
EDK Concepts, Tools,
and Techniques

A Hands-On Guide to Effective
Embedded System Design

EDK 13.1

UG683 April 13, 2011

EDK Concepts, Tools, and Techniques www.xilinx.com UG683 April 13, 2011

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

01/01/2007 9.1i Book release for EDK 9.1i.

09/05/2007 9.2i Book release for EDK 9.2i.

11/05/2007 10.1 Book release for ISE unified release 10.1.

09/18/2008 10.1.1 Book release for ISE 10.1 SP3.

05/11/2009 11.1 Book release for ISE Design Suite 11.1.

06/24/2009 11.2 Book release for ISE Design Suite 11.2.

12/02/2009 11.4 Book release for ISE Design Suite 11.4.

07/23/2010 12.2 Book release for ISE Design Suite 12.2.

09/21/2010 12.3 Book release for ISE Design Suite 12.3.

04/13/2011 13.1 Book release for ISE Design Suite 13.1.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 3
UG683 EDK 13.1

Chapter 1

Introduction

About This Guide
The Xilinx® Embedded Development Kit (EDK) is a suite of tools and Intellectual Property
(IP) that enables you to design a complete embedded processor system for implementation
in a Xilinx Field Programmable Gate Array (FPGA) device.

This guide describes the design flow for developing a custom embedded processing
system using EDK. Some background information is provided, but the main focus is on the
features of and uses for EDK.

Read this guide if you:

· Need an introduction to EDK and its utilities

· Have not recently designed an embedded processor system

· Are in the process of installing the Xilinx EDK tools

· Would like a quick reference while designing a processor system

Note: This guide is written for the Windows operating system. Linux behavior or the graphical user
interface (GUI) display might vary slightly.

Take a Test Drive!

The best way to learn a software tool is to use it, so this guide provides opportunities for
you to work with the tools under discussion. Specifications for a sample project are given
in the Test Drive sections, along with an explanation of what is happening behind the scene
and why you need to do it. This guide also covers what happens when you run automated
functions.

Test Drives are indicated by the car icon, as shown beside the heading above.

Additional Documentation
More detailed documentation on EDK is available at:
http://www.xilinx.com/ise/embedded/edk_docs.html

Documentation on the Xilinx® Integrated Software Environment (ISE®) is available at:
http://www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=edk+docs
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=online+books
http://www.xilinx.com

4 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 1: Introduction

How EDK Simplifies Embedded Processor Design
Embedded systems are complex. Getting the hardware and software portions of an
embedded design to work are projects in themselves. Merging the two design components
so they function as one system creates additional challenges. Add an FPGA design project
to the mix, and the situation has the potential to become very complicated indeed.

To simplify the design process, Xilinx offers several sets of tools. It is a good idea to get to
know the basic tool names, project file names, and acronyms for these tools. You can find
EDK-specific terms in the Xilinx Global Glossary:
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

The Integrated Design Suite, Embedded Edition
Xilinx offers a broad range of development system tools, collectively called the ISE Design
Suite. For embedded system development, Xilinx offers the Embedded Edition of the ISE
Design Suite. The Embedded Edition comprises:

· Integrated Software Environment (ISE)

· PlanAhead™ design analysis tool

· ChipScope™ Pro (which is useful for on-chip debugging of FPGA designs)

· Embedded Development Kit (EDK). EDK is also available with the ISE Design Suite:
System Edition, which includes tools for DSP design.

For information on how to use the ISE tools for FPGA design, refer to the Xilinx
documentation web page:
http://www.xilinx.com/support/documentation/dt_edk.htm

The Embedded Development Kit (EDK)
The Embedded Development Kit (EDK) is a suite of tools and IP that you can use to design
a complete embedded processor system for implementation in a Xilinx FPGA device.

Xilinx Platform Studio (XPS)

Xilinx Platform Studio (XPS) is the development environment used for designing the
hardware portion of your embedded processor system. You can run XPS in batch mode or
using the GUI, which is what we will be demonstrating in this guide.

Software Development Kit (SDK)

The Software Development Kit (SDK) is an integrated development environment,
complementary to XPS, that is used for C/C++ embedded software application creation
and verification. SDK is built on the Eclipse open-source framework and might appear
familiar to you or members of your design team. For more information about the Eclipse
development environment, refer to http://www.eclipse.org.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.eclipse.org

EDK Concepts, Tools, and Techniques www.xilinx.com 5
UG683 EDK 13.1

How EDK Simplifies Embedded Processor Design

Other EDK Components

Other EDK components include:

· Hardware IP for the Xilinx embedded processors

· Drivers and libraries for the embedded software development

· GNU compiler and debugger for C/C++ software development targeting the
MicroBlaze™ and PowerPC® processors

· Documentation

· Sample projects

EDK is designed to assist in all phases of the embedded design process.

Figure X-Ref Target - Figure 1-1

Figure 1-1: Basic Embedded Design Process Flow

X11124

Device Configuration

ISE Embedded and System Editions

XPS
Xilinx Platform Studio

Design Implementation

Device Configuration

SDK Software Development Kit

Software Profiling

Software Development

Software Debug

ChipScope Pro

PlanAheadTM

Also included in
ISE Embedded

and System Editions

Verification File
Generation

Processor Hardware
Development

Hardware
Platform

http://www.xilinx.com

6 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 1: Introduction

How the EDK Tools Expedite the Design Process
Figure 1-1 shows the simplified flow for an embedded design.

Typically, the ISE development software is used to add an Embedded Processor source,
which is then created in XPS using the Base System Builder.

· You use XPS primarily for embedded processor hardware system development.
Specification of the microprocessor, peripherals, and the interconnection of these
components, along with their respective detailed configuration, takes place in XPS.

· You use SDK for software development. SDK is also available as a standalone
application. It can be purchased and used without any other Xilinx tools installed on
the machine on which it is loaded.

· You can verify the correct functionality of your hardware platform by running the
design through a Hardware Description Language (HDL) simulator. You can use the
Xilinx simulator ISim to simulate embedded designs.

Three types of simulation are supported for embedded systems:

• Behavioral

• Structural

• Timing-accurate

You can simulate your project in either XPS or Project Navigator. When you start your
design in Project Navigator, it automatically sets up the verification process structure.

After your FPGA is configured with the bitstream containing the embedded design, you
can download and debug the Executable and Linkable Format (ELF) file from your
software project from within SDK.

For more information on the embedded design process as it relates to XPS, see the “Design
Process Overview” in the Embedded System Tools Reference Manual. A link to this document
is provided in Appendix B, “Additional Resources.”

What You Need to Set Up Before Starting
Before discussing the tools in depth, it would be a good idea to make sure they are installed
properly and that the environments you set up match required for the “Test Drive”
sections of this guide.

Installation Requirements: What You Need to Run EDK Tools

ISE and EDK

EDK Installation
Requirements

ISE and EDK are both included in the ISE Design Suite, Embedded Edition software. Be
sure the software, along with the latest update, is installed. Visit http://support.xilinx.com
to confirm that you have the latest software versions.

EDK includes both XPS and SDK.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com
http://www.xilinx.com/onlinestore/design_resources.htm

EDK Concepts, Tools, and Techniques www.xilinx.com 7
UG683 EDK 13.1

What You Need to Set Up Before Starting

Software Licensing

Xilinx software uses FLEXnet licensing. When the software is first run, it performs a license
verification process. If it does not find a valid license, the license wizard guides you
through the process of obtaining a license and ensuring that the Xilinx tools can use the
license. If you are only evaluating the software, you can obtain an evaluation license.

For more information about licensing Xilinx software, refer to the ISE Design Suite 13:
Installation and Licensing Guide:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/iil.pdf

Simulation Installation Requirements

To perform simulation using the EDK tools, you must have an appropriate Secure-IP
capable mixed-language simulator installed and simulation libraries compiled.

Note: If you’re using ISim, the simulation libraries are already compiled.

Supported simulators include:

• ISim simulator (used in this tutorial)

• ModelSim PE/SE v6.6d or later

• Incisive Enterprise Simulator (IES) 9.2 or later.

You can optionally use AXI Bus Functional Model (BFMs) to run BFM Simulation. You
must have an AXI BFM license to use this utility.

Simulation
Installation
Requirements

For information about the installation process, refer to the ISE Design Suite 13 Installation
and Licensing Guide. A link to this guide is available in Appendix B, “Additional
Resources.”

Hardware Requirements for this Guide
This tutorial is based on the Spartan®-6 SP605 Evaluation Board and cables. If you have
another Spartan-6 or 7 series board, some parts of this tutorial might be slightly different.

If you have an older board, refer to the appropriate version of this manual by going to
http://www.xilinx.com/support/documentation/dt_edk.htm and selecting a software
release.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/iil.pdf
http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.xilinx.com

8 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 1: Introduction

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 9
UG683 EDK 13.1

Chapter 2

Creating a New Project

Now that you’ve been introduced to the Xilinx® Embedded Development Kit (EDK), you’ll
begin looking at how to use it to develop an embedded system.

The Base System Builder
About the BSB The Base System Builder (BSB) is a wizard in the Xilinx Platform Studio (XPS) software that

quickly and efficiently establishes a working design. You can then customize your design.

At the end of this section, you will have the opportunity to begin your first Test Drive,
using the BSB to create a project.

Why Use the BSB?
Xilinx recommends using the BSB wizard to create the foundation for any new embedded
design project. While the wizard might be all you need to create your design, if you require
more customization, the BSB saves you time by automating common hardware and
software platform configuration tasks. After running the wizard, you have a working
project that contains all the basic elements needed to build more customized or complex
systems.

What You Can Do in the BSB Wizard
Use the BSB wizard to select and configure a processor and I/O interfaces, add internal
peripherals, and generate a system summary report.

The BSB recognizes the system components and configurations on the selected board, and
provides the options appropriate to your selections.

When you create the files, you have the option of applying settings from another project
you have created with the BSB.

Selecting a Board Type

Base System Builder requires the selection of an available development board, or a custom
board. Supported development boards can be selected in Project Navigator, or if starting in
XPS, in the BSB introduction screens.

http://www.xilinx.com

10 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 2: Creating a New Project

Supported Boards

Selecting a Board
Type

You can target one of the supported embedded processor development boards available
from Xilinx or one of its partners. When you have chosen among the peripherals available
on your selected board, the BSB creates a user constraints (UCF) file that includes pinouts
for the peripherals you selected. The UCF file contains functional default values that are
pre-selected in Xilinx Platform Studio (XPS). You can further enhance this base-level
project in XPS and implement it with utilities provided by ISE®.

When you first install EDK, only Xilinx board files are installed. To target a third party
board, you must add the necessary board support files. The BSB Board Selection screen
contains a link that helps you find third party board support files. After the files are
installed, the BSB drop-down menus display those boards as well.

Custom Boards

If you are developing a design for a custom board, the BSB lets you select and interconnect
one of the available processor cores (MicroBlaze™ or PowerPC® processors, depending on
your selected target FPGA device) with a variety of compatible and commonly used
peripheral cores from the IP library. This gives you a hardware system to use as a starting
point. You can add more processors and peripherals, if needed. The utilities provided in
XPS assist with this, including the creation of custom peripherals.

Selecting an Interconnect Type

You can create an AXI system or a PLB system in the Base System Builder.

Selecting and Configuring a Processor

You can choose a MicroBlaze or PowerPC processor and select:

· Reference clock frequency

· Processor-bus clock frequency

· Reset polarity

· Processor configuration for debug

· Cache setup

· Floating Point Unit (FPU) setting

Selecting and Configuring Multiple I/O Interfaces

The BSB wizard understands the external memory and I/O devices available on your
predefined board and allows you to customize commonly used parameters for each
peripheral.

You can open data sheets for external memory and I/O devices from within the BSB
wizard.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 11
UG683 EDK 13.1

The Base System Builder

Adding Internal Peripherals

The BSB wizard allows you to add additional peripherals. The peripherals must be
supported by the selected board and FPGA device architecture. For a custom board, only
certain peripherals are available for general selection and automatic system connection.

Setting Up Software

The Software Development Kit (SDK) is required for software development, and you’ll
have the chance to try it as you work through this guide. Sample C applications used in
Software Debug Test Drives are generated in SDK.

Viewing a System Summary Page

After you make your selections in the wizard, the BSB displays a system summary page. At
this point, you can choose to generate the project, or you can go back to any previous
wizard screen and revise the settings.

Device and Board
Selections used in
Test Drives

This guide uses a Spartan®-6-based SP605 Starter Board and targets a MicroBlaze
processor. The options you select are listed in “Take a Test Drive! Creating a New
Embedded Project,” page 12.

If you use a board with an FPGA with a PowerPC 405 (Virtex®-4 FX) or PowerPC 440
(Virtex-5 FXT) processor, either a MicroBlaze or the appropriate PowerPC processor can be
used. In almost all cases the behavior of the tools is identical.

The BSB Wizard and the ISE Design Suite
The following test drive walks you through starting your new project in the ISE software
and using the New Project wizard to create your project. When your project is created, ISE
recognizes that your design includes an embedded processor. ISE automatically starts
Xilinx Platform Studio (XPS) and opens the BSB to complete your design.

The Xilinx
Microprocessor
Project (*.xmp) File

A Xilinx Microprocessor Project (XMP) file is the top-level file description of the embedded
system. All project information is saved in the XMP file.

The XMP file is created and handled in ISE like any other source, such as HDL code and
constraints files. You'll learn all about that process in the next test drive.

http://www.xilinx.com

12 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 2: Creating a New Project

Take a Test Drive! Creating a New Embedded Project

For this test drive, you will start the ISE Project Navigator software and create a project
with an embedded processor system as the top level.

1. Start ISE Project Navigator.

2. Select File > New Project to open the New Project wizard.

3. Use the information in the table below to make your selections in the wizard screens.

When you click Finish, the New Project Wizard closes and the project you just created
opens in ISE Project Navigator.

Wizard Screen System Property Setting or Command to Use

Create New
Project

Name Choose a name for your project (do
not use spaces).

Location and Working
Directory

Choose a location and working
directory for your project (again,
no spaces).

Description You can also add a description for
your project (optional).

Top-level source type Select HDL (default).

Project Settings Evaluation Development
Board

Spartan-6 SP605 Evaluation
Platform

Note: When you select the
evaluation development board, the
board settings are automatically
populated for you.

Synthesis Tool XST (VHDL/Verilog)

Simulator ISim (VHDL/Verilog)a

Preferred Language VHDL

Accept all other defaults.

Project Summary Shows a summary of entries
made in the New Project
Wizard.

No changes.

a.*Supported simulators are listed in “Installation Requirements: What You Need to Run
EDK Tools,” page 6.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 13
UG683 EDK 13.1

The Base System Builder

You’ll now use the New Source Wizard to create an embedded processor project.

1. Click the New Source button on the left-hand side of the Design Hierarchy window.

The New Source Wizard opens.

2. Use the information in the table below to make your selections in the wizard screens.

After you complete the New Project wizard, ISE recognizes that you have an
embedded processor system and starts XPS.

A dialog box appears, asking if you want to create a Base System using the BSB wizard.

3. Click Yes.

4. In the Base System Builder Interconnect Type dialog box, select AXI system to create
an AXI system.

Note: For information about creating a PLB system, refer to the 12.4 version of this document,
available online at http://www.xilinx.com/support/documentation/dt_edk_edk12-4.htm.

5. In the Base System Builder wizard, create a project using the settings described in the
following table.

Note: If no setting or command is indicated in the table, accept the default values.
.

Wizard Screen System Property Setting or Command to Use

Select Source
Type

Source Type Embedded Processor

File name system

Location Accept the default location.

Add to project Leave this checked.

Project Summary Shows a summary of entries
made in the New Source Wizard.

No changes.

Wizard Screens System Property Setting or Command to Use

Welcome to the Base
System Builder

Project type options I would like to create a new design.

Board Selection

Note: These settings
are already pre-
populated for you.

Board Vendor Xilinx

Board Name Spartan-6 SP605 Evaluation
Platform

Board Revision C

System
Configuration

Type of system AXI System with Single
MicroBlaze Processor

Processor
Configuration

Reference Clock
Frequency

200 MHz

Processor Frequency 100 MHz

Local Memory Size 32 KB

Enable Floating Point
Unit

Do not enable the floating point unit.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_edk_edk12-4.htm

14 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 2: Creating a New Project

6. After reviewing the system summary, click Finish.

Read and then dismiss the dialog boxes that appear after you exit the BSB Wizard.

If you’ve used earlier revisions of this guide, you might notice that the sample design you
create here is more complex than previous designs that we’ve done. There are two reasons
for this. First, with the BSB, it’s as easy to create a complex design as it is to create a simple
one. When a design is created using the BSB, it is guaranteed to close timing and work in
hardware. The MicroBlaze design you just created is effectively the same as that used in the
targeted design platforms that Xilinx offers.

Peripheral
Configuration

Processor 1 (MicroBlaze)
Peripherals list

• Remove the following peripherals
from the “Processor 1
(MicroBlaze) Peripherals” list of
default values:
• IIC_DVI
• IIC_SFP

• Add the axi_timer peripheral and
select the Use Interrupt check
box.

Cache Configuration Instruction Cache Size 8 KB

Data Cache Size 8 KB

Summary System Summary page After you’ve selected and configured
all of your system components, the
BSB displays an overview of the
system for you to verify your
selections.

You should have a processor system
with the following components:

· MicroBlaze processor
· DIP Switch interface
· Ethernet Lite
· IIC EEPROM interface
· 4-bit LED interface
· DDR3 interface
· 4-bit pushbutton interface
· UART
· SPI Flash interface
· CompactFlash Interface
· Timer
· Debug module
· Two LMB Block RAM interfaces
· One AXI Block RAM interface

You can go back to any previous
wizard page and make revisions.

The BSB creates a default memory
map. The memory map cannot be
modified inside the BSB, but it can be
changed after the BSB is finished.

Wizard Screens System Property Setting or Command to Use

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 15
UG683 EDK 13.1

A Note on the BSB and Custom Boards

A Note on the BSB and Custom Boards
If you plan to create a project that includes a customer board, you can create a Xilinx Board
Description file (*.xbd2) file. The .xbd2 file defines the supported interfaces of a given
board, system, or sub-system. An .xbd2 file enables you to create a system-level design
through the Base System Builder. For more information about using .xbd2 files, refer to the
“Microprocessor Peripheral Definition Translation tool (MPDX) chapter in the Embedded
System Tools Reference Manual (UG111). A link to this document is provided in Appendix B,
“Additional Resources.”

What’s Next?
The upcoming sections address Hardware Fundamentals.

· In Chapter 3, “Using Xilinx Platform Studio,” you will use the XPS software.

· In Chapter 4, “Working with Your Embedded Platform,” you will continue with the
hardware design and learn how you can view and modify your new project in XPS.

http://www.xilinx.com

16 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 2: Creating a New Project

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 17
UG683 EDK 13.1

Chapter 3

Using Xilinx Platform Studio

Now that you have created a baseline project with the Base System Builder (BSB) wizard,
it’s time to take a look at the options available in Xilinx® Platform Studio (XPS). Using XPS,
you can build on the project you created using the BSB. This chapter takes you on a tour of
XPS, and subsequent chapters describe how to use XPS to modify your design.

Note: Taking the tour of XPS provided in this chapter is recommended. It enables you to follow the
rest of this guide and other documentation on XPS more easily.

What is XPS?
XPS includes a graphical user interface that provides a set of tools to aid in project design.
This chapter describes the XPS software and some of the most commonly used tools.

The XPS Software
From the XPS software, you can design a complete embedded processor system for
implementation within a Xilinx FPGA device. The XPS main window is shown in the
following figure.

Optional Test Drives are provided in this chapter so you can explore the information and
tools available in each of the XPS main window areas.

http://www.xilinx.com

18 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 3: Using Xilinx Platform Studio

Using the XPS User
Interface

The XPS main window is divided into these three areas:

· Project Information Area (1)

· System Assembly View (2)

· Console Window (3)

The XPS main window also has labels to identify the following areas:

· Connectivity Panel (4)

· View Buttons (5)

· Filters Pane (6)

Figure X-Ref Target - Figure 3-1

Figure 3-1: XPS Project Window

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 19
UG683 EDK 13.1

The XPS Software

Project Information Area
The Project Information Area offers control of and information about your project. The
Project Information Area includes the Project and IP Catalog tabs.

Project Tab

The Project Tab, shown in Figure 3-2, contains information on the current project,
including important project files and implementation settings.

IP Catalog Tab

The IP catalog tab (shown in Figure 3-1), lists information about the IP cores, including:

· Core name and licensing status (not licensed, locked, or unlocked)

· Release version and status (active, early access, or deprecated)

· Supported processors

· Classification

Additional details about the IP core, including the version change history, data sheet, and
the Microprocessor Peripheral Description (MPD) file, are available when you right-click
the IP core in the IP Catalog tab. By default, the IP cores are grouped hierarchically by
function.

Note: You might have to click and drag to expand the pane to view all details of the IP.

Take a Test Drive! Reviewing the Project Information Area

1. With your project open in XPS, click the Project tab.

2. Right-click any item under Project Files and select Open. In future Test Drives, you
will edit some of these files. In particular, the system.mhs file contains a text
representation of your entire embedded system.

Figure X-Ref Target - Figure 3-2

Figure 3-2: Project Information Area, Project Tab

http://www.xilinx.com

20 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 3: Using Xilinx Platform Studio

3. Close the file by selecting File > Close.

4. Right-click any item in the Project Options category to open the Project Options dialog
box. Alternatively, you can select Project > Project Options.

5. Close the Project Options dialog box.

6. Click the IP Catalog tab.

7. At the top left of the IP Catalog window, note the two buttons (identified as item 5 on
Figure 3-1, page 18). Click them and observe changes to the IP catalog.

8. Right-click any item in the IP Catalog to see what options are available.

Note: You might need to expand the selection by clicking the plus sign next to the IP
description.

Notice a few parts of the IP Catalog in particular:

• Add IP, which adds the selected IP to your design

• View PDF Datasheet, which brings up the data sheet for the IP

• View IP Modifications (Change Log)/View Helper IP Modifications (Change
Log), which lists the revision history for the selected IP and its dependencies.

9. Find and expand the Communication Low-Speed IP category.

10. Right-click the AXI UART(Lite) peripheral and select View PDF Datasheet to view the
related PDF datasheet in your PDF viewer. Similar data sheets are available for all
embedded IP.

System Assembly View
The System Assembly View allows you to view and configure system block elements. If the
System Assembly View is not already maximized in the main window, click and open the
System Assembly View tab at the bottom of the pane.

Bus Interface, Ports, and Addresses Tabs

The System Assembly View comprises three panes, which you can access by clicking the
tabs at the top of the view.

· The Bus Interface tab displays the connectivity in your design. Use this view to
modify parameters of peripherals and interconnects.

· The Ports tab displays ports in your design. Use this view to modify the details for
each port.

· The Addresses tab displays the address range for each IP instance in your design.

Connectivity Panel

With the Bus Interfaces tab selected, you’ll see the Connectivity Panel (label 4 in Figure 3-1,
page 18), which is a graphical representation of the hardware platform connections. You
can hover your mouse over the Connectivity Panel to view available bus connections.

AXI interconnect blocks are displayed vertically, and a horizontal line represents an
interface to an IP core. If a compatible connection can be made, a connector is displayed at
the intersection between the interconnect block and the IP core interface.

The lines and connectors are color-coded to show bus compatibility. Differently shaped
connection symbols indicate whether IP blocks are masters or slaves. A hollow connector
represents a connection that you can make. A filled connector represents an existing
connection. Clicking the connector symbol creates or disables a connection.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 21
UG683 EDK 13.1

The XPS Software

Filters Pane

XPS provides filters that you can use to change how you view the Bus Interfaces and Ports
in the System Assembly View. The filters are listed in the Filters pane (label 6 in Figure 3-1,
page 18) when the Bus Interfaces or Ports tabs are selected. Using these filters can unclutter
your connectivity panel when creating a design with a large number different buses.

View Buttons

The System Assembly View provides two buttons that change how the data is arranged
(label 5 in Figure 3-1, page 18). With these buttons, you can sort information and revise
your design more easily.

· Change to Hierarchical/Flat View button

• The default display is called hierarchical view. The information that is displayed for
your design is based on the IP core instances in your hardware platform and
organized in an expandable tree structure.

• In flat view, you can sort the information alphanumerically by any column.

· Expand/Collapse All Tree Nodes button

The +/- icon expands or collapses all nets or buses associated with an IP to allow quick
association of a net with the IP elements.

Take a Test Drive! Exploring the System Assembly View

1. Click the Ports tab located at the top of the screen.

2. Expand the External Ports category to view the signals that leave the embedded
system.

3. Note the signal names in the Net column and find the signals related to the
RS232_Uart_1 ports. (You might need to drag the right side of the Net column
header to see its entire contents.) These signals are referenced in the next step.

4. Scroll down, locate, and expand the RS232_Uart_1 peripheral.

Note the net names and how they correspond to the names of external signals. The sin
(serial in) and sout (serial out) net from the UART are name-associated with the
external ports.

5. Right-click the RS232_Uart_1 peripheral and select Configure IP to launch the
associated IP Configuration dialog box. You can open a similar configuration dialog
box for any peripheral in your system.

a. Observe what happens when you hold the mouse cursor over a parameter name.

b. Browse the tabs and settings available for this core. (Do not make any changes at
this time.)

c. Close this dialog when finished.

6. Click the Change to Hierarchical/Flat View button and see how the display changes.

When you make changes in the System Assembly View, XPS immediately updates the
system.mhs file. You can open this file from the Project Files area, as shown in Figure 3-2.

Console Window
The Console window (label 3 in Figure 3-1, page 18) provides feedback from the tools
invoked during run time. Notice the three tabs: Console, Warnings, and Errors.

http://www.xilinx.com

22 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 3: Using Xilinx Platform Studio

Start Up Page
The Start Up page has information relevant to XPS, including sets of links for release
information and design flows. There is also a tab to help you locate EDK documentation.

If the Start Up page isn’t already open, select Help > View Start Up Page to open it.

Design Rule Check
The Design Rule Check (DRC) performs system-level design rule checks in XPS. When this
command is performed, the Warnings and Errors tabs in the console are cleared to display
the most recent design rule check messages.

To check design rules, select Project > Design Rule Checks, or click the Project DRC
button .

Note: You might need to click the Console tab to enable the Design Rule Check function.

XPS Tools
XPS includes the underlying tools you need to develop the hardware components of an
embedded processor system.

Platgen
XPS includes the Hardware Platform Generation tool, Platgen, for generating the
embedded processor system.

When you implement the FPGA design in Project Navigator, Platgen automatically runs if
necessary.

To start Platgen, click Hardware > Generate Netlist.

Simgen
XPS includes the Simulation Model Generation tool, Simgen, for generating simulation
models of your embedded hardware system based on your original embedded hardware
design (behavioral) or finished FPGA implementation (timing-accurate).

When you implement the FPGA design in Project Navigator, Project Navigator
automatically invokes Simgen when necessary.

Click Simulation > Generate Simulation HDL Files to start Simgen.

Note: When you begin by creating your design in Project Navigator, simulation is not available in
XPS. Use Project Navigator for simulation.

Create and Import Peripheral Wizard
XPS includes the Create and Import Peripheral (CIP) wizard to help you create your own
peripherals and import them into EDK-compliant repositories or XPS projects.

To start the wizard, click Hardware > Create or Import Peripheral.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 23
UG683 EDK 13.1

XPS Directory Structure

XPS Directory Structure
For the Test Drive design you started, the BSB has automated the set up of the project
directory structure and started a simple but complete project. The time savings that the
BSB provides during platform configuration can be negated if you don’t understand what
the tools are doing behind the scenes. Take a look at the directory structure XPS created
and see how it could be useful as the project development progresses.

Note: The files are stored in the location where you created your project file.

Directory View
The BSB automatically creates a project directory with the name of your embedded system
source. This directory contains the subdirectories for your project in the repository search
path, shown in Figure 3-3:

Figure X-Ref Target - Figure 3-3

Figure 3-3: File Directory Structure

__xps Contains intermediate files generated by XPS and other tools
for internal project management. You will not use this
directory.

blockdiagram Contains files related to the block diagram.

data Contains the user constraints file (UCF). For more
information on this file and how to use it, see the ISE® UCF
help topics at:

http://www.xilinx.com/support/documentation/sw_man
uals/xilinx13_1/manuals.pdf.

etc Contains files that capture the options used to run various
tools.

implementation Contains the netlist and HDL wrapper files generated when
Platgen runs.

pcores Used for including custom hardware peripherals. The
pcores directory is described in more detail in Chapter 5,
“Software Development Kit.”

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/manuals.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/manuals.pdf

24 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 3: Using Xilinx Platform Studio

In the main project directory, you will also find numerous files. Those of interest are:

Your entire embedded hardware system is represented by the MHS file.

What’s Next?
Now that you know your way around XPS, you are ready to begin working with the
project you started. You’ll continue with Chapter 4, “Working with Your Embedded
Platform.”

system.xmp This is the top-level project design file. XPS reads this file
and graphically displays its contents in the XPS user
interface.

Project Navigator uses this file as the main source file for
the embedded processor system.

system.mhs The system Microprocessor Hardware Specification, or
MHS file, captures the system elements, their parameters,
and connectivity in a text format. The MHS file is the
hardware foundation for your project.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 25
UG683 EDK 13.1

Chapter 4

Working with Your Embedded Platform

What’s in a Hardware Platform?
The embedded hardware platform includes one or more processors, along with a variety of
peripherals and memory blocks. These blocks of IP use an interconnect network to
communicate. Additional ports connect to the “outside world,” which could be the rest of
the FPGA or outside of the FPGA entirely. The behavior of each processor or peripheral
core can be customized. Implementation parameters control optional features and specify
how the hardware platform is ultimately implemented in the FPGA.

Hardware Platform Development in Xilinx Platform Studio

About the
Microprocessor
Hardware
Specification (MHS)
File

Xilinx® Platform Studio (XPS) provides an interactive development environment that
allows you to specify all aspects of your hardware platform. XPS maintains your hardware
platform description in a high-level form, known as the Microprocessor Hardware
Specification (MHS) file. The MHS, which is an editable text file, is the principal source file
representing the hardware component of your embedded system. XPS synthesizes the
MHS source file into netlists ready for the FPGA place and route process using an
executable called Platgen.

The MHS file is integral to your design process. It contains all peripheral instantiations
along with their parameters. The MHS file defines the configuration of the embedded
processor system. It includes information on the bus architecture, peripherals, processor,
connectivity, and address space. For more information about the MHS file, refer to the
“Microprocessor Hardware Specification (MHS)” chapter of the Platform Specification
Format Reference Manual. A link to this document is available in Appendix B, “Additional
Resources.”

http://www.xilinx.com

26 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 4: Working with Your Embedded Platform

Take a Test Drive! Examining the MHS File

In this Test Drive, you’ll take a quick tour of the MHS file that was created when you ran
the BSB wizard.

1. Select the Project tab in the Project Information Area of the XPS software.

2. Look under the Project Files heading to find MHS File:system.mhs. Double-click
the file to open it.

3. Search for axi_uartlite in the system.mhs file by selecting Edit > Find and using
the Find tool that appears below the main window area.

Note the line in the MHS file that states:

PORT sin = RS232_Uart_1_sin_pin

4. Search the file for another instance of the port name RS232_Uart_1_sin_pin. You’ll
find it at the top of the file as a PORT.

When a PORT is shown inside of a BEGIN/END pair, as it is here, it’s a port on a piece
of IP. When you see a PORT at the top of the MHS, it connects the embedded platform
to the outside world.

5. Take some time to review other IP cores in your design. When you are finished, close
the system.mhs file.

The Hardware Platform in System Assembly View
The System Assembly View in XPS displays the hardware platform IP instances in an
expandable tree and table format.

XPS provides extensive display customization, sorting, and data filtering so you can easily
review your embedded design. The IP elements, their ports, properties, and parameters
are configurable in the System Assembly View and are written directly to the MHS file.

Editing a port name or setting a parameter takes effect when you press Enter or click OK.
XPS automatically writes the system modification to the hardware database, which is
contained in the MHS file.

Hand-editing the MHS file is not recommended, especially when you’re just starting out
with XPS. The recommended method of forcing changes in the MHS file is to use the
features of the System Assembly View. As you gain experience with XPS and the MHS file,
you can also use the built-in text editor to make changes.

