revision	Changes
02-Nov-2016	1	First issue.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved