
MiniGen Hookup Guide 

 


Introduction

The MiniGen was designed to be used either as a stand-alone board or as 
a shield that can be placed on top of an Arduino Pro Mini. It’s capable of 
generating sine, square, or triangle waves at up to 3MHz, and 
approximately 1Vp-p. The output is at a DC offset of Vcc/2. Neither the 
offset nor the amplitude can be varied.

By default, the MiniGen ships configured with a 3.3V regulator enabled, and 
thus, should only be used with 3.3V signals(or 3.3V Pro Minis, as linked 
above). There’s a jumper on the back that can be soldered over to bypass 
the regulator for 5V use; just be careful not to power the board with more 
than 5V if you bypass the regulator!

For more information about the MiniGen, please see the GitHub repository, 
where you’ll find a library, example code, and design files.

Suggested Reading

Before using the MiniGen, here are a few tutorials you should be familiar 
with:

• AC vs DC
• Analog vs Digital signals
• The SPI interface
• Some soldering is required, so you may want to brush up on those 

skills.
• What is a Shield?
• Using an Arduino Library - You’ll want the MiniGen Library installed, 

so if you’re unsure how to do that, check out this tutorial.

Connections

Page 1 of 7



Top

Here’s the top of the board. Due to the tight layout and lack of space on this 
shield, the labels had to live on the bottom side of the PCB.

There are two output sources: a 2x1 0.1" spaced header and a u.FL 
connector. The u.FL connector is shield as ground.

The output end of the board should be at the opposite end from the FTDI 
connector when installed on a Pro Mini.

Bottom

Take a look at the picture above. Let’s go through the labeled connections 
one at a time.

• GND - Only one of these needs to be connected at a time; that 
means you can get away with headers on one side only.

• VIN - By default, this goes to a 3.3V regulator. If you want to use the 
board with a 5V Pro Mini, you should put a blob of solder on the 
jumper pads on the back to connect all three together.

• OUTPUT+ - This is the anti-aliased output from the AD9837. Expect 
to see a 1Vp-p signal, offset from ground by ½ Vin.

• OUTPUT- - Connected to ground.
• SCLK - SPI clock input. The SPI bus can handle up to 40MHz input.
• SDATA - Input from the master device. Note that register contents 

cannot be read out from the AD9837 part; it lacks a DOUT pin.
• FSYNC - Equivalent to chip select.

SPI interface

As mentioned above, the SPI interface can be driven at up to 40MHz. The 
SPI interface should be at or close to the supply voltage for the chip (3.3V 
by default).

If you elect to write your own SPI control for this, the clock idles low (CPOL 
= 0), and data is latched on the rising edge (CPHA = 1). This corresponds 
to SPI Mode 2.

Assembly
The MiniGen works as both a normal breakout board and as an add-on to 
the Arduino Pro Mini boards. Note that the SparkFun Pro Micro, Arduino 
Nano, and other similar form-factor boards won’t work, as they don’t have 
the necessary SPI pins in the same location.

Output connection

Page 2 of 7



Before you go any further, think about what you’re going to do with the 
output of the MiniGen. Do you want bare wires (as I’ve done, here) on the 
output pads? Are you going to use the u.FL connector? .1" header pins? 
Make that decision now, and put your desired connector on the board.

I’ve elected to put two solid-core wires on this board, so I can plug the ends 
into a breadboard or clip a scope probe onto them. I left the lengths uneven 
to avoid having them touch and short.

Adding headers

We’ll start by explaining how to put male pin headers on the MiniGen. This 
will let us plug it into a breadboard easily, or into female headers soldered 
onto an Arduino Pro Mini (which we’ll go over later).

Start by trimming the pin headers to the right length. You’ll need 12 pins per 
side.

You can, of course, use any style of header you want: on display here are 
our female headers, our short male headers, and our long male headers. I’ll 
show you some options with each of these.

The easiest way to ensure that the pins are nicely perpendicular to your 
board (and thus, will mate easily with another board or breadboard) is to 
insert them into a breadboard. The width of the MiniGen is such that one 
row of pins inserted right next to the center line will place the other row of 
pins one column off the edge on the other side, as pictured below.

Once the pin headers are in place, you can lower the MiniGen board onto 
them. The board can be soldered on component side up or component side 
down; depending on what you plan to do with it, one of those is likely to be 
better.

Page 3 of 7



If you put the board on the headers component side down, as shown below, 
you can see the pin labels. That makes this method better for use as a 
breakout board; however, you’ll be unable to put the board on the top side 
of a Pro Mini. We’ll talk about that in a minute.

Flipping the board over, component side up, will allow you to mount it on a 
Pro Mini board that has female headers on its top side. I’ll show you both of 
these cases fully assembled, so you can see the implications of each.

If you plan to put female headers on your Pro Mini, I strongly suggest that 
you solder down the male headers on the MiniGen, then use those to hold 
the female headers at an auspicious angle on the Pro Mini. That way, they’ll 
mate smoothly in the future.

You can see a couple of points: the pin headers on the MiniGen have been 
soldered in with the long pins on the opposite side from the components, 
and the receptacles are on the component side of the Pro Mini.

As I mentioned above, if you elected to put your headers in with the 
components “down”, you can’t put the MiniGen on top of your Pro Mini. 
However, if you use our long breakaway male headers, you can put the 
pins in from the bottom, and they’ll protrude on top enough for you to stack 
another board on top, such as the MiniFet Shield or a Pro Mini Protoshield. 
This has the disadvantage of covering up the u.FL connector on top of the 
board, but that may not be a problem for you.

Page 4 of 7



If you use this method, be certain there’s a gap between the bottom of the 
Pro Mini and the components on the top of the MiniGen.

Arduino Library
The MiniGen has a fairly comprehensive Arduino Library to help users write 
Arduino code easily.

Accessing the Library

The library can be downloaded as part of the Github repository for the 
MiniGen board. Simply download the zip file of the entire repository, then 
copy the “libraries” directory from the “Arduino” folder in the unzipped 
repository into your Arduino Sketchbook directory. The location of your 
Sketchbook can be found in the “Preferences” window of the Arduino IDE. If 
you have trouble installing the library, please consult our tutorial.

Using the Library

To use the library, add the following two lines to the top of your sketch:

#include <MiniGen.h>
#include <SPI.h>

Note that both lines must be present; failure to include the SPI library will 
cause code compilation to fail.

Once you’ve included the library, you must instantiate a MiniGen object in 
your sketch, like this:

MiniGen sig_gen; 

You can replace the name sig_gen with any name you like; our example 
sketches will use that name, however.

If you’re using the board with something other than an Arduino Pro Mini, 
you can change the chip select pin (referred to in the library and datasheet 
as the FSYNC pin) used by the code by calling the constructor like this, 
instead:

sig_gen = MiniGen(pin_number);

Change pin_number to the desired pin on the Arduino; note, however, that 
the SPI functionality of the Atmega requires that pin 10 be an output, so 
you’ll lose the ability to do other things with that pin.

Library Commands

Once you’ve created your MiniGen object, there are several commands that 
you can send to the MiniGen board to operate it.

sig_gen.reset();

This command will reset the MiniGen to its default behavior: it clears the 
phase offset registers, resets the frequency to 100Hz, and disables the 
output, resulting in a DC voltage at approximately ½ the supply voltage on 
the output.

Page 5 of 7



sig_gen.setMode(newMode);

The newMode parameter can be one of the following values: 
MiniGen::TRIANGLE , MiniGen::SINE , MiniGen::SQUARE , or 
MiniGen::SQUARE_2 . The frequency of the output will depend on the value 

in the selected frequency register; more on that below. For the first three 
options, the frequency will be at the set frequency; for the fourth, it will be 
one-half the set frequency.

sig_gen.selectFreqReg(reg);

The AD9837 chip has two registers that store possible output frequencies. 
These can be selected by passing the parameters MiniGen::FREQ0 and 
MiniGen::FREQ1 to this function. This allows the user to adjust the 

frequency by swapping registers rather than writing to the active register; 
since a full adjust of the frequency requires two SPI writes, this allows the 
change to take effect at once with no intermediate frequency step.

