maxim
integrated..

System Board 6330
MAXREFDES150# Pocket 10 PLC Development Platform

‘‘l{l{f

LRI INTRT| tHn

a0

Pocket 10"

Industry 4.0, the fourth revolution in manufacturing and process automation, poses a
considerable challenge for PLC design engineers who are required to pack more functionality
into enclosures that keep getting smaller. Higher 1/O (input/output) density and smaller form
factors also add to the design challenge in another basic way, a consequence of the inevitable
power dissipation. The system must be more power efficient than ever to keep the PLC from
overheating, especially in an application where fans and vents are generally not acceptable.
Fortunately, new solutions are being developed by companies, such as Maxim Integrated, who
are looking to leverage their integration capabilities in the evolving industrial market.

http://www.maxim-ic.com/

Features

Two analog input channels +12V, 24-bit ADC

Two analog input channels £24mA, 24-bit ADC

Analog output channel OV to £12V, 16-bit DAC

Eight digital input channels 36V (max) configurable for IECe 61131-2 input types 1, 2, and 3
Eight digital output channels; 640mA high-side switches or 640mA push-pull at 24V

Two RS-485 COM ports; half-duplex up to 42Mbps data rate

Three DC-motor controllers: 9V to 32V full-bridge DC-motor drivers, up to 2.5A peak motor
current (supplied by separate power supply)

Four 10-Link master ports with M12 female connectors

Fully 10-Link version 1.1 compliant

TEConcept 10-Link master stack

Applications
Factory and process automation
Building automation
Robotic control
Rapidly creating and prototyping new industrial control systems
IO-Link sensors and actuators

MAXREFDES150# contents
Pocket 10: MAXREFDES150MAIN# and MAXREFDES150LED# stacked in plastic case with
Intel Edison
Connector attach board - MAXREFDES150ATACH#
40-pin female-female cable assembly—two off
USB A to micro-USB B
AC-to-DC (24VDC, 1A) power supply with adapters for regional outlets

Introduction

Maxim's new Pocket IO™ development platform is a reference design integrating a total of 30
IO's consisting of four analog inputs, one analog output, eight digital inputs, eight digital
outputs, two RS485 (Profibus-capable field busses), three encoder motor-control ports, and
four 10-Linke masters. Maxim’s Pocket |10 technology demonstration platform shows how
analog integration can enable lower heat dissipation and faster throughput in a footprint that is
less than ten cubic inches. Pocket 10 connectivity is through USB or its own Wi-Fie network.
Code can be developed to run on the Intel® Edison using the popular and easy to use open-
source Arduinoesoftware IDE.

Detailed Description of Hardware
Pocket 10 is the brand name for MAXREFDES150#. The MAXREFDES150# consists of three
different boards. The overall system block diagram is shown in Figure 1.

SPI BUS

@ MAX14824

10-LINK®

-
MAX14824
@ 10-LINK

@ MAX14824
10-LINK

@ MAX14824
10-LINK

10_LINK1

10_LINK2

I0_LINK3

10_LINK4

TR

@ MAX3109 |

MAX44267
Ao ©
~ 0
= Al
b xa
e
e
() maxaazss
A0 MAX5216
T x DAC
@ MAX9632
pi -
o DI @ MAX31913
DIg 9 X8 OCTALDI
g N
poi I
o
<) ols} MAX14912
= OCTAL DO
DOB
10—_
COMOA —
MAX14783
coma p RS-485
RS-
485
COMI_A | X2 () mAxia783
COMI_B RS-485

+9V TO +36V MOTOR SUPPLY

DUAL UART I

POWER AND PROTECTION

+24V WALL ADAPTER
—_—

| DC-DC | | Do |

—

PORT
| PROTECTOR | |

ISOLATED
POWER

Figure 1. MAXREFDES150# system block diagram.

STM32 10-LINK MOTOR1
MAX14870
@ Maxusro MOToR 2
@ MAX14890
MOTOR CTRL | MOTOR3
MAX14890 | o ENCODER
ENCODER - 1
@ MAX14890 | ENCODER
ENCODER - 2
(o
ENCODER 3
¥ =
INTEL -y
EDISON ®
| Wi Fi]
ARDUINO IDE CONNECTION use
FTDI UART TERMINAL use

The ICs for the main functional blocks are within the Pocket 10 case (the two boards are

MAXREFDES150MAIN# and MAXREFDES150LED#) while the connectors are on a separate
board (called MAXREFDES150ATACH#) which connects to Pocket IO using two 40-pin cable

assemblies.

The control program for Pocket 10 runs on the Intel Edison board, which is mounted on the
MAXREFDES150MAIN# board. Separate STM microcontrollers are used to support the 10-
Link masters (TEConcepts stack) and the DC-motor drivers.

Power Supplies

A single 24V, 1A supply is used to power the Pocket IO and internal DC-DC, and LDO circuits
are used to generate the various different voltage levels required by the analog and digital
devices. Note: The maximum load this adapter can supply is 1A, which limits how many of
the digital outputs are switching loads simultaneously since each of the eight outputs can
handle loads of up to 640mA each. The user can use a different 24V supply with 5A (max)
capacity. The 24V, 1A supply connects to the block barrel connector, shown on the left in
Figure 2.

Pocket 10 has three DC-motor controllers, each of which can support +9V to +32V full-bridge
DC-motor drivers at up to 2.5A peak motor current. In order to support these higher voltages
and currents, a separate user-supplied power supply is required, and connects to Pocket 10
through the green three-way terminal. Terminal 1 is used (with Terminal 3) to test the polarity
of the external supply (to protect Pocket IO motor drivers from reverse polarity connections).
In normal-use mode Terminal 2 is the +9V to +32V connection and Terminal 3 is the ground

or OV connection.

Figure 2. MAXREFDES150# power inputs.

Connections

The main functional blocks are on the two PCBs within the Pocket IO case while the
connectors are on a separate board, called MAXREFDES150ATACH# shown in Figure 3.

Figure 3. MAXREFDES150ATACH#.

LED Indicators
Figure 4 explains the functions of the LED indicators for MAXREFDES150#.

MAIN PWR GREEMN LED O +24Y CORRECT POLARITY
RED LEDyOM - REVERSE POLARITY

LOWY LED, OM WHEN INPUT IS HIGH

EM LED, OMN WHEN OUTPUT I5 HIGH,
LED OM WHEM FAULT COMDITION

LOW LED, ON WHEN M_+>h_

MTRTEST RED LED QM 1-3 REVERSE POLARITY b
GREEN LED OM 1-3 CORRECT POLARITY EMNLED ON WHEN M_+<M_
GND GREEM LED ON 2-3 POWERED

LED, ©OMN WHEN FAULT CONDITION
OW LED OM WHEN ACTIVITY
EDISOM STATWUS GREEM LED - USER PROGRAMMABLE

RED LED - USER PROGRAMMABLE
LOW LED O WHEN RS-422,

OFF ALL OTHERS

ALK RED LED ON TRANSMIT DATA TO EDISON
Use GREEN LED ON TRAMSMIT DATA FROM EDISON E = 2, GREEN = 2, RED =2, YELLOW = 2

Programabile

Figure 4. Pocket 10 LEDs.

Detailed Description of Software

When building up a quick application, or when prototyping some feature, the quickest and
easiest way to program Pocket |10, is through the Arduino application. Though not a full-code
development, debugging environment, the Arduino sketch technique has a lot to offer,
including:

A familiar interface, instantly recognizable by many

A full C/C++ compiler

Access to many useful features built into the Linux OS resident in the Intel Edison processor

Access to Pocket 10 features through an included library
Access to library updates as they become available

With so much capability packed into one small enclosure, the interface to manage all this is
crucial. Each of Pocket 10's 10 resources has its own API. Figure 5 shows the software
architecture for Pocket 10 using Arduino IDE to compile code to run on the onboard Intel
Edison CPU.

() maxias2a
IO-LINK. MASTER

PICIOL & y 10-LINK
OBJECT PROCESS0OR

A

PIOMTR . 2 @ MAX14870

OBJECT DC Motor Driver

PIOUSERLED 1 : MOTION
OBIECT PROCES50R

Py — () maxiagso
OBIECT ENCODER RECEVER

FIOCOM
) ' E:i' MAX3109
QBJECT DUAL UART

PIOEDLED P N INTEL
OBJECT Y EDISON

OBJECT @ ADC |

PIOAD ¢ s MAX5216

OBJECT @ DAC
S S

PIODI ’ | (D) maxzws
OBJECT

INDUSTRIAL INPUT
e———

3

PIODO " @ MAX14913
OBJECT INDUSTRIAL QUTPUT
T F
FIO
SKETCH
OBJECT LIBRARY
USER APP

SOQURCE CODE

Figure 5. Pocket IO software architecture.

The following sections are details about APl and some techniques, many Linux-specific, that
enhance the capability of your applications.

Detailed Pocket IO API

These sections, organized alphabetically by Pocket IO feature, details the API available to
control Pocket IO through sketch.

Note: For information about how to access software revision codes from Pocket IO, consult
Boardinfo.ino in the Pio section of the Examples in sketch.

Analog Input

Pocket 10 features two analog voltage inputs and two analog current inputs, all easily
accessible through sketch. The voltage channels read anything between -12V and +12V
whereas the current channels read anything between -24mA and +24mA. Pocket IO features
a MAX11254 24-bit ADC featuring built-in two-point calibration compensation, which the API
accommodates.

The API selects from among four channels, as follows:

Channel API Mnemonic Attach Board Symbol
First Voltage AlO AlO+/AIO-

Second Voltage Al1 Al1+/Al1-

First Current Al2 Al2 Al2+/Al2-

Second Current Al3 Al3 AI3+/AI3-

Note: The analog input and output circuitry grounds are isolated from
the ground of the rest of Pocket 10. The AGND labels on the attach
board indicate this separate analog ground. If you accidentally return
an analog signal, either from one of the analog inputs or from the
analog output, to the more common GND, there can be unexpected
results.

Calibration

The following code snippet shows how to perform a two-point
calibration. Commonly, the user locks in the calibration, so it does not
need to be done again, and calibration rarely needs to be done.
Calibration comes in handy when attaching further circuitry to the
analog inputs, and accuracy is to be maintained ahead of this extra
circuitry. Pocket 10 comes factory-calibrated for best accuracy at the
connection points of the attach board.

The code snippet uses port Al0 as an example, but the code is the
same regardless of which port is being calibrated. Each channel keeps
its own unique calibration parameters.

// Makes Pocket IO analog input API available

// #include

PioAi pioAi; // Instances an analog input interface object

pioAi.init(); // Always needed for analog input pioAi.initCal(AIQ@); //Commences calibration
/%

* Put code here to apply +12 volts at the point of calibration

* if channel AIO@ or channel AI1, or to apply +24mA if channel

* AI2 or AI3.

* Do not proceed until the voltage or current is applied and * stable.
*/

pioAi.setFullCal(AIQ); // +12V or +24mA measured

/*

* Put code here to apply @ volts or -24mA at the point of

* calibration.

* Do not proceed until the voltage or current is applied and * stable.
*/

pioAi.setZeroCal(AI@); // @V or -24mA measured

delay(1000); // needed for ADC to calc corrections

// This method call takes the required corrections for that

// channel and stores it in non-volatile memory

pioAi.storeCal(AIQ);

Reading an Analog Sample

Samples can be read either as a float or as a raw binary code from the
ADC. The following code snippet shows how it is done. Because the
sample rate is determined by the ADC itself, the user must select from
one of the MAX11254 sample times as shown in the following table.
Longer sample times result in readings with lower noise. This affects
multiple sample reads. For example, with Al RATE_1 9 SPS, after a
first read, the thread calling a read method a second time is blocked for
about 526msec.

MAX11254 Sample Rate (sps) APl Mnemonic

1.9 Al_RATE_1_9_SPS
15.6 Al_RATE_15_6_SPS
31.2 Al_RSTE_31_2_SPS
62.5 Al_RATE_62_5_SPS
250 Al_RATE_250_SPS
500 Al_RATE_500_SPS

1000 Al_RATE_1000_SPS

// Makes Pocket IO analog input API available

//

#include // no init() method

PioAi pioAi; // instances an analog input interface object
pioAi.init(); // always needed for analog input

// Loads a previously stored calibration for that channel,
// usually done once at setup

//

pioAi.restoreCal(AIQ);

>while (XXX)

>// Reads one sample as a raw binary code

//

uint32_t code = pioAi.readCode(AI®, AI_RATE_1 9 SPS);

// The returned code is in offset binary, where 0OV is

// 2723, 12V is 272342723 = 2”24, and -12V is // 2723 - 2723 =@
//

// In the case of current, the calibration is done is

// firmware, so the returned code is not relevant

// float toVolts = (float) (code - 8388608) * 12.0 / 8388608;
// Or you can do it easier this way, for reading current,

// this is the best way.

// float volts = pioAi.readFloat(AI®, AI_RATE_1 9 SPS);

}

Analog Output

Pocket IO provides one analog output, capable of any output voltage
between OV and 12V. Since there is only one analog output channel,
there is no need to select channels. The API consists of only one
method call, and no init() is needed for analog out.

The call to the method is a raw 16-bit code to the DAC. To drive a
specific voltage, it must first be converted to a 16-bit equivalent for the
DAC, as shown in the code snippet below.

// Makes Pocket IO analog output API available
// #include PioAo pioAo;
// instances an analog output interface object

const float DAC_CONV = 5443.106; // codes per volt

float voltageOut = 1.250; // desired output voltage

uintl6_t codeDAC

(uint16_t) (voltageOut * DAC_CONV);

// Returns the argument to the method, as a uintl6_t, which

// is usually ignored

//

uintl6_t intCodeDAC = pioAo.writeCode(codeDAC);

// Could also do it this way

// uintl6_t intCodeDAC = pioAo.writeCode(voltageOut * DAC_CONV);
Communications (RS-485)

Pocket 10 provides serial communication through two RS-485 ports.
Each port is half-duplex, and is preset for 115.2KBAUD at 8N2 (eight
data bits, no parity, two stop bits).

Select from among the 2 channels as follows:

Channel APl Mnemonic Attach Board Symbol
0 COMO COMOA/COMOB
1 COM1 COM1A/COM1B

The API permits independent reading and writing for each channel. For
any given channel, writes supersede reads. No harm occurs if multiple
RS-485 transceivers drive a bus at the same time though this means
any received data would be corrupted. Use protocol to ensure only one
transceiver drives the bus at a time.

// Makes Pocket IO COMMS API available
// #include PioCom
pioCom; // instances a COMMS interface object

pioCom.init(); // always needed for COMMS

uint8_t bytes = {‘H’, ‘e’, ‘1°’, ‘1’, ‘o’, ,’,’ ¢, ‘W, ‘0o’, ‘r’, 1°, ‘d’, ‘I’, \0};
// First param must be either COM@ or COM1

// Second param is a pointer to an array of bytes

// Third param is the number of bytes to transfer

//

// Maximum of 128 bytes can be sent. If a previous write

// has not yet completed, then the number of bytes that

// can be written is 128 - (number of bytes left to send)

// // If you send more than 128 bytes, the transmitted data

// will be corrupted. // PioCom.write (COM@, bytes, sizeof(bytes));

Reading data from an RS-485 port is similar to writing, with the added
complication that you do not necessarily know how many bytes have
been received. The following code snippet shows how to read data.

// Makes Pocket IO COMMS API available

//

#include PioCom pioCom;

// instances a COMMS interface object pioCom.init();

// always needed for COMMS

// Needed once before first read

// pioCom.clearInterrupts(COMO); uint8_t receiveBuffer [100]; uint8_t receiveCount;
// First param must be either COM@ or COM1

// Second param is an array to receive data

// Third param is the size of the buffer

// Fourth param will get the number of bytes actually read

//

// The receive buffer will be filled with a number of bytes

// received since a previous read method call. If this is less
// than the size of the buffer, then the buffer is

// partially filled. Otherwise, the buffer is filled and

// a subsequent read can obtain further read data.

//

// Note that data will be corrupted if more than 128 bytes
// have been received since a previous read method call.

//

// If there is no data, the fourth param will be set to zero
//

pioCom.read(COM@, receiveBuffer,

sizeof(receiveBuffer), &receiveCount);

// Do you want to test if there is pending data to be

// received? This method call returns the number of // bytes waiting to be read
//

// Useful for conditional mutex

//

uint8_t howManyBytes = pioCom.readRxFifolLevel(COMO);

Digital Input

Pocket 10 has eight individual IEC-compliant industrial digital inputs.
These inputs connect to binary sensors, such as limit switches,
proximity sensors, distance sensors, and user switches. These inputs
can be read individually, or as a group, through sketch.

Eight LEDs on the display panel indicate the state of each of these
digital inputs. The LEDs are extinguished if driven low or left open, and
illuminate when the corresponding input is driven logic high. The
following table connects the individual inputs to the values returned
through the API

Channel BitMask APIMnemonic Attach Board Symbol

1 0x01 DI1 DI1
2 0x02 DI2 DI2
3 0x04 DI3 DI3
4 0x08 Dl4 Dl4
5 0x10 DI5 DI5
6 0x20 DI6 Dl6

7 0x40 DI7 DI7

8 0x80 DI8 DI8

Additionally, the user has access to the debounce feature of the
MAX31913 industrial digital input device. This feature reduces
chattering of particularly noisy digital inputs. This debounce is global,
applying to all digital inputs simultaneously used by Pocket IO. The
following code snippet shows how to access these inputs as well as
how to manage debounce.

// Makes Pocket IO digital input API available
//

#include PioDi pioDi;

;// Instances a DI interface object pioDi.init();
pioDi.init(); // always needed for DI

// Gets all 8 inputs at once, correspondence between

// bits and inputs given in the table above

// uint8_t allDigitalInputs = pioDi.readInput();

// Overloaded method also reads individual digital input

// channels. Returns ‘9’ or ‘1’

!/

// In this case, checks the state of channel 7 only

// uint8_t specificDigitalInput = pioDi.readInput(DI7);

// This is how to set the debounce. Set as follows:

// 0x00 - no debounce

// 0x01 - 25usec of debounce

// ©x02 - 750usec of debounce

// 0x03 through oxff - 3msec of debounce

//

// A possibly corrected value is returned, for example if you
// try to set @x1@, 0x03 will be returned

// uint8_t realDebounce = pioDi.writeDebounce(0x02);

// The currently operational debounce setting can be checked
// uint8_t whichDeboucne = pioDi.readDebounce();

Digital Output

Pocket 10 supports eight industrial digital outputs, each capable of
driving 24V at greater than 640mA. The API supports many of the
features of the MAX14913 or MAX14912 digital output driver IC,
including output modes and fault detection.

Each digital output channel can be in one of two modes. High-side
mode, as its name implies, only drives a channel high (nominal 24V).
Many existing actuators and indicators work best in high-side mode. To
have faster output driver switching, each output channel can also be
configured to push-pull mode. Since both a high and a low are actively
driven, there is no longer a natural decay of the wiring slowing down
the transitions from high to low. The following table shows how to
specify these through the API.

Mode APl Mnemonic
High-Side HS_MODE
Push-Pull PP_MODE

Each individual digital output can be driven high or low. The Pocket 10
front panel allows easy confirmation of the output state, illuminating a
green LED for each output being driven high. A matching red LED
indicates that a fault has occurred on that output. This most commonly
happens when accidentally tying two digital outputs together when they
drive conflicting logic levels.

Channel Bit Mask API Mnemonic Attach Board Symbol
1 0x01 DO1 DO1

2 0x02 DO2 DO2
3 0x04 DO3 DO3

4 0x08 DO4 DO4
5 0x10 DO5 DO5
6 0x20 DOG6 DO6
7 0x40 DO7 DO7
8 0x80 DO8 DO8

The following code snippets show how to command the digital outputs
and manage the mode settings of Pocket 10.

// Makes Pocket IO digital output API available
// #include PioDo pioDo;

// instances a DO interface object

// no init() method

// Commonly, set the output mode once before

// driving outputs

//

// first param:

// - 0x00 means set all to high-side more

// - 0x01 - oxff means set all to push-pull mode
// pioDo.setModeAll(PP_MODE);

// can also set the mode of individual outputs

// here, half of the outputs are set to high-side
// for (int i = DO5; i <= DO8; i++) { pioDo.setMode(i, HS_MODE); }

// The mode can be confirmed through this method call

{ // code here for push-pull
} else {

// code here for high-side

}

The Pocket IO display panel indicates fault conditions on digital
outputs by illuminating a red LED. This fault condition can also be
detected through the API. There is a lot more to faults than can be
described here, so for more details about fault conditions, refer to the
MAX14912/MAX14913 data sheet.

// Is there a fault condition on digital output channel 4?
//

// The second argument indicates whether to clear faults or
// not. True causes faults to be cleared.

//

if (pioDo.readFault(DO4, false))

{

// we have a fault on DO4

}

// grab all the fault conditions at once
// If (pioDo.readFaultAll(true) & 0xof)
{

// we have a fault on one or more of

// DO1 through DO4

}

Edison LED

Some Pocket 10 resources are not directly related to industrial inputs
and outputs. One of these resources is the two LED at the left of the
display panel, labelled “EDISON STATUS.” One red and one green
LED are purely under the user’s control. The LEDs can be used to
indicate progress, status, or activity.

The following code snippet shows how to access the LEDs.
PioEdLed pioEd;

;// Instances an Edison LED object pioEd.init();

// Always needed for Edison LED while (true)

{ pioEd.writeLed(GREEN, 0x01); // illuminate

delay(500);

pioEd.writelLed(RED, 0x01);
delay(500); pioEd.writelLed(GREEN, 0x00);
// extinguish delay(500);

pioEd.writeLed(RED, 0x00);

}

Encoders

Pocket 10 has the capability to manage up to three motion-control
channels. For many motion-control applications, controlling a motor is
enough. For more precise scenarios, feedback is obtained, often from
incremental encoders. This section discusses the three incremental
encoder interfaces built into Pocket [O.

Incremental encoders communicate position information through two
(most common), three (somewhat common) or four (less common)
signals. Two-signal encoders are called A and B. Each edge
communicates some fraction of a revolution. For example, when using
a 4,000 pulses-per-revolution encoder, if you count only the rising
edges of the A signal, you can see 1,000 such edges per revolution of
the encoder shaft. If you count all edges of both the A and B signals,
you can see 4,000 such edges per revolution of the encoder shaft. The
timing of the A and the B signals is such that the direction can also be
unambiguously determined. The Pocket 10 incremental encoder
interface uses the A and the B signals to maintain a position count
based on the rising edges of the A signal.

