Features - Single Voltage Read/Write Operation: 2.65V to 3.6V - Access Time 70 ns - Sector Erase Architecture - Sixty-three 32K Word (64K Bytes) Sectors with Individual Write Lockout - Eight 4K Word (8K Bytes) Sectors with Individual Write Lockout - Fast Word Program Time 12 µs - Fast Sector Erase Time 300 ms - Suspend/Resume Feature for Erase and Program - Supports Reading and Programming from Any Sector by Suspending Erase of a Different Sector - Supports Reading Any Word by Suspending Programming of Any Other Word - Low-power Operation - 12 mA Active - 13 µA Standby - VPP Pin for Write Protection - WP Pin for Sector Protection - RESET Input for Device Initialization - Flexible Sector Protection - TSOP and CBGA Package Options - Top or Bottom Boot Block Configuration Available - 128-bit Protection Register - Minimum 100,000 Erase Cycles - Common Flash Interface (CFI) - Green (Pb/Halide-free) Packaging Option ### 1. Description The AT49BV320C(T) is a 2.7-volt 32-megabit Flash memory organized as 2,097,152 words of 16 bits each. The memory is divided into 71 sectors for erase operations. The device is offered in a 48-lead TSOP and a 47-ball CBGA package. The device has $\overline{\text{CE}}$ and $\overline{\text{OE}}$ control signals to avoid any bus contention. This device can be read or reprogrammed using a single power supply, making it ideally suited for in-system programming. The device powers on in the read mode. Command sequences are used to place the device in other operation modes such as program and erase. The device has the capability to protect the data in any sector (see "Flexible Sector Protection" on page 6). To increase the flexibility of the device, it contains an Erase Suspend and Program Suspend feature. This feature will put the erase or program on hold for any amount of time and let the user read data from or program data to any of the remaining sectors within the memory. The VPP pin provides data protection. When the V_{PP} input is below 0.4V, the program and erase functions are inhibited. When V_{PP} is at 1.5V or above, normal program and erase operations can be performed. 32-megabit (2M x 16) 3-volt Only Flash Memory # AT49BV320C AT49BV320CT # Not Recommended for New Design Contact Atmel to discuss the latest design in trends and options 3372F-FLASH-4/05 ## 2. Pin Configurations | Pin Name | Function | | |--------------|---------------------|--| | A0 - A20 | Addresses | | | CE | Chip Enable | | | ŌĒ | Output Enable | | | WE | Write Enable | | | RESET | Reset | | | VPP | Write Protection | | | I/O0 - I/O15 | Data Inputs/Outputs | | | NC | No Connect | | | VCCQ | Output Power Supply | | | WP | Write Protect | | ### 2.1 TSOP Top View (Type 1) ### 2.2 CBGA Top View (Ball Down) ### 3. Block Diagram # 4. Device Operation ### 4.1 Read When the AT49BV320C(T) is in the read mode, with \overline{CE} and \overline{OE} low and \overline{WE} high, the data stored at the memory location determined by the address pins are asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual-line control gives designers flexibility in preventing bus contention. ### 4.2 Command Sequences When the device is first powered on, it will be in the read mode. In order to perform other device functions, a series of command sequences are entered into the device. The command sequences are shown in the "Command Definition Table" on page 15 (I/O8 - I/O15 are don't care inputs for the command codes). The command sequences are written by applying a low pulse on the $\overline{\text{WE}}$ or $\overline{\text{CE}}$ input with $\overline{\text{CE}}$ or $\overline{\text{WE}}$ low (respectively) and $\overline{\text{OE}}$ high. The address and data are latched by the first rising edge of $\overline{\text{CE}}$ or $\overline{\text{WE}}$. Standard microprocessor write timings are used. The address locations used in the command sequences are not affected by entering the command sequences. #### 4.3 Reset A RESET input pin is provided to ease some system applications. When RESET is at a logic high level, the device is in its standard operating mode. A low level on the RESET input halts the present device operation and puts the outputs of the device in a high impedance state. When a high level is reasserted on the RESET pin, the device returns to the read mode, depending upon the state of the control inputs. #### 4.4 Erasure Before a word can be reprogrammed, it must be erased. The erased state of memory bits is a logical "1". The individual sectors can be erased by using the Sector Erase command. #### 4.4.1 Sector Erase The device is organized into 71 sectors (SA0 - SA70) that can be individually erased. The Sector Erase command is a two-bus cycle operation. The sector address and the D0H Data Input command are latched on the rising edge of $\overline{\text{WE}}$. The sector erase starts after the rising edge of $\overline{\text{WE}}$ of the second cycle provided the given sector has not been protected. The erase operation is internally controlled; it will automatically time to completion. The maximum time to erase a sector is t_{SEC} . An attempt to erase a sector that has been protected will result in the operation terminating immediately. ### 4.5 Word Programming Once a memory sector is erased, it is programmed (to a logical "0") on a word-by-word basis. Programming is accomplished via the Internal Device command register and is a two-bus cycle operation. The device will automatically generate the required internal program pulses. Any commands written to the chip during the embedded programming cycle will be ignored. If a hardware reset happens during programming, the data at the location being programmed will be corrupted. Please note that a data "0" cannot be programmed back to a "1"; only erase operations can convert "0"s to "1"s. Programming is completed after the specified t_{BP} cycle time. If the program status bit is a "1", the device was not able to verify that the program operation was performed successfully. The status register indicates the programming status. While the program sequence executes, status bit I/O7 is "0". While programming, the only valid commands are Read Status Register, Program Suspend and Program Resume. #### 4.6 VPP Pin The circuitry of the AT49BV320C(T) is designed so that the device cannot be programmed or erased if the V_{PP} voltage is less that 0.4V. When V_{PP} is at 1.5V or above, normal program and erase operations can be performed. The VPP pin cannot be left floating. ### 4.7 Read Status Register The status register indicates the status of device operations and the success/failure of that operation. The Read Status Register command causes subsequent reads to output data from the status register until another command is issued. To return to reading from the memory, issue a Read command. The status register bits are output on I/O7 - I/O0. The upper byte, I/O15 - I/O8, outputs 00H when a Read Status Register command is issued. The contents of the status register [SR7:SR0] are latched on the falling edge of $\overline{\text{OE}}$ or $\overline{\text{CE}}$ (whichever occurs last), which prevents possible bus errors that might occur if status register contents change while being read. $\overline{\text{CE}}$ or $\overline{\text{OE}}$ must be toggled with each subsequent status read, or the status register will not indicate completion of a Program or Erase operation. When the Write State Machine (WSM) is active, SR7 will indicate the status of the WSM; the remaining bits in the status register indicate whether the WSM was successful in performing the preferred operation (see Table 4-1). **Table 4-1.** Status Register Bit Definition | WSMS | ESS | ES | PS | VPPS | PSS | SLS | R | |--|---|---------------|--|---|--|----------------------------------|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | No | tes | | | SR7 WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy | | | | | ate Machine bit fi
completion, befo | | | | 1 = Erase Susp | SUSPEND STAT
pended
rogress/Complete | , , | | both WSMS and | uspend is issued,
d ESS bits to "1"
me command is i | – ESS bit remain | | | 1 = Error in Se | SR5 = ERASE STATUS (ES) 1 = Error in Sector Erase 0 = Successful Sector Erase | | | | set to "1", WSM
the sector and is | | | | SR4 = PROGRAM STATUS (PS) 1 = Error in Programming 0 = Successful Programming | | | When this bit is program a word | set to "1", WSM | has attempted bu | ut failed to | | | SR3 = VPP STATUS (VPPS) 1 = VPP Low Detect, Operation Abort 0 = VPP OK | | | level. The WSM
Erase comman
system if V _{PP} ha | bit does not provi
I interrogates V _{PF}
d sequences hav
as not been switc
ation is verified b | level only after to been entered a hed on. The V _{PP} | he Program or
and informs the | | | SR2 = PROGRAM SUSPEND STATUS (PSS) 1 = Program Suspended 0 = Program in Progress/Completed | | sets both WSM | Suspend is issue
S and PSS bits to
Resume comma | o "1". PSS bit ren | | | | | 1 = Prog/Erase | SR1 = SECTOR LOCK STATUS 1 = Prog/Erase attempted on a locked sector; Operation aborted. 0 = No operation to locked sectors | | sectors, this bit | Erase operation is set by the WSI device is returned | M. The operation | specified is | | | SR0 = RESERVED FOR FUTURE ENHANCEMENTS (R) | | | ved for future use
e status register. | e and should be r | nasked out | | | Note: 1. A Command Sequence Error is
indicated when SR1, SR3, SR4 and SR5 are set. #### 4.7.1 Clear Status Register The WSM can set status register bits 1 through 7 and can clear bits 2, 6 and 7; but, the WSM cannot clear status register bits 1, 3, 4 or 5. Because bits 1, 3, 4 and 5 indicate various error conditions, these bits can be cleared only through the Clear Status Register command. By allowing the system software to control the resetting of these bits, several operations may be performed (such as cumulatively programming several addresses or erasing multiple sectors in sequence) before reading the status register to determine if an error occurred during those operations. The status register should be cleared before beginning another operation. The Read command must be issued before data can be read from the memory array. The status register can also be cleared by resetting the device. #### 4.8 Flexible Sector Protection The AT49BV320C(T) offers two sector protection modes, the Softlock and the Hardlock. The Softlock mode is optimized as sector protection for sectors whose content changes frequently. The Hardlock protection mode is recommended for sectors whose content changes infrequently. Once either of these two modes is enabled, the contents of the selected sector is read-only and cannot be erased or programmed. Each sector can be independently programmed for either the Softlock or Hardlock sector protection mode. At power-up and reset, all sectors have their Softlock protection mode enabled. #### 4.8.1 Softlock and Unlock The Softlock protection mode can be disabled by issuing a two-bus cycle Unlock command to the selected sector. Once a sector is unlocked, its contents can be erased or programmed. To enable the Softlock protection mode, a two-bus cycle Softlock command must be issued to the selected sector. #### 4.8.2 Hardlock and Write Protect The Hardlock sector protection mode operates in conjunction with the Write Protect (\overline{WP}) pin. The Hardlock sector protection mode can be enabled by issuing a two-bus cycle Hardlock Software command to the selected sector. The state of the Write Protect pin affects whether the Hardlock protection mode can be overridden. - When the WP pin is low and the Hardlock protection mode is enabled, the sector cannot be unlocked and the contents of the sector is read-only. - When the WP pin is high, the Hardlock protection mode is overridden and the sector can be unlocked via the Unlock command. To disable the Hardlock sector protection mode, the chip must be either reset or power cycled. **Table 4-2.** Hardlock and Softlock Protection Configurations in Conjunction with $\overline{\text{WP}}$ | V _{PP} | WP | Hard-
lock | Soft-
lock | Erase/
Prog
Allowed? | Comments | |---------------------|----|---------------|---------------|----------------------------|---| | V _{CC} /5V | 0 | 0 | 0 | Yes | No sector is locked | | V _{CC} /5V | 0 | 0 | 1 | No | Sector is Softlocked. The Unlock command can unlock the sector. | | V _{CC} /5V | 0 | 1 | 1 | No | Hardlock protection mode is enabled. The sector cannot be unlocked. | | V _{CC} /5V | 1 | 0 | 0 | Yes | No sector is locked. | | V _{CC} /5V | 1 | 0 | 1 | No | Sector is Softlocked. The Unlock command can unlock the sector. | | V _{CC} /5V | 1 | 1 | 0 | Yes | Hardlock protection mode is overridden and the sector is not locked. | | V _{CC} /5V | 1 | 1 | 1 | No | Hardlock protection mode is overridden and the sector can be unlocked via the Unlock command. | | V _{IL} | х | х | х | No | Erase and Program Operations cannot be performed. | Figure 4-1. Sector Locking State Diagram Note: 1. The notation [X, Y, Z] denotes the locking state of a sector. The current locking state of a sector is defined by the state of WP and the two bits of the sector-lock status D[1:0]. #### 4.8.3 Sector Protection Detection A software method is available to determine if the sector protection Softlock or Hardlock features are enabled. When the device is in the software product identification mode, a read from the I/O0 and I/O1 at address location 00002H within a sector will show if the sector is unlocked, softlocked, or hardlocked. **Table 4-3.** Sector Protection Status | I/O1 | I/O0 | Sector Protection Status | |------|------|------------------------------------| | 0 | 0 | Sector Not Locked | | 0 | 1 | Softlock Enabled | | 1 | 0 | Hardlock Enabled | | 1 | 1 | Both Hardlock and Softlock Enabled | ### 4.9 Erase Suspend/Erase Resume The Erase Suspend command allows the system to interrupt a sector erase operation and then program or read data from a different sector within the memory. After the Erase Suspend command is given, the device requires a maximum time of 15 µs to suspend the erase operation. After the erase operation has been suspended, the system can then read data or program data to any other sector within the device. An address is not required during the Erase Suspend command. During a sector erase suspend, another sector cannot be erased. To resume the sector erase operation, the system must write the Erase Resume command. The Erase Resume command is a one-bus cycle command. The only valid commands while erase is suspended are Read Status Register, Product ID Entry, CFI Query, Program, Program Resume, Erase Resume, Sector Softlock/Hardlock, Sector Unlock. ### 4.10 Program Suspend/Program Resume The Program Suspend command allows the system to interrupt a programming operation and then read data from a different word within the memory. After the Program Suspend command is given, the device requires a maximum of 20 µs to suspend the programming operation. After the programming operation has been suspended, the system can then read data from any other word within the device. An address is not required during the program suspend operation. To resume the programming operation, the system must write the Program Resume command. The program suspend and resume are one-bus cycle commands. The command sequence for the erase suspend and program suspend are the same and the command sequence for the erase resume and program resume are the same. The only other valid commands while program is suspended are Read Status Register, Product ID Entry, CFI Query and Program Resume. #### 4.11 Product Identification 8 The product identification mode identifies the device and manufacturer as Atmel. It may be accessed by a software operation. For details, see "Operating Modes" on page 21. ### 4.12 128-bit Protection Register The AT49BV320C(T) contains a 128-bit register that can be used for security purposes in system design. The protection register is divided into two 64-bit sectors. The two sectors are designated as sector A and sector B. The data in sector A is non-changeable and is programmed at the factory with a unique number. The data in sector B is programmed by the user and can be locked out such that data in the sector cannot be reprogrammed. To program sector B in the protection register, the two-bus cycle Program Protection Register command must be used as shown in the "Command Definition Table" on page 15. To lock out sector B, the two-bus cycle Lock Protection Register command must be used as shown in the "Command Definition Table". Data bit D1 must be zero during the second bus cycle. All other data bits during the second bus cycle are don't cares. To determine whether sector B is locked out, use the status of sector B protection command. If data bit D1 is zero, sector B is locked. If data bit D1 is one, sector B can be reprogrammed. Please see the "Protection Register Addressing Table" on page 16 for the address locations in the protection register. To read the protection register, the Product ID Entry command is given followed by a normal read operation from an address within the protection register. After determining whether sector B is protected or not, or reading the protection register, the Read command must be given to return to the read mode. ### 4.13 Common Flash Interface (CFI) CFI is a published, standardized data structure that may be read from a flash device. CFI allows system software to query the installed device to determine the configurations, various electrical and timing parameters and functions supported by the device. CFI is used to allow the system to learn how to interface to the flash device most optimally. The two primary benefits of using CFI are ease of upgrading and second source availability. The command to enter the CFI Query mode is a one-bus cycle command which requires writing data 98h to any address. The CFI Query command can be written when the device is ready to read data or can also be written when the part is in the product ID mode. Once in the CFI Query mode, the system can read CFI data at the addresses given in "Common Flash Interface Definition Table" on page 27. To return to the read mode, issue the Read command. #### 4.14 Hardware Data Protection The Hardware Data Protection feature protects against inadvertent programs to the AT49BV320C(T) in the following ways: (a) V_{CC} sense: if V_{CC} is below 1.8V (typical), the program function is inhibited. (b) V_{CC} power-on delay: once V_{CC} has reached the V_{CC} sense level, the device will automatically time out 10 ms (typical) before programming. (c) Program inhibit: holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (d) Program inhibit: V_{PP} is less than V_{ILPP} . (e) V_{PP} power-on delay: once V_{PP} has reached 0.9V, program and erase operations are inhibited for 100 ns. INPUT LEVELS: While operating with a 2.65V to 3.6V power supply, the address inputs and control inputs (\overline{OE} , \overline{CE} and \overline{WE}) may be driven from 0 to 5.5V without adversely affecting the operation of the device. The I/O lines can only be driven from 0 to V_{CCQ} + 0.6V. #### 4.15 Output Levels
For the AT49BV320C(T), output high levels (V_{OH}) are equal to V_{CCQ} - 0.1V (not V_{CC}). For 2.65V - 3.6V output levels, V_{CCQ} must be tied to V_{CC} . For 1.8V - 2.2V output levels, V_{CCQ} must be regulated to 2.0V \pm 10%, while V_{CC} must be regulated to 2.65V - 3.0V (for minimum power). ### 5. Word Program Flowchart ### 6. Word Program Procedure | Bus
Operation | Command | Comments | |------------------|------------------|---| | Write | Program
Setup | Data = 40
Addr = Location to program | | Write | Data | Data = Data to program Addr = Location to program | | Read | None | Status register data: Toggle $\overline{\text{CE}}$ or $\overline{\text{OE}}$ to update status register | | Idle | None | Check SR7
1 = WSM Ready
0 = WSM Busy | Repeat for subsequent Word Program operations. Full status register check can be done after each program, or after a sequence of program operations. Write FF after the last operation to set to the Read state. ### 7. Full Status Check Flowchart ### 8. Full Status Check Procedure | Bus
Operation | Command | Comments | |------------------|---------|---| | Idle | None | Check SR3:
1 = V _{PP} Error | | Idle | None | Check SR4:
1 = Data Program Error | | Idle | None | Check SR1:
1 = Sector locked;
operation aborted | SR3 MUST be cleared before the Write State Machine allows further program attempts. If an error is detected, clear the status register before continuing operations – only the Clear Status Register command clears the status register error bits. # 9. Program Suspend/Resume Flowchart # 10. Program Suspend/Resume Procedure | Bus
Operation | Command | Comments | | |------------------|--------------------|--|--| | Write | Read
Status | Data = 70
Addr = Any address | | | Write | Program
Suspend | Data = B0
Addr = Any address | | | Read | None | Status register data: Toggle CE or OE to update status register Addr = Any address | | | Idle | None | Check SR7
1 = WSM Ready
0 = WSM Busy | | | Idle | None | Check SR2 1 = Program suspended 0 = Program completed | | | Write | Read Array | Data = FF
Addr = Any address | | | Read | None | Read data from any word in the memory | | | Write | Program
Resume | Data = D0
Addr = Any address | | # 11. Erase Suspend/Resume Flowchart 12. Erase Suspend/Resume Procedure | Bus
Operation | Command | Comments | |------------------|--------------------|--| | Write | Read
Status | Data = 70
Addr = Any address | | Write | Erase
Suspend | Data = B0
Addr = Any address | | Read | None | Status register data: Toggle \overline{CE} or \overline{OE} to update status register Addr = Any address | | Idle | None | Check SR7 1 = WSM Ready 0 = WSM Busy | | Idle | None | Check SR6 1 = Erase suspended 0 = Erase completed | | Write | Read or
Program | Data = FF or 40
Addr = Any address | | Read or
Write | None | Read or program data from/to sector other than the one being erased | | Write | Program
Resume | Data = D0
Addr = Any address | ### 13. Sector Erase Flowchart ### 14. Sector Erase Procedure | Bus
Operation | Command | Comments | |------------------|--------------------------|--| | Write | Sector
Erase
Setup | Data = 20
Addr = Sector to be erased (SA) | | Write | Erase
Confirm | Data = D0
Addr = Sector to be erased (SA) | | Read | None | Status register data: Toggle CE or OE to update status register data | | Idle | None | Check SR7
1 = WSM Ready
0 = WSM Busy | Repeat for subsequent sector erasures. Full status register check can be done after each sector erase, or after a sequence of sector erasures. Write FF after the last operation to enter read mode. ### 15. Full Erase Status Check Flowchart ### 16. Full Erase Status Check Procedure | Bus
Operation | Command | Comments | |------------------|---------|---| | Idle | None | Check SR3:
1 = V _{PP} Range Error | | Idle | None | Check SR4, SR5:
Both 1 = Command Sequence
Error | | Idle | None | Check SR5:
1 = Sector Erase Error | | Idle | None | Check SR1:
1 = Attempted erase of locked
sector; erase aborted. | SR1, SR3 must be cleared before the Write State Machine allows further erase attempts. Only the Clear Status Register command clears SR1, SR3, SR4, SR5. If an error is detected, clear the status register before attempting an erase retry or other error recovery. # 17. Protection Register Programming Flowchart # 18. Protection Register Programming Procedure | Bus
Operation | Command | Comments | |------------------|-----------------------|--| | Write | Program
PR Setup | Data = C0
Addr = First Location to Program | | Write | Protection
Program | Data = Data to Program Addr = Location to Program | | Read | None | Status register data: Toggle CE or OE to update status register data | | Idle | None | Check SR7
1 = WSM Ready
0 = WSM Busy | Program Protection Register operation addresses must be within the protection register address space. Addresses outside this space will return an error. Repeat for subsequent programming operations. Full status register check can be done after each program, or after a sequence of program operations. Write FF after the last operation to return to the Read mode. ### 19. Full Status Check Flowchart ### 20. Full Status Check Procedure | Bus
Operation | Command | Comments | |------------------|---------|--| | ldle | None | Check SR1, SR3, SR4:
0,1,1 = V _{PP} Range Error | | Idle | None | Check SR1, SR3, SR4:
0,0,1 = Programming Error | | Idle | None | Check SR1, SR3, SR4:
1, 0,1 = Sector locked; operation
aborted | SR3 must be cleared before the Write State Machine allows further program attempts. Only the Clear Status Register command clears SR1, SR3, SR4. If an error is detected, clear the status register before attempting a program retry or other error recovery. ### 21. Command Definition Table | | Bus | | 1st Bus
Cycle | | Bus