The FREQ registers are divided into a low word and a high word, each of 
which is 14-bits long; the output frequency is equal to the low word times 
0.0596Hz plus the high word times 976.5Hz. The total output frequency is 
equal to the sum of the two registers.

uint32_t freqRegVal = sig_gen.freqCalc(desiredFrequency);

This helper function returns a 32-bit value (an unsigned long Arduino data 
type, or uint32_t in more general terms), which, when written to the 
AD9837 frequency register, will result in an output at desiredFrequency . 
The value passed to the function should be a floating point number, in Hz. 
When this 32-bit value is written to the FREQ registers, the result will be 
(approximately) desiredFrequency .

To write the value to the FREQ registers, there are several functions of 
interest. The reason for this is simple: speed. Writing the frequency value to 
the AD9837 can take anywhere from one to three SPI transactions; using 
the appropriate function allows the user to save execution time where 
possible.

sig_gen.adjustFreq(reg, mode, newFreq);

This method takes the longest. reg can be either MiniGen::FREQ0 or 
MiniGen::FREQ1 , depending on where the user wants to write the value. 
mode can be either MiniGen::FULL , MiniGen::COARSE , or MiniGen::FINE . 

For the first, newFreq should be an 32-bit unsigned value (as returned by 
freqCalc() , or calculated by the user elsewhere); in that case, the 

frequency setting operation will require three SPI transactions. For the 
second and third, ‘newFreq’ should be a 16-bit unsigned value, and the 
operation will require two SPI transactions.

When the mode parameter is MiniGen::FULL , the value of the output will 
be equal to the passed parameter times 0.0596 Hz. When mode is 
MiniGen::COARSE , you will be writing to the high word of the register, and 

each count will increase the frequency by 976.5Hz. When mode is 
MiniGen::FINE , you’ll be writing to the low word, and each count will 

increase the frequency of the output by .0596Hz. Splitting the writes into 
coarse and fine allows the user to minimize the number of writes required to 
change the frequency.

sig_gen.FreqAdjustMode(newMode);
sig_gen.adjustFreq(reg, newFreq);

Page 6 of 7



If speed is important, you can pre-select the mode . This reduces the write 
time to two SPI writes for FULL and one for COARSE or FINE . Note that this 
requires care on the part of the user to pass the appropriate value to 
adjustFreq() ; if the mode is set to FULL and a 32-bit value isn’t passed, 

or to COARSE or FINE and a 16-bit value isn’t passed, the result will not be 
as desired.

sig_gen.selectPhaseReg(reg);
sig_gen.adjustPhaseShift(reg, newPhase);

It’s possible to adjust the phase shift between the input clock and the output 
signal. As is the case with setting the frequency, there are two phase shift 
registers. They can be selected by passing MiniGen::PHASE0 or 
MiniGen::PHASE1 as the reg parameter in the above functions.

For the newPhase parameter, the value should be a 16-bit unsigned value. 
Only 12 bits of that value are used, so it should be a maximum of 4095. 
Each count represents .00153 radians (.551 degrees). However, since the 
phase is measured relative to the input frequency, this setting is of limited 
value.

Resources and Going Further
Here are some useful resources to look at for the MiniGen board:

• MiniGen product page - Product page on SparkFun.
• AD9837 product page at Analog Devices’s website - Lots of good 

info here about the product, other related products, and direct digital 
synthesis in general.

• AD8045 product page - Information about the op-amp on the board.
• Analog Devices’s FilterWizard - A nice online tool that will help you 

tweak the values in this circuit, if you decide you need a different filter 
design.

• GitHub repository - Contains board design files and the Arduino 
Library.

The MiniGen can be used for all kinds of signal synthesis, but one of the 
more intriguing possibilities it opens up is signal transmission by Frequency 
Shift Keying. By switching between the FREQ0 and FREQ1 registers, it’s 
possible to encode data on the output.

If you make anything neat using FSK with the MiniGen, or any other 
projects, let us know!

For more SparkFun tutorial fun, check out these other offerings:

• Mini FET Shield Hookup Guide
• Build an Auduino Step Sequencer
• Sound Detector Hookup Guide
• Gram Piano Assembly Guide

Page 7 of 7

6/24/2015https://learn.sparkfun.com/tutorials/minigen-hookup-guide?_ga=1.107157314.1939456957...