A third signal, if it exists, is labelled the Z signal. Sometimes called an
index pulse, this optional signal indicates the zero-degree point of the
encoder shaft. Pocket IO currently ignores the Z signal. If a fourth
signal exists, it is usually labelled the Y signal, and is used to indicate a
fault condition in the encoder. Pocket 10 has no means to connect to a
Y signal.

Incremental encoders have been around for many decades now.
Because of this, these encoders are available in a variety of signaling
formats, and the MAX14890E encoder used in pocket IO is designed
to handle this multiplicity.

Each signal has a “+” connection point and a “-” connection point. For
example, the first encoder A signal connects through signals A1+ and
A1-. How these are connected to depends on whether the signal
format is single-ended or differential. For example, to connecta TTL A
encoder signal to Pocket 10 encoder channel 1, tie the signal to A1+,
and tie the return to A1-. For differential signaling, tie the encoder A+
signal to A1+ and the encode A- signal to A1-. Because of the large

common mode tolerance range of the MAX14890E used in Pocket 10,
differential encoders usually function well even with no grounds tied
between the encoder and Pocket 10.

Several front-panel LED indicators speak to the encoder interface. The
yellow LED in the ENCODER section indicates encoder activity
whereas the corresponding red LED indicates that an encoder channel
has experienced a fault situation. Additionally, the yellow LED in the
HS TERM section illuminates when Pocket IO attaches the high-speed
RS-422 termination to the corresponding encoder channel.

Each Pocket IO encoder channel has its own signal format selection,
communicated to the API by consulting the following table.

Standard API Mnemonic
Single-ended SEHTL
Differential HTL DHTL

RS-422 RS422

TTL TTL

Select from among the 3 encoder channels as follows:

Channel APl Mnemonic Attach Board Symbols

1 ENC1 A1+, A1-, B1+,B1-, Z1+, Z1-
2 ENC2 A2+, A2-, B2+, B2-, 22+, Z2-
3 ENC3 A3+, A3-, B3+, B3-, Z3+, Z3-

This code snippet shows how to set encoder signal formats, and how
to obtain encoder information.

// Make Pocket IO encoder API available

// #include PioEnc pioEnc;

// Instances an encoder interface object pioEnc.init();
// Always needed for encoders

// This sets the encoder 3 signal mode to TTL

// pioEnc.setMode(ENC3, TTL);

// The encoder interface maintains a position for each
// encoder. The position count is incremented for each

// clockwise pulse obtained by the encoder, and is

//

//

//

//

//

//

//

//

//

//

//

//

decremented for each counterclockwise pulse of the
encoder. So, if you read a position, move 500 pulses
clockwise, then 499 pulses counterclockwise, your new

position will be one count higher than the previous // position.

The position is maintained as a 32-bit int, so commonly

no overflow/underflow maintenance is needed in code.

This is how to obtain the current position of encoder 1
int positionNow = pioEnc.getCount(ENC1);
You can also reset the encoder to zero at any time.

pioEnc.initCount(ENC1);

Motor Control

A nice feature of Pocket IO is the ability to control up to three brushed
DC motors. A separate green-colored connector supplies the motors,
permitting the use of motors from 4.5V to 32V. During startup and
other high-speed changes, each motor is limited to about two amperes
of drive current. Because the motor driver is a full-bridge MAX14870
device, there is no ground connection to the motor, only to its two
terminals.

The Pocket IO indicator panel shows the motor driving state for each
motor port. A green LED illuminates when driving a motor clockwise,
and a yellow LED illuminates when driving a motor counterclockwise.
The higher the speed, the brighter the LED.

To adjust motor speed, Pocket 10 provides an 8-bit PWM control for
each motor independently. Select from among the 3 motor channels
referring to the following table:

Channel API Mnemonic Attach Board Symbol
1 M1 M1+/M1-
2 M2 M2+/M2-

M3 M3+/M3-

The API maintains a concept of rotation direction. When driving
clockwise, the “+” connection averages a higher voltage than the
connection. When driving counterclockwise, the “+” connection
averages a lower voltage than the “-“ connection. The following table
shows how to describe this.

Direction APl Mnemonic
Clockwise CLOCKWISE
Counterclockwise COUNTERCLOCKWISE

'Stopping' a motor can mean two different things. In one case, it can
mean actively braking the motor with significant resistance to motion.
In the other case, it can mean coasting, where there is little resistance
to motion.

In the case of a DC-brushed motor, the difference can be significant. If
the motor is part of some internal mechanism where there is no
expected movement, then braking is the correct approach. With
braking, forcing movement of the motor can prematurely wear out the
motor brushes. However, if there can be movement of the motor after
stopping, coasting is probably the better approach. The disadvantage
of coasting is that the motor does not stop suddenly, so may excurse
past where you want to stop.

In some situations, you would like to stop motion solidly, but still permit
a user to move a mechanism by hand. A good compromise in this
situation is to brake the motor for a short time, and then coast the
motor.

The following table summarizes the possible states of motion for the
motors.

State of Motion Enable Direction Speed
Running one direction True CLOKCWISE Any
Running other direction True COUNTERCLOKCWISE Any
Braking True Any Zero
Coasting Flase Any Any

The following code snippet shows how to manage the motors through
Pocket 10.