Note: Additional information about adding, deleting, and customizing IP are described in Chapter 6:
“Creating Your Own Intellectual Property.”

Converting the Hardware Platform to a Bitstream
For a design to work in an FPGA, it needs to be converted to a bitstream. This conversion
is a three-step process. First, XPS generates a netlist that is representative of your
embedded hardware platform. Next, the design is implemented (mapped into FPGA logic)
in the Xilinx ISE® Design Suite tools. In the final step, the implemented design is converted
to the bitstream that can be then downloaded to the FPGA.

Note: In the examples used in this guide, the design implemented in the FPGA consists only of the
embedded hardware platform. Typical FPGA designs also include logic developed outside of XPS.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 27
UG683 EDK 13.1

The Hardware Platform in System Assembly View

Generating the Netlist

When you generate the netlist, it invokes the platform building tool, Platgen, which does
the following:

• Reads the design platform configuration MHS file and runs all necessary design rule
checks to validate the correctness of the design.

• Synthesizes the design using Xilinx Synthesis Technology (XST).

• Produces netlist files (with an .ngc extension) for each peripheral, as well as the
overall embedded system.

• Generates Hardware Description Language (HDL) wrapper files for each peripheral
and the overall system. To see the created HDL files, look in the
<project_name>\system\hdl directory.

More information about Platgen is provided in the “Platform Generator (Platgen)” chapter
of the Embedded System Tools Reference Manual. A link to this document is available in
Appendix B, “Additional Resources.”

You can control netlist generation using Project Navigator. In the sections ahead, we will be
doing the actual netlist generation from within the ISE interface.

Take a Test Drive! Generating the Bitstream

Now that you’ve described your Hardware Platform in XPS, you’ll use the ISE Project
Navigator software to implement the design and generate the bitstream.

Implementing the
Design in ISE using
Project Navigator

Compiled C code is not part of this bitstream. It is added later in SDK.

1. If you still have the XPS software open, close it now.

Generating a
Bitstream and
Creating a UCF file

You’re about to run the design through to the point at which a bitstream is generated.
But before you can do that, you need to add some information so that the ISE Place and
Route (PAR) tool has information about your design, such as the pinout.

An ISE project has one top-level module that is the root of the design hierarchy for the
purpose of implementation. When you create a new project, the highest level module
is automatically assigned as the top module.

An .xmp file cannot be a top-level module. If an .xmp file is the only source in your
project, then a VHDL or Verilog wrapper file must be generated.

Generating a Top
HDL Source

2. In Project Navigator, make sure your system.xmp file is selected in the Design pane.

http://www.xilinx.com

28 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 4: Working with Your Embedded Platform

3. In the Processes pane, double-click Generate Top HDL Source to generate the
wrapper file for the system.xmp file. This is now the top module for your project.

4. In the Processes pane, double-click Generate Programming File to create your
bitstream. It takes a few minutes and should conclude with the message “Process
‘Generate Programming File’ completed successfully.”

Generated Bitstream
files

The generated bitstream is located in the \implementation folder of your project and
is called system.bit. There is another file generated called system_bd.bmm, which
SDK uses for loading memory onto your target board.

It is not necessary to add the constraint file (.Idfu) generated by XPS to your project. Project
Navigator will automatically locate and use the constraints during implementation.

Exporting Your Hardware Platform
You created your project in Project Navigator and added an embedded processor source,
then designed your hardware platform in XPS using the Base System Builder, and finally
generated a bitstream for the FPGA. Now, you will export your hardware platform
description to the Software Development Kit (SDK).

The exported .xml file has the information SDK requires for you to do software
development and debug work on the hardware platform that you designed.

X-Ref Target - Figure 4-1

Figure 4-1: Viewing the New asystematic VHDL Wrapper File

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 29
UG683 EDK 13.1

What’s Next?

Take a Test Drive! Exporting Your Hardware Platform to SDK

You can export your hardware platform from XPS or from Project Navigator. In this
tutorial, you’ll use Project Navigator to export your hardware platform, but you’ll modify
the process properties so that SDK doesn’t open. You’ll work with SDK in the next chapter.

1. In Project Navigator, expand system_top and select your system.xmp file.

2. In the Processes pane, right-click Export Hardware Design to SDK with Bitstream
and select Process Properties.

3. Uncheck the Launch SDK after Export option and click OK.

4. Double-click Export Hardware Design to SDK with Bitstream.

Note: When you download your target board, SDK pre-populates the locations of your .bit and
.bmm files.

What Just Happened?

Project Navigator exported your hardware design to SDK. It is important to understand
the export operation, especially if you are managing multiple hardware versions.

When you export your hardware design to SDK, a utility creates a number of files used by
SDK. In addition to the .xml file, documentation on the software drivers and hardware IP
is included so you can access necessary information from within SDK.

In the \system\SDK\SDK_Export\hw directory, a number of HTML files are created in
addition to the system.xml file. Opening the system.html file shows a hyperlink-
enabled block diagram with all of the details of your embedded hardware platform.

Notice that the Launch SDK after Export option was selected by default. When this is
selected, SDK launches after Project Navigator exports the design. When SDK launches
this way, it automatically imports the hardware platform for your design.

What’s Next?
Now you can start developing the software for your project using SDK. The next two
chapters explain embedded software design fundamentals.

http://www.xilinx.com

30 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 4: Working with Your Embedded Platform

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 31
UG683 EDK 13.1

Chapter 5

Software Development Kit
The Xilinx® Software Development Kit (SDK) facilitates the development of embedded
software application projects. SDK is a complementary program to XPS. You use SDK to
develop the software that is used on the embedded platform built in XPS. SDK is based on
the Eclipse open source tool suite. For more information about Eclipse, see
http://www.eclipse.org.

About SDK
Some common terminology used when describing SDK operation includes:

· Workspace

· Software project

· Hardware platform

· Board support package

· Perspectives

· Views

SDK Terminology When you open SDK, you create a workspace. A workspace is a directory location that is
used by SDK to store project data and metadata. You must provide an initial workspace
location when SDK is launched. You can create multiple workspaces to more easily
manage multiple software versions.

A software project contains one or more source files, along with the necessary header files, to
allow compilation and generation of a binary output (.elf) file. A workspace can contain
multiple software projects. Each software project must have a corresponding board support
package.

You must have a hardware platform for your design. The hardware platform is the
embedded hardware design that is created in XPS. The hardware platform includes the
XML-based hardware description file, the bitstream file, and the BMM file. When you
import the XML file into SDK, you import the hardware platform. Multiple hardware
platforms can exist in a single workspace.

A board support package (BSP) is a collection of libraries and drivers that form the lowest
layer of your application software stack. Your software applications must link against or
run on top of a given software platform using the provided Application Program
Interfaces (APIs).