cle | |-------------------------------------|--------|------|------------------|-------------------|---------------------------------| | Command Sequence | Cycles | Addr | Data | Addr | Data | | Read | 1 | XX | FF | | | | Sector Erase/Confirm | 2 | XX | 20 | SA ⁽²⁾ | D0 | | Word Program | 2 | XX | 40/10 | Addr | D _{IN} | | Erase/Program Suspend | 1 | XX | В0 | | | | Erase/Program Resume | 1 | XX | D0 | | | | Product ID Entry | 1 | XX | 90 | | | | Sector Softlock | 2 | XX | 60 | SA ⁽²⁾ | 01 | | Sector Hardlock | 2 | XX | 60 | SA ⁽²⁾ | 2F | | Sector Unlock | 2 | XX | 60 | SA ⁽²⁾ | D0 | | Read Status Register | 2 | XX | 70 | XX | D _{OUT} ⁽³⁾ | | Clear Status Register | 1 | XX | 50 | | | | Program Protection Register | 2 | XX | C0 | Addr | D _{IN} | | Lock Protection Register – Sector B | 2 | XX | C0 | 80 | FFFD | | Status of Sector B Protection | 2 | XX | 90 | 80 | D _{OUT} ⁽⁴⁾ | | CFI Query | 1 | XX | 98 | | | Notes: - 1. The DATA FORMAT shown for each bus cycle is as follows; I/O7 I/O0 (Hex). I/O15 I/O8 are don't care. The ADDRESS FORMAT shown for each bus cycle is as follows: A7 A0 (Hex). Address A20 through A8 are don't care. - 2. SA = sector address. Any word address within a sector can be used to designate the sector address (see pages 17 and 20 for details). - 3. The status register bits are output on I/O7 I/O0. - 4. If data bit D1 is "0", sector B is locked. If data bit D1 is "1", sector B can be reprogrammed. # 22. Absolute Maximum Ratings* | Temperature under Bias55°C to +125°C | С | |--|---| | Storage Temperature65°C to +150°C | С | | All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25 | V | | All Output Voltages with Respect to Ground0.6V to V _{CC} + 0.6V | V | | Voltage on V _{PP} with Respect to Ground0.6V to +13.0° | V | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. # 23. Protection Register Addressing Table | Word | Use | Sector | A 7 | A6 | A 5 | A 4 | А3 | A2 | A 1 | A0 | |------|---------|--------|------------|----|------------|------------|----|----|------------|----| | 0 | Factory | Α | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 1 | Factory | Α | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 2 | Factory | Α | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | 3 | Factory | Α | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 4 | User | В | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | 5 | User | В | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | 6 | User | В | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | 7 | User | В | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Note: All address lines not specified in the above table must be "0" when accessing the protection register, i.e., A20 - A8 = 0. # 24. AT49BV320C - Sector Address Table | Sector | Size (Bytes/Words) | Address Range (A20 - A0) | | |--------|--------------------|--------------------------|--| | SA0 | 8K/4K | 00000 - 00FFF | | | SA1 | 8K/4K | 01000 - 01FFF | | | SA2 | 8K/4K | 02000 - 02FFF | | | SA3 | 8K/4K | 03000 - 03FFF | | | SA4 | 8K/4K | 04000 - 04FFF | | | SA5 | 8K/4K | 05000 - 05FFF | | | SA6 |
8K/4K | 06000 - 06FFF | | | SA7 | 8K/4K | 07000 - 07FFF | | | SA8 | 64K/32K | 08000 - 0FFFF | | | SA9 | 64K/32K | 10000 - 17FFF | | | SA10 | 64K/32K | 18000 - 1FFFF | | | SA11 | 64K/32K | 20000 - 27FFF | | | SA12 | 64K/32K | 28000 - 2FFFF | | | SA13 | 64K/32K | 30000 - 37FFF | | | SA14 | 64K/32K | 38000 - 3FFFF | | | SA15 | 64K/32K | 40000 - 47FFF | | | SA16 | 64K/32K | 48000 - 4FFFF | | | SA17 | 64K/32K | 50000 - 57FFF | | | SA18 | 64K/32K | 58000 - 5FFFF | | | SA19 | 64K/32K | 60000 - 67FFF | | | SA20 | 64K/32K | 68000 - 6FFFF | | | SA21 | 64K/32K | 70000 - 77FFF | | | SA22 | 64K/32K | 78000 - 7FFFF | | | SA23 | 64K/32K | 80000 - 87FFF | | | SA24 | 64K/32K | 88000 - 8FFFF | | | SA25 | 64K/32K | 90000 - 97FFF | | | SA26 | 64K/32K | 98000 - 9FFFF | | | SA27 | 64K/32K | A0000 - A7FFF | | | SA28 | 64K/32K | A8000 - AFFFF | | | SA29 | 64K/32K | B0000 - B7FFF | | | SA30 | 64K/32K | B8000 - BFFFF | | | SA31 | 64K/32K | C0000 - C7FFF | | | SA32 | 64K/32K | C8000 - CFFFF | | | SA33 | 64K/32K | D0000 - D7FFF | | | SA34 | 64K/32K | D8000 - DFFFF | | | SA35 | 64K/32K | E0000 - E7FFF | | | SA36 | 64K/32K | E8000 - EFFFF | | | SA37 | 64K/32K | F0000 - F7FFF | | # 24. AT49BV320C - Sector Address Table (Continued) | Sector | Size (Bytes/Words) | Address Range (A20 - A0) | | |--------|--------------------|--------------------------|--| | SA38 | 64K/32K | F8000 - FFFFF | | | SA39 | 64K/32K | 100000 - 107FFF | | | SA40 | 64K/32K | 108000 - 10FFFF | | | SA41 | 64K/32K | 110000 - 117FFF | | | SA42 | 64K/32K | 118000 - 11FFFF | | | SA43 | 64K/32K | 120000 - 127FFF | | | SA44 | 64K/32K | 128000 - 12FFFF | | | SA45 | 64K/32K | 130000 - 137FFF | | | SA46 | 64K/32K | 138000 - 13FFFF | | | SA47 | 64K/32K | 140000 - 147FFF | | | SA48 | 64K/32K | 148000 - 14FFFF | | | SA49 | 64K/32K | 150000 - 157FFF | | | SA50 | 64K/32K | 158000 - 15FFFF | | | SA51 | 64K/32K | 160000 - 167FFF | | | SA52 | 64K/32K | 168000 - 16FFFF | | | SA53 | 64K/32K | 170000 - 177FFF | | | SA54 | 64K/32K | 178000 - 17FFFF | | | SA55 | 64K/32K | 180000 - 187FFF | | | SA56 | 64K/32K | 188000 - 18FFFF | | | SA57 | 64K/32K | 190000 - 197FFF | | | SA58 | 64K/32K | 198000 - 19FFFF | | | SA59 | 64K/32K | 1A0000 - 1A7FFF | | | SA60 | 64K/32K | 1A8000 - 1AFFFF | | | SA61 | 64K/32K | 1B0000 - 1B7FFF | | | SA62 | 64K/32K | 1B8000 - 1BFFFF | | | SA63 | 64K/32K | 1C0000 - 1C7FFF | | | SA64 | 64K/32K | 1C8000 - 1CFFFF | | | SA65 | 64K/32K | 1D0000 - 1D7FFF | | | SA66 | 64K/32K | 1D8000 - 1DFFFF | | | SA67 | 64K/32K | 1E0000 - 1E7FFF | | | SA68 | 64K/32K | 1E8000 - 1EFFFF | | | SA69 | 64K/32K | 1F0000 -1F7FFF | | | SA70 | 64K/32K | 1F8000 - 1FFFF | | # 25. AT49BV320CT - Sector Address Table | SA0 64K/32K 00000 - 07FFF SA1 64K/32K 08000 - 0FFFF SA2 64K/32K 10000 - 17FFF SA3 64K/32K 18000 - 17FFF SA4 64K/32K 20000 - 27FFF SA5 64K/32K 20000 - 27FFF SA6 64K/32K 38000 - 3FFFF SA7 64K/32K 38000 - 3FFFF SA8 64K/32K 40000 - 47FFF SA9 64K/32K 40000 - 47FFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 50000 - 57FFF SA12 64K/32K 50000 - 57FFF SA13 64K/32K 60000 - 67FFF SA14 64K/32K 60000 - 67FFF SA15 64K/32K 70000 - 77FFF SA16 64K/32K 70000 - 77FFF SA16 64K/32K 90000 - 67FFF SA16 64K/32K 90000 - 67FFF SA16 64K/32K 90000 - 67FFF SA18 64K/32K 90000 - 67FFF | Sector | Size (Bytes/Words) | Address Range (A20 - A0) | | |--|--------|--------------------|--------------------------|--| | SA2 64K/32K 10000 - 17FFF SA3 64K/32K 18000 - 1FFFF SA4 64K/32K 20000 - 27FFF SA6 64K/32K 28000 - 2FFFF SA6 64K/32K 30000 - 37FFF SA7 64K/32K 38000 - 3FFFF SA8 64K/32K 40000 - 4FFFF SA9 64K/32K 50000 - 57FFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 50000 - 57FFF SA12 64K/32K 60000 - 67FFF SA13 64K/32K 60000 - 67FFF SA14 64K/32K 60000 - 67FFF SA15 64K/32K 70000 - 77FFF SA16 64K/32K 70000 - 77FFF SA15 64K/32K 80000 - 87FFF SA16 64K/32K 80000 - 87FFF SA18 64K/32K 80000 - 87FFF SA19 64K/32K 90000 - 97FFF SA20 64K/32K 80000 - 87FFF SA21 64K/32K 80000 - 87FFF | SA0 | 64K/32K | 00000 - 07FFF | | | SA3 64K/32K 18000 - 1FFFF SA4 64K/32K 20000 - 27FFF SA5 64K/32K 28000 - 27FFF SA6 64K/32K 30000 - 37FFF SA7 64K/32K 30000 - 37FFF SA8 64K/32K 40000 - 47FFF SA9 64K/32K 40000 - 57FFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 50000 - 57FFF SA12 64K/32K 60000 - 67FFF SA13 64K/32K 60000 - 67FFF SA14 64K/32K 70000 - 77FFF SA15 64K/32K 70000 - 77FFF SA16 64K/32K 80000 - 87FFF SA17 64K/32K 80000 - 87FFF SA18 64K/32K 80000 - 97FFF SA19 64K/32K 80000 - 97FFF SA20 64K/32K 90000 - 97FFF SA21 64K/32K 80000 - 97FFF SA22 64K/32K 80000 - 97FFF SA23 64K/32K 80000 - 97FFF | SA1 | 64K/32K | 08000 - 0FFFF | | | SA4 64K/32K 2000 - 27FFF SA5 64K/32K 2800 - 27FFF SA6 64K/32K 3000 - 37FFF SA7 64K/32K 3000 - 37FFF SA8 64K/32K 4000 - 47FFF SA9 64K/32K 48000 - 47FFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 50000 - 57FFF SA12 64K/32K 60000 - 67FFF SA13 64K/32K 60000 - 67FFF SA14 64K/32K 70000 - 77FFF SA15 64K/32K 70000 - 77FFF SA16 64K/32K 70000 - 77FFF SA17 64K/32K 80000 - 87FFF SA18 64K/32K 80000 - 87FFF SA19 64K/32K 90000 - 97FFF SA20 64K/32K 90000 - 97FFF SA21 64K/32K 90000 - 97FFF SA22 64K/32K 90000 - 97FFF SA21 64K/32K 8000 - 87FFF SA22 64K/32K 8000 - 87FFF <td< td=""><td>SA2</td><td>64K/32K</td><td>10000 - 17FFF</td></td<> | SA2 | 64K/32K | 10000 - 17FFF | | | SA5 64K/32K 28000 - 2FFFF SA6 64K/32K 3000 - 37FFF SA7 64K/32K 38000 - 3FFFF SA8 64K/32K 40000 - 4FFFF SA9 64K/32K 48000 - 4FFF SA10 64K/32K 50000 - 5FFF SA11 64K/32K 58000 - 5FFF SA12 64K/32K 68000 - 6FFF SA13 64K/32K 68000 - 6FFF SA14 64K/32K 68000 - 6FFF SA15 64K/32K 70000 - 77FFF SA16 64K/32K 70000 - 77FFF SA17 64K/32K 80000 - 8FFFF SA19 64K/32K 80000 - 9FFFF SA20 64K/32K 98000 - 9FFFF SA21 64K/32K 80000 - 9FFFF SA22 64K/32K 80000 - 9FFFF SA23 64K/32K 80000 - 9FFFF SA24 64K/32K 80000 - 9FFFF SA25 64K/32K 80000 - 9FFFF SA26 64K/32K 00000 - 0FFFF <t< td=""><td>SA3</td><td>64K/32K</td><td>18000 - 1FFFF</td></t<> | SA3 | 64K/32K | 18000 - 1FFFF | | | SA6 64K/32K 30000 - 37FFF SA7 64K/32K 38000 - 3FFFF SA8 64K/32K 40000 - 47FFF SA9 64K/32K 48000 - 4FFFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 58000 - 5FFFF SA12 64K/32K 60000 - 67FFF SA13 64K/32K 60000 - 77FFF SA14 64K/32K 70000 - 77FFF SA15 64K/32K 78000 - 77FFF SA16 64K/32K 78000 - 77FFF SA17 64K/32K 88000 - 87FFF SA18 64K/32K 88000 - 97FFF SA19 64K/32K 90000 - 97FFF