// Make Pocket IO motor API availa e

//

#include PioMtr pioMtr; // Instances a motor interface object

//

//

//

//

//

//

//

//

//

No init() needed

Motor 1 to half speed one direction

The second argument to the writeSpeed method

is between @ (no motion) and 255 (full motion)

pioMtr.writeEnable(M1, true); pioMtr.writeDirection(M1, CLOCKWISE); pioMtr.writeSpeed(M1, 128);
half speed // Motor is running, want to reverse direction

and still run at half speed // pioMtr.writeDirection(M1, COUNTERCLOCKWISE);

Compromise stopping technique

/// First brake and then coast a short

//

//

//

//

brake delay (100);
good value for most small motors pioMtr,writeEnable(M1, false);
now coast // The various values can be read back

if (pioMtr.readEnable(M1))

{ // do something if M1 is enabled

} uint8_t myDirection = pioMtr.readDirection(M1);

uint8_t mySpeed = pioMtr.readSpeed(M1);

User LED

Some Pocket 10 resources are not directly related to industrial inputs
and outputs. One of these resources is the eight-user LED toward the
bottom of the display panel, labelled “USER.” You have two blue, red,
yellow, and green LEDs, that can be used to indicate anything (under
the user’s control).

The following table correlates USER LED with code.

User LED APl Mhemonic
1 LED1
2 LED2
3 LED3
4 LED4
5 LED5

6 LEDG

7 LED7
8 LEDS8

The following code snippet shows how to control the user LED.
// Makes Pocket IO user LED API available

// #include PioUserlLed pioUser;

// Instances a user LED interface object

// init() method not needed

// This is how to control the user LED

//

// Illuminated LED if second param != 0

//

pioUser.writelLed(LED5, 1);

delay(1000); pioUser.writelLed(LED5, ©);

// Can also query the current state of any LED
//

uint8_t stateLED5 = pioUser.readLed(LED5);

Quick Start
Required equipment

* MAXREFDES150# Case (Pocket 10) with
MAXREFDES150ATACH#

» Two 40-pin cable assemblies

» 24V, 1A power supply

» USB cable

« Windows® PC with a USB Port

* Arduino IDE Software

The first step is to connect the Pocket 10 and the connector board, and
then to install and configure the Arduino-based software tools.

Power Supplies

A single 24V, 1A supply is used to power the Pocket 10 and internal
DC-DC, and LDO circuits are used to generate the various different
voltage levels required by the analog and digital devices.

Note: The maximum load this adapter can supply is 1A, which limits
how many of the digital outputs are switching loads simultaneously
since each of the eight outputs can handle loads of up to 640mA each.
The user can use a different 24V supply with 5A (max) capacity. The
24V, 1A supply connects to the block barrel connector, shown on the
left in Figure 2.

Connections

The main functional blocks are on the two PCBs within the Pocket 10
case while the connectors are on a separate board, called
MAXREFDES150ATACH# shown in Figure 3, which connects to
Pocket 10 using two 40-pin cable assemblies as shown in Figures 6, 7
and 8.

For testing MAXREFDES150# connect the Pocket 10 boards in the
plastic case to the MAXREFDES150ATACH# board using the two
cable assemblies. Note each cable is the same, but one connector has
a plastic 'key' to mate correctly to the male connectors on the
MAXREFDES150ATACH# board. Start by connecting to the
MAXREFDES150ATACH# board making sure the red line on the cable
matches the Pin 1 triangle on J1 and J9 for the
MAXREFDES150ATACH# board (Figure 6).

Figure 6. Conncting Cable Asembly to MAXREFDES150ATACH#.

Then connect the two cables to the male connectors at the rear of the
Pocket 10 plastic case; note how the red line on the cable is on the left
hand side (Figure 7).

Figure 7. Cable Assembly to Pocket IO.

Make sure you do not cross the two cables (Figure 8).

Figure 8. Pocket 10 Connected to MAXREFDES150ATACH#.

Finally, take the 24V wall adapter and select the correct fixture for the
local power outlet; the kit is supplied with adapters for England,
Europe, USA and Australia standards (Figure 9).

Figure 9. Pocket 10 power supply and adapters.

Connect the 24V supply to the barrel connector on the plastic case
(Figure 10).

Figure 10. Pocket 10 with Power Supply Connected.

Pocket IO is now ready to be powered on and tested. Testing requires
a PC loaded with Arduino software for Pocket 10.

Procedure
Maxim Pocket 10 Arduino Installation Instructions

1. Download and install the latest Arduino IDE.
a. Go to https://www.arduino.cc/en/Main/Software.

b. Select the appropriate OS link (Windows, MAC®, Linux®). For
this Quick Start we assume the OS is Windows PC.

+[ol -}

Genuino

ARDUINO

Download the Arduino Software

Windows rsater

ARDUINO 1.6.11 Windows 2w s for ron admn inst

The open-sourte Ardure Softwere (1

4

Lirx 52 o

c. Follow the prompts to download and save the file.

Opening arduino-1.6.11-windows.exe X

You have chosen to open:
(] arduino-1.6.11-windows.exe

which is: Binary File (BTD MB)
from: https://downloads.arduino.cc

Would you like to save this file?

Save File Cancel

2. Install the latest Arduino IDE.
a. Once the download has completed double click
'Arduino-x.x.xx-windows.exe.'

b. Windows then prompts you to run this file, select 'Run.’

c. The Arduino setup displays the license agreement, select 'l
Agree.’'

& Arduino Setup: License Agreement - X

Please review the license agreement before installing Arduino. If you
a3/ accept all terms of the agreement, dick I Agree.

|GNU LESSER GENERAL PUBLIC LICENSE "
Version 3, 29 June 2007

iCopyright (C) 2007 Free Software Foundation, Inc. <http://fsf.orq/>

is permitted to copy and distribute verbatim copies of this license

but changing it is not allowed.
This version of the GNU Lesser General Public incorporates the terms
conditions of version 3 of the GNU General License, supplemented
the additional permissions listed below.

v

d. It prompts you to select components to install, select 'Next.'