You can have SDK create board support packages for two different run-time environments:

Board Support
Package Types in
SDK

· Standalone - A simple, semi-hosted and single-threaded environment with basic
features such as standard input/output and access to processor hardware features.

· Xilkernel - A simple and lightweight kernel that provides POSIX-style services such
as scheduling, threads, synchronization, message passing, and timers.

http://www.eclipse.org
http://www.xilinx.com

32 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 5: Software Development Kit

In SDK, multiple board support packages can exist simultaneously. For example, you
might have a BSP for a design that runs on the standalone environment, and one that uses
Xilkernel.

Perspectives and
Views

SDK looks different depending on what activity you are performing. When you are
developing your C or C++ code, SDK displays one set of windows. When you are
debugging your code on hardware, SDK appears differently and displays windows
specific to debugging. When you are profiling code, you use the gprof view. These
different displays of windows are called perspectives.

Take a Test Drive! Creating a Software Project

1. Open SDK by selecting Start > Programs > Xilinx ISE Design Suite > EDK > Xilinx
Software Development Kit.

2. When SDK opens, it prompts you to create a workspace. This is the folder in which
your software projects are stored. For this example, create a new workspace called
SDK_Workspace.

Caution! Make sure the path name does not include spaces.

3. SDK opens to the Welcome screen. We won’t spend a lot of time looking at this right
now. You can re-open it at any time by selecting Help > Welcome.

4. Select File > New > Xilinx C Project.

Because you have not yet specified a hardware platform in SDK, before the New
Hardware Project dialog opens, SDK displays a dialog box explaining that you must
import a hardware platform.

5. Click Specify.

6. Create a hardware platform called hw_platform_0 and use the default location.

7. In the Target Hardware Specification field, select the system.xml file in the <project
home>\system\SDK\SDK_Export\hw folder of your project.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 33
UG683 EDK 13.1

About SDK

8. Click Finish.

SDK creates the hardware platform and opens the New Xilinx C Project window.

9. Select the “Hello World” Sample Project Template. The Project name fills in
automatically with hello_world_0.

10. For the project location, make sure that the Use default location check box is selected
and click Next.

11. Select the Create a new Board Support Package project option and leave the default
options as they are set.

12. Click Finish.

The hello_world_0 sample application builds automatically, producing an ELF file
suitable for downloading onto the target hardware.

SDK displays your new hardware project with several panels. The most notable of these
panels are the Project Explorer, which at this time only displays your hardware platform,
and the system.xml file, which opens in its own view. Take a moment to review the
contents of the system.xml file.

X-Ref Target - Figure 5-1

Figure 5-1: New Hardware Project Window

http://www.xilinx.com

34 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 5: Software Development Kit

What Just Happened?
SDK examined your hardware specification file (system.xml) and compiled the
appropriate libraries corresponding to the components of your hardware platform. You
can view the log for this process in the Console view.

SDK also created the new Board Support Package hello_world_bsp_0.

The Project Explorer tab now contains information related to the hardware platform, the
software project, and the BSP. The relevant project management information is displayed
here.

Let’s explore the new project components.

• Expand the microblaze_0 section under hello_world_bsp_0 in the Project
Explorer tab. The code, include, lib, and libsrc folders contain the libraries for
all of the hardware in your embedded design. Double-click any of the files in this
view to view them in the SDK Editor area.

• Expand the Binaries item in the hello_world_0 software project. The
hello_world_0.elf file listed there is the ELF file that will be downloaded to the
target board.

• Expand the src folder in the hello_world_0 software project. Double-click the
helloworld.c file to open it in the SDK Editor window. You can modify the sample
code or create your own.

You can also see lscript.ld, the default linker script that was generated for this project. A
linker script is required to specify where your software code is loaded in the hardware
system memory.

Figure X-Ref Target - Figure 5-2

Figure 5-2: Project Files Displayed in the Project Explorer Tab

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 35
UG683 EDK 13.1

About SDK

Double-click the lscript.ld file to view the linker script contents in the text editor. If
you are not familiar with the intricacies of linker scripts, you can make changes by
selecting Xilinx Tools > Generate Linker Script.

You now have a complete framework for editing, compiling, and building a software
project. The next step is debugging, which you will do in the next Test Drive.

Take a Test Drive! Debugging in SDK

Debugging is the process of downloading and running C code on the target hardware to
evaluate whether the code is performing correctly. Before you can begin debugging, you
must set up your SP605 board as follows:

1. Connect two mini-USB cables between your computer and the two mini-USB jacks on
the SP605 board.

One of the USB connections connects to a JTAG download and debug interface built
into the SP605 board.

The other USB connection is a USB-to-RS232 Bridge. In order for your PC to map the
USB port to a COM port, you must download the appropriate driver from Silicon Labs.

2. Turn on the power to your SP605 board.

3. If you haven’t already installed the drivers for your SP605 board, you’ll need to do it
now.

• When the Windows Found New Hardware Wizard opens, select the option to
have the wizard find the driver for the hardware. You will have to do this
multiple times.

• Install the CP210x VCP drivers that came with your SP605 board. You can also
find these drivers on the Silicon Labs website:
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx

Download Bitstream
with Bootloop

Because this is an FPGA, you must configure it with a bitstream that loads a design into the
FPGA. In this case, the design is an embedded processor system.

1. In SDK, select Xilinx Tools > Program FPGA.

The bitstream (BIT) and block memory map (BMM) files are automatically populated
for you.

2. Click Program. When the Programming completes, your FPGA is configured with
your design.

At this point, you have downloaded the bitstream to the FPGA and initialized the
microprocessor with a single-instruction “branch-to-itself” program called
“bootloop.”Bootloop keeps the processor in a known state while it waits for another
program to be downloaded to run or be debugged.

3. In the Project Explorer, under hello_world_0 > Binaries, right-click
hello_world_0.elf and select Debug As > Launch on Hardware.

The executable is downloaded to the hardware where specified in the linker script.

A dialog box appears, informing you that the perspective is about to change from
C/C++ to Debug.

4. Open a terminal emulation program and set the display to 9600 baud, 8 bit data, 1 stop
bit. Be sure to set the COM port to correspond to the COM port that the Silicon Labs
driver is using.

http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
http://www.xilinx.com

36 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 5: Software Development Kit

The Debug
Perspective

5. In the Debug Perspective, the C code is now highlighted at the first executable line of
code (you might need to scroll to view helloworld.c). The debug window shows that
for Thread[0] the main() function is currently sitting at line28 because there is an
automatically-inserted breakpoint.

Note: If your display does not show line numbers, you can turn them on by right-clicking in the
left margin of the helloworld.c window and selecting Show Line Numbers.