SA20 64K/32K 88000 - 9FFFF SA21 64K/32K 88000 - 9FFFF SA22 64K/32K 88000 - 9FFFF SA23 64K/32K 88000 - 9FFFF SA24 64K/32K 88000 - 9FFFF SA25 64K/32K 08000 - 0FFFF SA26 64K/32K 08000 - 0FFFF | SA4 | 64K/32K | 20000 - 27FFF | | | SA7 64K/32K 38000 - 3FFFF SA8 64K/32K 40000 - 47FFF SA9 64K/32K 48000 - 4FFFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 58000 - 5FFF SA12 64K/32K 68000 - 6FFF SA13 64K/32K 68000 - 6FFF SA14 64K/32K 70000 - 7FFF SA15 64K/32K 78000 - 7FFF SA16 64K/32K 80000 - 8FFF SA16 64K/32K 80000 - 8FFF SA17 64K/32K 80000 - 8FFF SA18 64K/32K 90000 - 97FF SA19 64K/32K 98000 - 9FFF SA20 64K/32K 98000 - 9FFF SA21 64K/32K 88000 - 8FFF SA22 64K/32K 88000 - 8FFF SA23 64K/32K 88000 - 8FFF SA24 64K/32K 88000 - 8FFF SA25 64K/32K 88000 - 8FFF SA26 64K/32K 80000 - 6FFF SA26 </td <td>SA5</td> <td>64K/32K</td> <td>28000 - 2FFFF</td> | SA5 | 64K/32K | 28000 - 2FFFF | | | SAB 64K/32K 40000 - 47FFF SA9 64K/32K 48000 - 4FFFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 58000 - 5FFFF SA12 64K/32K 68000 - 6FFFF SA13 64K/32K 68000 - 6FFFF SA14 64K/32K 78000 - 7FFF SA15 64K/32K 78000 - 7FFF SA16 64K/32K 80000 - 8FFFF SA17 64K/32K 88000 - 8FFFF SA18 64K/32K 90000 - 9FFFF SA20 64K/32K 98000 - 9FFFF SA21 64K/32K 98000 - 9FFFF SA22 64K/32K 98000 - 8FFFF SA23 64K/32K 98000 - 8FFFF SA24 64K/32K 98000 - 8FFFF SA25 64K/32K 88000 - 8FFFF SA26 64K/32K 88000 - 8FFFF SA27 64K/32K 80000 - 8FFFF SA26 64K/32K 00000 - 07FFF SA28 64K/32K 00000 - 07FFF | SA6 | 64K/32K | 30000 - 37FFF | | | SA9 64K/32K 48000 - 4FFFF SA10 64K/32K 50000 - 57FFF SA11 64K/32K 58000 - 5FFFF SA12 64K/32K 66000 - 6FFFF SA13 64K/32K 68000 - 6FFFF SA14 64K/32K 78000 - 7FFF SA15 64K/32K 78000 - 7FFF SA16 64K/32K 80000 - 8FFF SA17 64K/32K 80000 - 8FFF SA18 64K/32K 9000 - 9FFF SA19 64K/32K 98000 - 9FFF SA20 64K/32K 98000 - 9FFF SA21 64K/32K 80000 - 8FFF SA22 64K/32K 80000 - 8FFF SA23 64K/32K 80000 - 8FFF SA24 64K/32K 80000 - 8FFF SA25 64K/32K 00000 - 07FFF SA26 64K/32K 00000 - 07FFF SA27 64K/32K 00000 - 07FFF SA28 64K/32K 00000 - 07FFF SA29 64K/32K 60000 - 67FFF <td< td=""><td>SA7</td><td>64K/32K</td><td>38000 - 3FFFF</td></td<> | SA7 | 64K/32K | 38000 - 3FFFF | | | SA10 64K/32K 5000 - 57FFF SA11 64K/32K 58000 - 5FFFF SA12 64K/32K 60000 - 67FFF SA13 64K/32K 68000 - 6FFFF SA14 64K/32K 70000 - 7FFF SA15 64K/32K 78000 - 7FFF SA16 64K/32K 80000 - 87FFF SA17 64K/32K 88000 - 8FFFF SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K 38000 - 8FFFF SA21 64K/32K 98000 - 9FFFF SA22 64K/32K 80000 - 8FFFF SA23 64K/32K 98000 - 9FFFF SA24 64K/32K 80000 - 8FFFF SA23 64K/32K 80000 - 8FFFF SA24 64K/32K 80000 -
8FFFF SA25 64K/32K 80000 - 8FFFF SA26 64K/32K 00000 - 07FFF SA27 64K/32K 00000 - 07FFF SA28 64K/32K 00000 - 07FFF | SA8 | 64K/32K | 40000 - 47FFF | | | SA11 64K/32K 58000 - 5FFFF SA12 64K/32K 60000 - 67FFF SA13 64K/32K 68000 - 6FFFF SA14 64K/32K 70000 - 77FFF SA15 64K/32K 78000 - 7FFFF SA16 64K/32K 80000 - 87FFF SA17 64K/32K 88000 - 9FFFF SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K 98000 - 9FFFF SA21 64K/32K 80000 - AFFFF SA22 64K/32K B0000 - BFFFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K B8000 - BFFFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - DFFFF SA27 64K/32K B0000 - BFFFF SA28 64K/32K E0000 - EFFFF SA29 64K/32K E0000 - EFFFF SA30 64K/32K F0000 - FFFFF SA31 64K/32K F0000 - FFFFF <tr< td=""><td>SA9</td><td>64K/32K</td><td>48000 - 4FFFF</td></tr<> | SA9 | 64K/32K | 48000 - 4FFFF | | | SA12 64K/32K 60000 - 67FFF SA13 64K/32K 68000 - 6FFFF SA14 64K/32K 70000 - 77FFF SA15 64K/32K 78000 - 7FFFF SA16 64K/32K 80000 - 87FFF SA17 64K/32K 88000 - 9FFFF SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K 38000 - 4FFFF SA21 64K/32K 80000 - 4FFFF SA22 64K/32K 80000 - 8FFFF SA23 64K/32K 80000 - 8FFFF SA24 64K/32K 80000 - 8FFFF SA25 64K/32K 6000 - 6FFFF SA26 64K/32K 00000 - 07FFF SA27 64K/32K 00000 - 07FFF SA28 64K/32K 00000 - 0FFFF SA29 64K/32K 60000 - 6FFFF SA30 64K/32K 60000 - 6FFFF SA31 64K/32K 60000 - 6FFFF SA32 64K/32K 60000 - 6FFFF | SA10 | 64K/32K | 50000 - 57FFF | | | SA13 64K/32K 6800 - 6FFFF SA14 64K/32K 7000 - 77FFF SA15 64K/32K 78000 - 7FFFF SA16 64K/32K 80000 - 87FFF SA17 64K/32K 88000 - 8FFFF SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K A0000 - A7FFF SA21 64K/32K A8000 - B7FFF SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F0000 - F7FFF SA32 64K/32K 10000 - 107FFF SA33 64K/32K 100000 - 107FFF <t< td=""><td>SA11</td><td>64K/32K</td><td>58000 - 5FFFF</td></t<> | SA11 | 64K/32K | 58000 - 5FFFF | | | SA14 64K/32K 7000 - 77FFF SA15 64K/32K 7800 - 7FFFF SA16 64K/32K 8000 - 87FFF SA17 64K/32K 88000 - 8FFFF SA18 64K/32K 9000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K A0000 - A7FFF SA21 64K/32K A8000 - B7FFF SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D8000 - DFFFF SA28 64K/32K D8000 - DFFFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K E8000 - FFFF SA31 64K/32K F8000 - FFFF SA32 64K/32K 10000 - 107FFF SA33 64K/32K 10000 - 107FFF SA34 64K/32K 10000 - 107FFF SA35 64K/32K 118000 - 11FFF | SA12 | 64K/32K | 60000 - 67FFF | | | SA15 64K/32K 78000 - 7FFFF SA16 64K/32K 80000 - 87FFF SA17 64K/32K 88000 - 8FFFF SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K A0000 - A7FFF SA21 64K/32K A8000 - AFFFF SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E8000 - EFFFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F8000 - FFFF SA31 64K/32K F8000 - FFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 100000 - 107FFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 117FFF < | SA13 | 64K/32K | 68000 - 6FFFF | | | SA16 64K/32K 80000 - 87FFF SA17 64K/32K 88000 - 8FFFF SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K A0000 - A7FFF SA21 64K/32K A8000 - AFFFF SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E8000 - EFFFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F8000 - FFFFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 107FFF SA34 64K/32K 118000 - 117FFF SA35 64K/32K 118000 - 127FFF | SA14 | 64K/32K | 70000 - 77FFF | | | SA17 64K/32K 88000 - 8FFFF SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K A0000 - A7FFF SA21 64K/32K B0000 - B7FFF SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F0000 - F7FFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 100000 - 107FFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 118000 - 117FFF | SA15 | 64K/32K | 78000 - 7FFFF | | | SA18 64K/32K 90000 - 97FFF SA19 64K/32K 98000 - 9FFFF SA20 64K/32K A0000 - A7FFF SA21 64K/32K A8000 - AFFFF SA22 64K/32K B0000 - B7FF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F8000 - FFFFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 100000 - 107FFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 118000 - 127FFF | SA16 | 64K/32K | 80000 - 87FFF | | | SA19 64K/32K 98000 - 9FFFF SA20 64K/32K A0000 - A7FFF SA21 64K/32K A8000 - AFFFF SA22 64K/32K B0000 - BFFFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 10000 - 107FFF SA33 64K/32K 10000 - 107FFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 118000 - 117FFF | SA17 | 64K/32K | 88000 - 8FFFF | | | SA20 64K/32K A0000 - A7FFF SA21 64K/32K A8000 - AFFFF SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 118000 - 127FFF | SA18 | 64K/32K | 90000 - 97FFF | | | SA21 64K/32K A8000 - AFFFF SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E8000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 100000 - 107FFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA19 | 64K/32K | 98000 - 9FFFF | | | SA22 64K/32K B0000 - B7FFF SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA20 | 64K/32K | A0000 - A7FFF | | | SA23 64K/32K B8000 - BFFFF SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - DFFFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA21 | 64K/32K | A8000 - AFFFF | | | SA24 64K/32K C0000 - C7FFF SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA22 | 64K/32K | B0000 - B7FFF | | | SA25 64K/32K C8000 - CFFFF SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA23 | 64K/32K | B8000 - BFFFF | | | SA26 64K/32K D0000 - D7FFF SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA24 | 64K/32K | C0000 - C7FFF | | | SA27 64K/32K D8000 - DFFFF SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA25 | 64K/32K | C8000 - CFFFF | | | SA28 64K/32K E0000 - E7FFF SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA26 | 64K/32K | D0000 - D7FFF | | | SA29 64K/32K E8000 - EFFFF SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA27 | 64K/32K | D8000 - DFFFF | | | SA30 64K/32K F0000 - F7FFF SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA28 | 64K/32K | E0000 - E7FFF | | | SA31 64K/32K F8000 - FFFFF SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA29 | 64K/32K | E8000 - EFFFF | | | SA32 64K/32K 100000 - 107FFF SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35