€ Arduino Setup: Installation Options - X

Check the components you want to install and uncheck the components
(22 you don't want to instal. Click Next to continue.

Select components to install: || Install Arduino software

Space required: 401. 1IMB

Cancel [Nullsoft Install System v3.0 < Back || *ﬁ > I

2%

e. Next it shows the destination folder to install, select 'Install.’

€ Arduino Setup: Installation Folder - X

Setup will install Arduino in the following folder. To install in a different
22 folder, dlick Browse and select another folder. Click Instal to start the

Space required: 401. 1IMB
Space available: 130.0GB

Cancel [Nullsoft Install System v3.0 < Back | Install I

f. When Arduino setup is completed select 'Close."

@ Arduino Setup: Completed =

Completed
Show details |

=l oo Y

3. Install Maxim's Pocket IO Board.
a. Locate the "Arduino’ shortcut on your desktop and double
click the icon to open the Arduino IDE.

b. A window opens as shown below, select File > Preferences.

@ sketch_aug19a | Arduino 1.6.11 - m] X

File Edit Sketch Tools Help

sketch_aug19a

Arduino/Genuino Uno on COM1

c. In the 'Preferences’ window there is a section "Additional
Boards Manager URLs.' Select this box.

Preferences P X

Settirgs Metwork

Sketchbook caton:

C:'Usersgean long Documents \Ardung Browse
Bl orgaaes Syster Defalt v fspsssawtsfAdes)

Editor fort see

Interface scale:] Automanc + ™ (requres restart of Arduno)

Show verbose cutput during: || complation || upioad
Compler warmngs: one

[[] Display e rumbers

[_] Enable Cade Foiding

] verdy code after upload

] use external ecttor

(] Chack for updates on startup

(5] Uindate gketch fies to new extenson on save (.pde -> na)
] save when venfyng or upicading

Addibonal Boards Manager URLs: "1

CriUsersisean long AppData Local Yrduno 1 Sipreferences. tt

d. In the box that opens, copy and paste the URL below into this
window and select 'OK", then 'OK" again.
https://raw.githubusercontent.com/maximTicer/pocketio/master/package_maxim_index.json

€ Additional Boards Manager URLs ~ X
L

Enter additional URLs, one for each row

Click for a list of unoffidal boards support URLs

e. Select Tools > Board > Board Manager.

E: sketch_sug19a | Arduino 1.6.11

File Edit Sketch Tools Help

Auto Fermat CerleT
Archeve Sketch

Fux Encoding & Reload

Senal Monitor Ctri+Shift-M

Senal Plotter CtrleShift-L
WiF1101 Firmware Updater
........ 01 Board: ‘mwﬁ@nnn Uno™
Puct y r . ol
Get Board Info

Programmer: "AVRISP miil®

Burn Bootloader

Arduine/Genui

Boards Manager

Arduino Ydn
Arduino/Genuinc Uno
Arduino Duemilanove or Diecimila

Arduing Nano

Arduino/Genuino Mega or Mega 2560

Arduino Mega ADK
Arduino Leonardo
Arduino/Genuino Micro
Arduino Esplora
Arduing Mim

Arduino Ethemet
Arduino Fio

Arduino BT

LilyPad Arduino USB
LityPad Ardwino
Arduino Pro or Pro Mini
Arduing NG or older
Arduino Robot Control
Arduino Robet Motor

Arduino Gemma

f. Open the 'Boards Manager' window and from the drop down

Type menu select "Certified."

: Boards Manage:

Troe eduno Corsfed -

Intel 1304 Boards oy Intel
irciuded in T" caikage

Intel 6848 Boards Intel

Boards induded ir

i
Mo

Intel Cure Bosrds o
Doan

g. Select 'Intel i686 Boards by Intel' for Edison and click

'Install’ to install rev 1.6.7+1.0 or later.

D Boarts Manager
Tyoe Aecuno Cortfied | -

Tntel (308 Bonrds 5y Intel ”
Boards induded in this package:

Galles.

M nfy

Intel 088 Boards Oy Intel
Boards irduded in this package:
Ghisan.

Hors \nfp

167410 « imntal

Trtel Curvm Barardn o) Entul
Boards incdudad in this sackage:
e i Baruine 108

Mo iolo

h. Once installation is completed, select *Close."

© Boards Manage: l»
Troe Arduno Certfed

Tated 386 Mossds ©, Tntel
Bosrds included in this package:
Caliws.

L)

Inted 08 Boseds by Tntel version 1.8.74 1.0 IRSTALLED
Boards inchuded in this patkege.

[T

Mg irtg

Intel Curse Doards by [ntel
Moards included in this package:
Arduing/ Genuine 181

Mars irfo

i. Open the 'Boards Manager' window and from the drop down
Type menu select "Contributed.’

ﬁﬂuml&ar\ e
21

Troe M
Ardy saratie Lt 1n by Ardwing version 1813 INSTALLED
Loy ™ package
ard " fenune Ung, Asduine D Arduing Mana. A Mege, Ardunc MegedDe, Aduing
Leogvhme Corthed Lo wiore, Arduing Explons, Arduing Mini, Arduing Ethemet. Arduing Fie, Ardving BT, Aduine LivPeduse.
L o Pro. Arduing ATMegeMO, Ardune Kobol Control. Arduine Robst Moter, Anduans Jemma
Lriga duno gricert
e

Ardisns SAN Baards (17 bits ARM Cortes-M1) by Arduine
Boards intluded in this packege

Ardun Dus,

Cnling hals

Huwirtu

Ardutns SAMD Rosrds (17 bits ARM Cortes MO4 | by Arduine
Boards included in this package:
Arduinn/ Sunuine Zurs, Anduino/Benuine MER 1300,

Qnlioe halg
Moty inde

j. Select 'Maxim Boards by Maxim Integrated' for Pocket IO and
click 'Install.’