64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA30 | 64K/32K | F0000 - F7FFF | | | SA33 64K/32K 108000 - 10FFFF SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA31 | 64K/32K | F8000 - FFFFF | | | SA34 64K/32K 110000 - 117FFF SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA32 | 64K/32K | 100000 - 107FFF | | | SA35 64K/32K 118000 - 11FFFF SA36 64K/32K 120000 - 127FFF | SA33 | 64K/32K | 108000 - 10FFFF | | | SA36 64K/32K 120000 - 127FFF | SA34 | 64K/32K | 110000 - 117FFF | | | | SA35 | 64K/32K | 118000 - 11FFFF | | | | SA36 | 64K/32K | 120000 - 127FFF | | | | SA37 | 64K/32K | 128000 - 12FFFF | | # 25. AT49BV320CT – Sector Address Table (Continued) | SA38 64K/32K 130000 - 137FFF SA99 64K/32K 138000 - 137FFF SA40 64K/32K 148000 - 147FFF SA41 64K/32K 148000 - 147FFF SA42 64K/32K 150000 - 157FFF SA43 64K/32K 150000 - 167FFF SA44 64K/32K 160000 - 167FFF SA45 64K/32K 170000 - 177FFF SA46 64K/32K 170000 - 177FFF SA47 64K/32K 170000 - 177FFF SA48 64K/32K 180000 - 187FFF SA49 64K/32K 180000 - 187FFF SA50 64K/32K 180000 - 187FFF SA51 64K/32K 180000 - 187FFF SA52 64K/32K 180000 - 187FFF SA53 64K/32K 180000 - 187FFF SA54 64K/32K 180000 - 187FFF SA53 64K/32K 180000 - 187FFF SA54 64K/32K 180000 - 187FFF SA55 64K/32K 180000 - 187FFF SA56 64K/32K | Sector | Size (Bytes/Words) | Address Range (A20 - A0) | |---|--------|--------------------|--------------------------| | SA40 64K/32K 140000 - 147FFF SA41 64K/32K 148000 - 14FFFF SA42 64K/32K 150000 - 157FFF SA43 64K/32K 158000 - 15FFFF SA44 168000 - 16FFFF SA45 64K/32K 168000 - 16FFFF SA46 64K/32K 170000 - 17FFF SA47 64K/32K 178000 - 17FFF SA48 64K/32K 180000 - 187FFF SA49 64K/32K 180000 - 187FFF SA51 64K/32K 180000 - 19FFF SA52 64K/32K 190000 - 19FFF SA53 64K/32K 198000 - 19FFF SA52 64K/32K 198000 - 19FFF SA53 64K/32K 180000 - 187FFF SA54 64K/32K 180000 - 19FFF SA53 64K/32K 180000 - 187FFF SA54 64K/32K 180000 - 187FFF SA55 64K/32K 180000 - 187FFF SA56 64K/32K 180000 - 187FFF SA57 64K/32K 100000 - 100FFF <td>SA38</td> <td>64K/32K</td> <td>130000 - 137FFF</td> | SA38 | 64K/32K | 130000 - 137FFF | | SA41 64K/32K 148000 - 14FFFF SA42 64K/32K 150000 - 15FFF SA43 64K/32K 158000 - 15FFFF SA44 64K/32K 168000 - 16FFFF SA45 64K/32K 168000 - 16FFFF SA46 64K/32K 170000 - 17FFFF SA47 64K/32K 178000 - 17FFFF SA48 64K/32K 180000 - 18FFFF SA49 64K/32K 180000 - 19FFFF SA51 64K/32K 190000 - 19FFFF SA52 64K/32K 190000 - 19FFFF SA52 64K/32K 190000 - 19FFFF SA53 64K/32K 180000 - 18FFFF SA54 64K/32K 180000 - 18FFFF SA52 64K/32K 180000 - 18FFF SA54 64K/32K 180000 - 18FFF SA55 64K/32K 180000 - 18FFF SA56 64K/32K 180000 - 10FFFF SA58 64K/32K 180000 - 10FFFF SA59 64K/32K 100000 - 10FFFF SA60 64K/32K | SA39 | 64K/32K | 138000 - 13FFFF | | SA42 64K/32K 150000 - 157FFF SA43 64K/32K 158000 - 15FFF SA44 64K/32K 160000 - 167FFF SA45 64K/32K 168000 - 16FFFF SA46 64K/32K 177000 - 177FFF SA47 64K/32K 178000 - 17FFFF SA48 64K/32K 180000 - 187FFF SA49 64K/32K 188000 - 18FFF SA50 64K/32K 190000 - 197FF SA51 64K/32K 190000 - 197FF SA52 64K/32K 188000 - 18FFF SA53 64K/32K 180000 - 187FFF SA54 64K/32K 180000 - 187FFF SA55 64K/32K 180000 - 187FFF SA56 64K/32K 180000 - 187FFF SA55 64K/32K 180000 - 187FFF SA56 64K/32K 180000 - 107FFF SA57 64K/32K 100000 - 107FFF SA59 64K/32K 100000 - 107FFF SA60 64K/32K 100000 - 107FFF SA61 64K/32K 1 | SA40 | 64K/32K | 140000 - 147FFF | | SA43 64K/32K 158000 - 15FFFF SA44 64K/32K 160000 - 167FFF SA45 64K/32K 168000 - 16FFFF SA46 64K/32K 170000 - 177FFF SA47 64K/32K 178000 - 187FFF SA48 64K/32K 188000 - 18FFFF SA49 64K/32K 188000 - 18FFFF SA50 64K/32K 190000 - 197FFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 198000 - 19FFFF SA53 64K/32K 18000 - 18FFFF SA54 64K/32K 18000 - 18FFFF SA55 64K/32K 18000 - 18FFFF SA56 64K/32K 18000 - 18FFFF SA56 64K/32K 18000 - 18FFFF SA57 64K/32K 10000 - 107FFF SA58 64K/32K 10000 - 107FFF SA60 64K/32K 10000 - 107FFF SA61 64K/32K 10000 - 107FFF SA62 64K/32K 10000 - 107FFF SA63 8K/4K 116000 - | SA41 | 64K/32K | 148000 - 14FFFF | | SA44 64K/32K 160000 - 167FFF SA45 64K/32K 168000 - 16FFFF SA46 64K/32K 170000 - 177FFF SA47 64K/32K 178000 - 17FFFF SA48 64K/32K 180000 - 18FFFF SA49 64K/32K 180000 - 18FFFF SA50 64K/32K 190000 - 19FFFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 180000 - 18FFF SA53 64K/32K 180000 - 18FFF SA54 64K/32K 180000 - 18FFF SA55 64K/32K 180000 - 18FFF SA56 64K/32K 180000 - 10FFFF SA57 64K/32K 1C0000 - 10FFFF SA59 64K/32K 1D0000 - 1DFFF SA60 64K/32K 1E0000 - 1EFFF SA61 64K/32K 1E0000 - 1FFFF SA62 64K/32K 1F0000 - 1FFFF SA63 8K/4K 1F0000 - 1FFFF SA63 8K/4K 1F0000 - 1FFFF SA64 8K/4K 1F0000 - 1FF | SA42 | 64K/32K | 150000 - 157FFF | | SA45 64K/32K 168000 - 16FFFF SA46 64K/32K 170000 - 177FFF SA47 64K/32K 178000 - 17FFFF SA48 64K/32K 180000 - 187FFF SA49 64K/32K 188000 - 18FFFF SA50 64K/32K 190000 - 197FFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 180000 - 18FFFF SA53 64K/32K 180000 - 18FFFF SA54 64K/32K 180000 - 18FFFF SA55 64K/32K 180000 - 18FFFF SA56 64K/32K 100000 - 10FFFF SA57 64K/32K 100000 - 10FFFF SA58 64K/32K 100000 - 10FFFF SA59 64K/32K 108000 - 10FFFF SA60 64K/32K 1E0000 - 1EFFF SA61 64K/32K 1E0000 - 1FFFF SA62 64K/32K 1E0000 - 1FFFF SA63 8K/4K 1F8000 - 1F9FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F900 | SA43 | 64K/32K | 158000 - 15FFFF | | SA46 64K/32K 170000 - 177FFF SA47 64K/32K 178000 - 17FFFF SA48 64K/32K 180000 - 187FFF SA49 64K/32K 188000 - 18FFFF SA50 64K/32K 190000 - 197FFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 1A0000 - 1A7FFF SA53 64K/32K 1B0000 - 1BFFFF SA54 64K/32K 1B0000 - 1BFFFF SA55 64K/32K 1B8000 - 1BFFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C0000 - 1CFFFF SA59 64K/32K 1D0000 - 1DFFFF SA60 64K/32K 1D0000 - 1EFFFF SA60 64K/32K 1E0000 - 1EFFF SA61 64K/32K 1E0000 - 1EFFF SA62 64K/32K 1F0000 - 1FFFF SA63 8K/4K 1F0000 - 1FFFF SA64 8K/4K 1F9000 - 1FFFF SA63 8K/4K 1F0000 - 1FFFF SA64 8K/4K 1F0000 - 1 | SA44 | 64K/32K | 160000 - 167FFF | | SA47 64K/32K 178000 - 17FFFF SA48 64K/32K 180000 - 18FFFF SA49 64K/32K 188000 - 18FFFF SA50 64K/32K 190000 - 19FFFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 1A0000 - 1AFFFF SA53 64K/32K 1B0000 - 18FFF SA54 64K/32K 1B0000 - 18FFF SA55 64K/32K 1B8000 - 1BFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C0000 - 1CFFFF SA58 64K/32K 1D000 - 1DFFFF SA59 64K/32K 1D000 - 1DFFFF SA60 64K/32K 1E000 - 1EFFF SA61 64K/32K 1E000 - 1EFFF SA62 64K/32K 1E000 - 1FFFF SA63 8K/4K 1F800 - 1FFFF SA64 8K/4K 1F900 - 1FFFF SA63 8K/4K 1F900 - 1FFFF SA64 8K/4K 1F000 - 1FFFF SA65 8K/4K 1F000 - 1FFFF </td <td>SA45</td> <td>64K/32K</td> <td>168000 - 16FFFF</td> | SA45 | 64K/32K | 168000 - 16FFFF | | SA48 64K/32K 18000 - 187FFF SA49 64K/32K 18600 - 18FFFF SA50 64K/32K 19000 - 197FFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 1A0000 - 1A7FFF SA53 64K/32K 1A8000 - 14FFFF SA54 64K/32K 1B0000 - 18FFFF SA55 64K/32K 1B8000 - 18FFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C0000 - 1CFFFF SA58 64K/32K 1D0000 - 1DFFFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E8000 - 1EFFF SA61 64K/32K 1E8000 - 1EFFF SA62 64K/32K 1E8000 - 1FFFF SA63 8K/4K 1F9000 - 1FFFF SA64 8K/4K 1F9000 - 1FFFF SA63 8K/4K 1F9000 - 1FFFF SA66 8K/4K 1FB000 - 1FFFF SA66 8K/4K 1FD000 - 1FFFF SA67 8K/4K 1FD000 - 1FDFFF <td>SA46</td> <td>64K/32K</td> <td>170000 - 177FFF</td> | SA46 | 64K/32K | 170000 - 177FFF | | SA49 64K/32K 188000 - 18FFFF SA50 64K/32K 190000 - 197FFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 1A0000 - 1A7FFF SA53 64K/32K 1A8000 - 1AFFFF SA54 64K/32K 1B0000 - 1B7FFF SA55 64K/32K 1B8000 - 1BFFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C8000 - 1CFFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E8000 - 1E7FFF SA61 64K/32K 1E8000 - 1E7FFF SA62 64K/32K 1F0000 - 1F7FFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F9000 - 1F9FFF SA66 8K/4K 1F000 - 1F0FFF SA68 8K/4K 1F0000 - 1F0FFF SA69 8K/4K 1F0000 - 1F0FFF | SA47 | 64K/32K | 178000 - 17FFFF | | SA50 64K/32K 190000 - 197FFF SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 1A0000 - 1A7FFF SA53 64K/32K 1A8000 - 1AFFF SA54 64K/32K 1B0000 - 1BFFF SA55 64K/32K 1B8000 - 1BFFF SA56 64K/32K 1C0000 - 1C7FF SA57 64K/32K 1C8000 - 1CFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1EFFFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1FFFF SA63 8K/4K 1F9000 - 1F9FF SA64 8K/4K 1F9000 - 1F9FF SA65 8K/4K 1F9000 - 1F9FF SA66 8K/4K 1F0000 - 1F0FFF SA68 8K/4K 1F0000 - 1F0FFF SA69 8K/4K 1F0000 - 1F0FFF | SA48 | 64K/32K | 180000 - 187FFF | | SA51 64K/32K 198000 - 19FFFF SA52 64K/32K 1A0000 - 1A7FFF SA53 64K/32K 1A8000 - 1AFFFF SA54 64K/32K 1B0000 - 1BFFFF SA55 64K/32K 1B8000 - 1BFFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C8000 - 1CFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1FFFF SA63 8K/4K 1F9000 - 1F9FF SA64 8K/4K 1F9000
- 1F9FF SA65 8K/4K 1F000 - 1F9FF SA66 8K/4K 1F000 - 1F0FFF SA67 8K/4K 1F000 - 1F0FFF SA68 8K/4K 1F000 - 1F0FFF SA69 8K/4K 1F000 - 1F0FFF | SA49 | 64K/32K | 188000 - 18FFFF | | SA52 64K/32K 1A0000 - 1A7FFF SA53 64K/32K 1A8000 - 1AFFFF SA54 64K/32K 1B0000 - 1B7FFF SA55 64K/32K 1B8000 - 1BFFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C8000 - 1CFFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F8000 - 1FFFF SA63 8K/4K 1F8000 - 1F9FFF SA64 8K/4K 1F9000 - 1F9FFF SA66 8K/4K 1F8000 - 1F8FFF SA67 8K/4K 1F0000 - 1F0FFF SA68 8K/4K 1F0000 - 1F0FFF SA69 8K/4K 1F0000 - 1F0FFF | SA50 | 64K/32K | 190000 - 197FFF | | SA53 64K/32K 1A8000 - 1AFFFF SA54 64K/32K 1B0000 - 1B7FFF SA55 64K/32K 1B8000 - 1BFFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C8000 - 1CFFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1FFFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F8000 - 1F0FFF SA67 8K/4K 1F000 - 1F0FFF SA68 8K/4K 1F000 - 1F0FFF SA69 8K/4K 1F000 - 1F0FFF | SA51 | 64K/32K | 198000 - 19FFFF | | SA54 64K/32K 1B000 - 1B7FFF SA55 64K/32K 1B8000 - 1BFFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C8000 - 1CFFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E8000 - 1EFFFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1FFFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F000 - 1F0FFF SA67 8K/4K 1F000 - 1F0FFF SA68 8K/4K 1F000 - 1F0FFF SA69 8K/4K 1F000 - 1F0FFF | SA52 | 64K/32K | 1A0000 - 1A7FFF | | SA55 64K/32K 188000 - 18FFFF SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C8000 - 1CFFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1F7FFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F8000 - 1F0FFF SA67 8K/4K 1F0000 - 1F0FFF SA68 8K/4K 1F0000 - 1F0FFF SA69 8K/4K 1F0000 - 1F0FFF | SA53 | 64K/32K | 1A8000 - 1AFFFF | | SA56 64K/32K 1C0000 - 1C7FFF SA57 64K/32K 1C8000 - 1CFFF SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1F7FFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F8000 - 1F0FFF SA67 8K/4K 1F0000 - 1F0FFF SA68 8K/4K 1F0000 - 1F0FFF | SA54 | 64K/32K | 1B0000 - 1B7FFF | | SA57 64K/32K 1C8000 - 1CFFFF SA58 64K/32K 1D0000 - 1DFFFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1EFFFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1FFFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F000 - 1F0FFF SA67 8K/4K 1F000 - 1F0FFF SA68 8K/4K 1F000 - 1F0FFF SA69 8K/4K 1F000 - 1F0FFF | SA55 | 64K/32K | 1B8000 - 1BFFFF | | SA58 64K/32K 1D0000 - 1D7FFF SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1F7FFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F8000 - 1F8FFF SA67 8K/4K 1F0000 - 1F0FFF SA68 8K/4K 1F0000 - 1F0FFF SA69 8K/4K 1F0000 - 1F0FFF | SA56 | 64K/32K | 1C0000 - 1C7FFF | | SA59 64K/32K 1D8000 - 1DFFFF SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1F7FFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F0000 - 1F0FFF SA67 8K/4K 1F0000 - 1F0FFF SA68 8K/4K 1F0000 - 1F0FFF SA69 8K/4K 1F0000 - 1F0FFF | SA57 | 64K/32K | 1C8000 - 1CFFFF | | SA60 64K/32K 1E0000 - 1E7FFF SA61 64K/32K 1E8000 - 1EFFFF SA62 64K/32K 1F0000 - 1F7FFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1FA000 - 1FAFFF SA66 8K/4K 1FB000 - 1FDFFF SA67 8K/4K 1FC000 - 1FCFFF SA68 8K/4K 1FD000 - 1FDFFF SA69 8K/4K 1FE000 - 1FEFFF | SA58 | 64K/32K | 1D0000 - 1D7FFF | | SA61 64K/32K 1E8000 - 1EFFF SA62 64K/32K 1F0000 - 1F7FF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1F8000 - 1F8FFF SA66 8K/4K 1F000 - 1F0FFF SA67 8K/4K 1F000 - 1F0FFF SA68 8K/4K 1F000 - 1F0FFF SA69 8K/4K 1F000 - 1F0FFF | SA59 | 64K/32K | 1D8000 - 1DFFFF | | SA62 64K/32K 1F0000 - 1F7FFF SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1FA000 - 1FAFFF SA66 8K/4K 1FB000 - 1FFFF SA67 8K/4K 1FC000 - 1FCFFF SA68 8K/4K 1FD000 - 1FFFF SA69 8K/4K 1FE000 - 1FEFFF | SA60 | 64K/32K | 1E0000 - 1E7FFF | | SA63 8K/4K 1F8000 - 1F8FFF SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1FA000 - 1FAFFF SA66 8K/4K 1FB000 - 1FBFFF SA67 8K/4K 1FC000 - 1FCFFF SA68 8K/4K 1FD000 - 1FDFFF SA69 8K/4K 1FE000 - 1FEFFF | SA61 | 64K/32K | 1E8000 - 1EFFFF | | SA64 8K/4K 1F9000 - 1F9FFF SA65 8K/4K 1FA000 - 1FAFFF SA66 8K/4K 1FB000 - 1FBFFF SA67 8K/4K 1FC000 - 1FCFFF SA68 8K/4K 1FD000 - 1FDFFF SA69 8K/4K 1FE000 - 1FEFFF | SA62 | 64K/32K | 1F0000 - 1F7FFF | | SA65 8K/4K 1FA000 - 1FAFFF SA66 8K/4K 1FB000 - 1FBFFF SA67 8K/4K 1FC000 - 1FCFFF SA68 8K/4K 1FD000 - 1FDFFF SA69 8K/4K 1FE000 - 1FEFFF | SA63 | 8K/4K | 1F8000 - 1F8FFF | | SA66 8K/4K 1FB000 - 1FBFFF SA67 8K/4K 1FC000 - 1FCFFF SA68 8K/4K 1FD000 - 1FDFFF SA69 8K/4K 1FE000 - 1FEFFF | SA64 | 8K/4K | 1F9000 - 1F9FFF | | SA67 8K/4K 1FC000 - 1FCFFF SA68 8K/4K 1FD000 - 1FDFFF SA69 8K/4K 1FE000 - 1FEFFF | SA65 | 8K/4K | 1FA000 - 1FAFFF | | SA68 8K/4K 1FD000 - 1FDFFF SA69 8K/4K 1FE000 - 1FEFFF | SA66 | 8K/4K | 1FB000 - 1FBFFF | | SA69 8K/4K 1FE000 - 1FEFFF | SA67 | 8K/4K | 1FC000 - 1FCFFF | | | SA68 | 8K/4K | 1FD000 - 1FDFFF | | SA70 8K/4K 1FF000 - 1FFFFF | SA69 | 8K/4K | 1FE000 - 1FEFFF | | | SA70 | 8K/4K | 1FF000 - 1FFFFF | # 26. DC and AC Operating Range | | AT49BV320C(T)-70 | | |------------------------------|------------------|--------------| | Operating Temperature (Case) | Ind. | -40°C - 85°C | | V _{CC} Power Supply | 2.65V to 3.6V | | ## 27. Operating Modes | Mode | CE | ŌĒ | WE | RESET | V _{PP} | Ai | I/O | |------------------------------|-----------------|------------------|-----------------|-----------------|----------------------------------|---|----------------------------------| | Read | V _{IL} | V _{IL} | V _{IH} | V _{IH} | Х | Ai | D _{OUT} | | Program/Erase ⁽²⁾ | V _{IL} | V _{IH} | V_{IL} | V _{IH} | V _{IHPP} ⁽⁵⁾ | Ai | D _{IN} | | Standby/Program Inhibit | V _{IH} | X ⁽¹⁾ | Х | V _{IH} | Х | X | High-Z | | | Х | X | V _{IH} | V _{IH} | Х | | | | Program Inhibit | Χ | V _{IL} | Х | V _{IH} | Х | | | | | Χ | Х | Х | V _{IH} | V _{ILPP} ⁽⁶⁾ | | | | Output Disable | Х | V _{IH} | Х | V _{IH} | Х | | High-Z | | Reset | Х | Χ | Х | V _{IL} | Х | X | High-Z | | Product Identification | | | | | | $A0 = V_{IL}, A1 - A20 = V_{IL}$ | Manufacturer Code ⁽⁴⁾ | | Software | | | | V _{IH} | | A0 = V _{IH} , A1 - A20 = V _{IL} | Device Code ⁽⁴⁾ | Notes: 1. X can be V_{IL} or V_{IH}. 2. Refer to AC programming waveforms on page 26. 3. $V_H = 12.0V \pm 0.5V$. 4. Manufacturer Code: 001FH, Device Code: 88C5H - AT49BV320C; 88C4H - AT49BV320CT 5. V_{IHPP} (min) = 0.9V; V_{IHPP} (max) = 1.95V. 6. V_{ILPP} (max) = 0.4V. ## 28. DC Characteristics | Symbol | Parameter | Condition | Min | Тур | Max | Units | |---------------------|--------------------------------------|---|------------------------|-----|------|-------| | ILI | Input Load Current | $V_{IN} = 0V \text{ to } V_{CC}$ | | | 10 | μΑ | | I _{LO} | Output Leakage Current | $V_{I/O} = 0V \text{ to } V_{CC}$ | | | 10 | μA | | I _{SB} | V _{CC} Standby Current CMOS | $\overline{\text{CE}} = \text{V}_{\text{CC}} - 0.3 \text{V to V}_{\text{CC}}$ | | 13 | 25 | μΑ | | I _{CC} (1) | V _{CC} Active Read Current | f = 5 MHz; I _{OUT} = 0 mA | | 12 | 25 | mA | | I _{CC1} | V _{CC} Programming Current | | | | 45 | mA | | I _{PP1} | V _{PP} Input Load Current | | | | 10 | μΑ | | V _{IL} | Input Low Voltage | | | | 0.4 | V | | V _{IH} | Input High Voltage | | V _{CCQ} - 0.2 | | | V | | V _{OL} | Output Low Voltage | I _{OL} = 100 μA | | | 0.10 | V | | V _{OH} | Output High Voltage | I _{OH} = -100 μA | V _{CCQ} - 0.1 | | | V | Note: 1. In the erase mode, I_{CC} is 65 mA. ### 29. AC Read Characteristics | | | AT49BV3 | AT49BV320C(T)-70 | | | |-----------------------------------|--|---------|------------------|-------|--| | Symbol | Parameter | Min | Max | Units | | | t _{RC} | Read Cycle Time | 70 | | ns | | | t _{ACC} | Address to Output Delay | | 70 | ns | | | t _{CE} ⁽¹⁾ | CE to Output Delay | | 70 | ns | | | t _{OE} ⁽²⁾ | OE to Output Delay | 0 | 20 | ns | | | t _{DF} ⁽³⁾⁽⁴⁾ | CE or OE to Output Float | 0 | 25 | ns | | | t _{OH} | Output Hold from OE, CE or Address, whichever occurred first | 0 | | ns | | | t _{RO} | RESET to Output Delay | | 100 | ns | | | t _{RLH} | RESET Low to High Time | | 300 | ns | | # **30. AC Read Waveforms**⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ Notes: 1. \overline{CE} may be delayed up to t_{ACC} - t_{CE} after the address transition without impact on t_{ACC} . 2. \overline{OE} may be delayed up to t_{CE} - t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}. 3. t_{DF} is specified from OE or CE, whichever occurs first (CL = 5 pF). 4. This parameter is characterized and is not 100% tested. # 31. Input Test Waveforms and Measurement Level # 32. Output Test Load # 33. Pin Capacitance $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$ | Symbol | Тур | Max | Units | Conditions | |------------------|-----|-----|-------|-----------------------| | C _{IN} | 4 | 6 | pF | $V_{IN} = 0V$ | | C _{OUT} | 8 | 12 | pF | V _{OUT} = 0V | Note: This parameter is characterized and is not 100% tested. ### 34. AC Word Load Characteristics | Symbol | Parameter | Min | Max | Units | |------------------------------------