&

G
Trpe Contriuied

Windows: 10 Tok Core by Miceosoft. ToT Ll
Boards inclused in this peckage

windoss: 10 ToT Core

Omline '\-F|E

Mare info

Maodm Beards by Maxim Istegroted version LOLD INSTALLED
Boards included ir this peckege |

Fochoet [0

Mgre infg

R
k. Once installation is completed, select 'Close.’
T Boards Mansger x
Type Corviritated
Windows 10 Lok Cors by Microsaft. laT -
Basrds imcluded in this padkege: 5
J_a':lmo-q :f) 15T Cava. L
Sarg infe
iHaxwn Boards & Haxm [ntegrated
Bosrdy intduded in this package
Bocket 10,
Mo infa
L.0.0 - Tratal
Ciose

4. Using the Pocket IO with Arduino IDE.
a. To select Pocket 10 as the target board, select Tools > Board
> Maxim Pocket 10O.

@ sketch_sugda | Arduino 16,11
File Edt Sketch Teools Help

Auto Format Ctrle T
Archive Sketch
sketch_aupl3 Fix Encoding & Reload
1 setup() Serial Monitor Ctrl+ Shift+ M
piei Serial Plotter Ctrl+Shift=L
! WiFi101 Firmware Updater
id loop() | Board: "Maxim® Pocket 10 3 Boards Manager...
e Port Arduine AVR Boards
| Get Board Info Arduno Yin

Programmer: “AVRISP mill® Arduino/Genuino Uno

Bors Bootiosder Arduino Duemilanove or Diecimila
Arduine Nano
Arduino/Genuine Mega or Mega 2360
Arduino Mega ADK
Arduino Leonardo
Arduino/Genuing Micre
Arduino Esplora
Ardune Mimni
Arduino Ethemet
Arduino Fio
Arduino BT
LilyFad Arduinc USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Centrel
Arduino Robot Motor
Arduino Gemma
Ardumno 86 Boards
Intel® Edison

Maxim Boards

[& Muxime® Pocketio [

b. Make sure Pocket IO is powered with 24V, and connect the

USB cable to the micro-USB connector labeled 'Edison

Status' (the one nearest to the green connector). If device drivers

are not automatically installed use this link to download and

install the drivers:
http://downloadmirror.intel.com/24909/eng/IntelEdisonDriverSetup1.2.1.exe

c. Select Tools > Port > COMXXX (where xxx is whichever COM
port was selected when you plugged it in).

@ sketch_sug23a | Arduino 16,11
File Edit Sketch Tools Help

Auto Format CtrleT
Archive Sketch

sketch_aug2dy Fix Encoding & Reload
Serial Monitor Ctrl+Shift-M
Serial Plotter CtrleShiftsL

} WiFi101 Firmware Updater

void loop() if] Board: "Maxim ® Pocket 10" >
Sitomtt MW. Edison)” 3 Serial ports
) Get Board Info ¥ COMT (intel® Edison)
Programmer: “AVRISP midl” »

Burn Bootloader

d. Next select File > Examples > PioDo > PioDoBlink.

@- sketch_aug23a | Arduine 1.6.11
File Edt Sketch Tools Help

New Ctri«N

Open... Ctrl+ 0

Open Recent ¥

Sketchbook »

Examples 1 A

o Crle W 09.USB »

Sae CtrlsS 10.5tarterkit_BasicKit ¥

SaveAs.. CtrleShifte$ Vi ArduinolSe 3

Page Setup Ctrl=ShiftsP Examples from Libraries

Print Crl+P Bridge 4
Firmata »

Preferences Ctrl« Comma Terbito y

Quit Crrl+Q RETIRED ¥

Examples from Custom Libranes

Ethernet »
GSM >
LiquidCrystal »
PioAi »
PioAo »
PioCom ’
PioDi ’
PioDo : Pb[wﬁi
PioEdLed >
PioEnc >
PiaMtr »
PioSpi >
PioUserled >
sSD >
v

e. A new window should appear with the example sketch
selected. Press the circular button with the check mark in the top
left corner to 'Verify' or compile the sketch.

€D PioDoBlink | Arduine 1.6.11 = a X

File Edit Sketch Tools Help

f. The window indicates it is compiling with a progress bar, and
when finished, displays 'Done Compiling.’

& PioDoBlink | Arduino 1.6.11 » — (m] X
>
File Edit Sketch Tools Help

PioDoBlink

int mSec = 50;

nid setup()

g. Now select the circular button with the right arrow, 'Upload’
transfers the data to the Edison and starts to run the compiled
program.

€ PioDoBlink | Arduino 1.6.11 - [m] x
File Edit Sketch Tools Help

PioDoBlink

h. After a few seconds the message '‘Done Uploading' is
displayed and you can see the LEDs on the board flashing driven
by the digital outputs.

i. A number of standard functions are included as examples to
showcase the functionality of Pocket IO, or the user can develop
their own sketches.

Arduino is a registered trademark of Arduino, LLC.

IEC is a registered service mark of the International Engineering Consortium,
Inc.

Intel is a registered trademark and registered service mark of Intel Corporation.
IO-Link is a registered trademark of Profibus User Organization (PNO).
Linux is a registered trademark of Linus Torvalds.

Mac OS is a registered trademark of Apple Inc.

Pocket 10 is a trademark of Maxim Integrated Products, Inc.

Wi-Fi is a registered certification mark of Wi-Fi Alliance Corporation.
Windows is a registered trademark and registered service mark of Microsoft
Corporation.

https://www.maximintegrated.com/en/design/reference-design-center/system-board/6330.h... 9/29/2016

	beforelastpage
	endpage