------------------------------|-----|-----|-------| | t _{AS} , t _{OES} | Address, OE Setup Time | 45 | | ns | | t _{AH} | Address Hold Time | 0 | | ns | | t _{CS} | Chip Select Setup Time | 0 | | ns | | t _{CH} | Chip Select Hold Time | 0 | | ns | | t _{WP} | Write Pulse Width (WE or CE) | 40 | | ns | | t _{DS} | Data Setup Time | 45 | | ns | | t _{DH} , t _{OEH} | Data, OE Hold Time | 0 | | ns | | t _{WPH} | Write Pulse Width High | 30 | | ns | ### 35. AC Word Load Waveforms ### 35.1 WE Controlled ### 35.2 **CE** Controlled # 36. Program Cycle Characteristics | Symbol | Parameter | Min | Тур | Max | Units | |-------------------|--|-----|-----|-----|---------| | t _{BP} | Word Programming Time | | 12 | 120 | μs | | t _{AS} | Address Setup Time | 45 | | | ns | | t _{AH} | Address Hold Time | 0 | | | ns | | t _{DS} | Data Setup Time | 45 | | | ns | | t _{DH} | Data Hold Time | 0 | | | ns | | t _{WP} | Write Pulse Width | 40 | | | ns | | t _{WPH} | Write Pulse Width High | 30 | | | ns | | t _{WC} | Write Cycle Time | 70 | | | ns | | t _{RP} | Reset Pulse Width | 500 | | | ns | | t _{SEC1} | Sector Erase Cycle Time (4K Word Sectors) | | 0.3 | 3.0 | seconds | | t _{SEC2} | Sector Erase Cycle Time (32K Word Sectors) | | 0.8 | 6.0 | seconds | | t _{ES} | Erase Suspend Time | | | 15 | μs | | t _{PS} | Program Suspend Time | | | 20 | μs | # 37. Program Cycle Waveforms # 38. Sector Erase Cycle Waveforms - Notes: 1. Any address can be used to load the data. - 2. \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low. - 3. The data can be 40H or 10H. - 4. The address depends on what sector is to be erased. # 39. Common Flash Interface Definition Table | Address | AT49BV320CT | AT49BV320C | Comments | |---------|-------------|------------|---| | 10h | 0051h | 0051h | | | 11h | 0052h | 0052h | "R" | | 12h | 0059h | 0059h | "Y" | | 13h | 0003h | 0003h | | | 14h | 0000h | 0000h | | | 15h | 0041h | 0041h | | | 16h | 0000h | 0000h | | | 17h | 0000h | 0000h | | | 18h | 0000h | 0000h | | | 19h | 0000h | 0000h | | | 1Ah | 0000h | 0000h | | | 1Bh | 0027h | 0027h | VCC min write/erase | | 1Ch | 0036h | 0036h | VCC max write/erase | | 1Dh | 00B5h | 00B5h | VPP min voltage | | 1Eh | 00C5h | 00C5h | VPP max voltage | | 1Fh | 0004h | 0004h | Typ word write – 12 μs | | 20h | 0000h | 0000h | | | 21h | 000Ah | 000Ah | Typ sector erase, 1,000 ms | | 22h | 0000h | 0000h | Typ chip erase, not supported | | 23h | 0003h | 0003h | Max word write/typ time | | 24h | 0000h | 0000h | n/a | | 25h | 0003h | 0003h | Max sector erase/typ sector erase | | 26h | 0000h | 0000h | Max chip erase/ typ chip erase | | 27h | 0016h | 0016h | Device size | | 28h | 0001h | 0001h | x16 device | | 29h | 0000h | 0000h | x16 device | | 2Ah | 0000h | 0000h | Multiple byte write not supported | | 2Bh | 0000h | 0000h | Multiple byte write not supported | | 2Ch | 0002h | 0002h | 2 regions, x = 2 | | 2Dh | 003Eh | 0007h | 64K bytes, Y = 62 (Top); 8K bytes, Y = 7 (Bottom) | | 2Eh | 0000h | 0000h | 64K bytes, Y = 62 (Top); 8K bytes, Y = 7 (Bottom) | | 2Fh | 0000h | 0020h | 64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom) | | 30h | 0001h | 0000h | 64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom) | | 31h | 0007h | 003Eh | 8K bytes, Y = 7 (Top); 64K bytes, Y = 62 (Bottom) | | 32h | 0000h | 0000h | 8K bytes, Y = 7 (Top); 64K bytes, Y = 62 (Bottom) | | 33h | 0020h | 0000h | 8K bytes, Z = 32 (Top); 64K bytes, Z = 256 (Bottom) | | 34h | 0000h | 0001h | 8K bytes, Z = 32 (Top); 64K bytes, Z = 256 (Bottom) | # 39. Common Flash Interface Definition Table (Continued) | Address | AT49BV320CT | AT49BV320C | Comments | | | | | |---------|--------------------------------|------------|---|--|--|--|--| | | VENDOR SPECIFIC EXTENDED QUERY | | | | | | | | 41h | 0050h | 0050h | "P" | | | | | | 42h | 0052h | 0052h | "R" | | | | | | 43h | 0049h | 0049h | מן״ | | | | | | 44h | 0031h | 0031h | Major version number, ASCII | | | | | | 45h | 0030h | 0030h | Minor version number, ASCII | | | | | | 46h | 0086h | 0086h | Bit 0 – chip erase supported, 0 – no, 1 – yes Bit 1 – erase suspend supported, 0 – no, 1 – yes Bit 2 – program suspend supported, 0 – no, 1 – yes Bit 3 – simultaneous operations supported, 0 – no, 1 – yes Bit 4 – burst mode read supported, 0 – no, 1 – yes Bit 5 – page mode read supported, 0 – no, 1 – yes Bit 6 – queued erase supported, 0 – no, 1 – yes Bit 7 – protection bits supported, 0 – no, 1 – yes | | | | | | 47h | 0000h | 0001h | Bit 8 – top ("0") or bottom ("1") boot sector device undefined bits are "0" | | | | | | 48h | 0000h | 0000h | Bit 0 – 4 word linear burst with wrap around,
0 – no, 1 – yes
Bit 1 – 8 word linear burst with wrap around,
0 – no, 1 – yes
Bit 2 – continuos burst, 0 - no, 1 - yes
Undefined bits are "0" | | | | | | 49h | 0000h | 0000h | Bit 0 – 4 word page, 0 – no, 1 – yes
Bit 1 – 8 word page, 0 – no, 1 – yes
Undefined bits are "0" | | | | | | 4Ah | 0080h | 0080h | Location of protection register lock byte, the section's first byte | | | | | | 4Bh | 0003h | 0003h | # of bytes in the factory prog section of prot register – 2*n | | | | | | 4Ch | 0003h | 0003h | # of bytes in the user prog section of prot register – 2*n | | | | | # 40. Ordering Information ### 40.1 Standard Package | t _{ACC} | I _{CC} (mA) | | | | | | |------------------|----------------------|----------|------------------|------------------|-----------------|------------| | (ns) | Active | Standby | Ordering Code | Package | Operation Range | | | 70 25 | O.F. | 0.005 | AT49BV320C-70CI | 47C1 | Industrial | | | | 25 | 0.025 | AT49BV320C-70TI | 48T | (-40° to 85°C) | | | 70 | 25 | OF. | 0.025 | AT49BV320CT-70CI | 47C1 | Industrial | | | | 25 0.025 | AT49BV320CT-70TI | 48T | (-40° to 85°C) | | ## 40.2 Green Package Option (Pb/Halide-free) | t _{ACC} I _{CC} (mA) | | | | | | | |---------------------------------------|--------|---------|-----------------|---------|------------------------------|--| | (ns) | Active | Standby | Ordering Code | Package | Operation Range | | | 70 | 25 | 0.025 | AT49BV320C-70TU | 48T | Industrial
(-40° to 85°C) | | | Package Type | | | | | |--------------|---|--|--|--| | 47C1 | 47-ball, Plastic Chip-Size Ball Grid Array Package (CBGA) | | | | | 48T | 48-lead, Plastic Thin Small Outline Package (TSOP) | | | | # 41. Packaging Information ### 41.1 47C1 - CBGA ### 41.2 48T – TSOP Notes: - 1. This package conforms to JEDEC reference MO-142, Variation DD. - 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side. - 3. Lead coplanarity is 0.10 mm maximum. | SYMBOL | MIN | NOM | MAX | NOTE | |--------|-------|-------|-------|--------| | Α | _ | _ | 1.20 | | | A1 | 0.05 | _ | 0.15 | | | A2 | 0.95 | 1.00 | 1.05 | | | D | 19.80 | 20.00 | 20.20 | | | D1 | 18.30 | 18.40 | 18.50 | Note 2 | | E | 11.90 | 12.00 | 12.10 | Note 2 | | L | 0.50 | 0.60 | 0.70 | | | L1 | (| | | | | b | 0.17 | 0.22 | 0.27 | | | С | 0.10 | _ | 0.21 | | | е | (| | | | 10/18/01 В 2325 Orchard Parkway San Jose, CA 95131 TITLE 48T, 48-lead (12 x 20 mm Package) Plastic Thin Small Outline Package, Type I (TSOP) DRAWING NO. REV. 48T ### **Atmel Corporation** 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 #### **Regional Headquarters** #### Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 #### Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 #### Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 ### **Atmel Operations** #### Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 #### Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 #### ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 #### RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-0 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 ### Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, and others, are registered trademarks, and Everywhere You AreSM and others are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.