6. Execute the code by clicking the Resume button or pressing F8 on your keyboard.

7. Terminate the debug session by clicking the Terminate button or pressing Ctrl + F2
on your keyboard.

The output in the terminal window displays “Hello World.”

What Just Happened?

The code you executed in SDK displays a classic “Hello World” message in the terminal
window to demonstrate how simply software can be executed using SDK.

More on the Software Development Kit: Edit, Debug, and Release
The Xilinx® Software Development Kit (SDK) can be used for the entire lifecycle of the
software development process. This lifecycle consists of creating, editing, and building
your software projects, debugging your software on target hardware, perhaps profiling it
on your target hardware, and then releasing your software and optionally programming it
into Flash memory. All of these activities can be done in SDK. In this chapter, we’ll look
more at the first two items on this list: software development and debug.

SDK Drivers
The “low-level” drivers that Xilinx provides are located in the \EDK\sw\
XilinxProcessorIPLib\drivers directory of your EDK installation area. Here, you
will see a directory for each peripheral's driver. There are drivers corresponding to each
piece of hardware available to you in Platform Studio. For each driver, the directory
contains source code, HTML documentation on the driver, and examples of how the
drivers can be used.

SDK Windows
As demonstrated in the previous chapter, SDK has different predefined sets of display
windows, called perspectives.

Whether you are working in the C/C++ Perspective or the Debug perspective, you'll find
the SDK windowing system very powerful. There are two kinds of windows within
perspectives: editing windows and informational windows. The editing windows, which
contain C or C++ source code, are language-specific and syntax aware. Right-click an item
in an editing window to open a comprehensive list of actions that can be done on that item.

Informational windows are particularly flexible. You can have as many informational
windows as you like. An informational window can have any number of views, each of
which is indicated by a tab at the top of the window. Views in the Debug perspective
include Disassembly, Register, Memory, and Breakpoints.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 37
UG683 EDK 13.1

More on the Software Development Kit: Edit, Debug, and Release

Views can be moved, dragged, and combined in any number of ways. Click any tab on any
window in either the C/C++ or Debug Perspective or drag it to another window. Its
contents are displayed in the new window. To see the views available for a given
perspective, select Window > Show View.

Experiment with moving windows around. The ability to easily customize your
development and debug environment is one of the more powerful features of SDK. SDK
remembers the position of the windows and views for your perspective within a project.

Take a Test Drive! Editing Software
So far, you have compiled and debugged a sample software module. In this next test drive,
you’ll run two more sample modules and create a third software module from scratch to
call the first two routines. This will give you a bit more experience managing source files
for multiple projects.

Changing Your Workspace
1. Select File > Switch Workspace > Other.

2. When prompted, create a new workspace and save it anywhere on your system.

Note that SDK briefly closes and then reopens to the new workspace.

Creating New Xilinx C Projects
Now that the SDK project space is set up correctly, you can create a new Xilinx C project.

1. Create a new Xilinx C Project. When SDK asks you to specify the hardware platform,
name it “Advanced_CTT_Project” and import the same hardware specification file as
in “Take a Test Drive! Creating a Software Project,” page 32.

2. In the New Xilinx C Project window, create a Hello World application using the default
name and location. Create a new Board Support Package, which will be named
hello_world_bsp_0 by default.

In the next few steps, you will create two more Xilinx C Projects, each with a different
Sample Application. We will then show how to call them from the hello_world
applications. While this isn’t a complex process, you must be familiar with this
fundamental type of file management to create larger, real-life projects.

3. Create two more Xilinx C Projects. Use the Memory Tests and Peripheral Tests sample
applications. For each project, select the Target an Existing Board Support Package
check box and identify the "hello_world_bsp_0{OS:standalone}" BSP.

http://www.xilinx.com

38 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 5: Software Development Kit

Running Your Applications

Before you can run these two applications, download the FPGA's bitstream to the board.

1. Select Xilinx Tools > Program FPGA.

2. Click Program.

We will now observe what the two sample programs do. You’ll run the memory_test
application and then the peripheral_tests application.

Running the memory_test Application

1. Open a terminal session and be sure it's set to 9600-8-N-1.

2. In the project management area, right-click memory_tests_0.elf under the
hierarchy of memory_tests_0/Binaries/.

3. Select Debug As > Launch on Hardware. If a confirmation dialog box appears, click
Yes to confirm the Perspective Switch. The Debug perspective opens.

4. Select Run > Resume to run the program. The program output displays on your
terminal window. When the test runs successfully, it returns “--Memory Test
Application Complete--.”

5. Select Run > Terminate to end your debug session.

Running the peripheral_tests Application

1. Open the C/C++ perspective and expand the peripheral_tests_0 folder under
the hierarchy of peripheral_tests_0/src/. Double-click the testperiph.c file
to open it in the text editor in SDK.

2. Find and select the lines that print information about the
SysAceSelfTestExample() function. These are approximately lines 195-206.

Note: If line numbers are not visible, right-click in the left hand margin of the editor window and
select Show Line Numbers.

3. Select Source > Toggle Comment to apply comments to this print() function.

4. Save and close testperiph.c.

5. Right-click the peripheral_tests_0.elf file and select Debug As > Launch on
Hardware.

6. Select Run > Resume to run the program. The program output displays on your
terminal window. When the test runs successfully, it returns “---Exiting Main---.”

7. Select Run > Terminate to end your debug session.

Now that the two applications have run successfully, we will modify hello_world to
individually call each application.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 39
UG683 EDK 13.1

More on the Software Development Kit: Edit, Debug, and Release

Take a Test Drive! Working with Multiple Source Files and
Projects

You’ll now modify your existing two software applications so that they can be called by
helloworld.c. We'll change the name of main() in each application to something that
a new main() function can call.

1. In the C/C++ perspective, open memorytest.c and testperiph.c.

Note: These applications are located in the src folder for the respective projects.

2. In memorytest.c, change the name of main() to memorytest_main(). This
should be around line number 53.

As you change the name of main(), notice that this new name shows up in the Outline
view. If an Outline isn't visible, select Window > Show View > Outline.

3. In testperiph.c, change the name of main() to peripheraltest_main(). This
should be around line 53.

4. Save and close both files.

The files build automatically. They will fail because there is no longer a main function,
which the build is looking for. If you were to change either function's name back to
main, the build would proceed error-free.

We will now modify helloworld.c to have it call the memorytest_main() and
peripheraltest_main() functions.

5. The helloworld.c file is in the src folder in the C Project called hello_world_0.
Open helloworld.c and modify it as shown in Figure 5-3.

6. Save and close the file, and observe that it, too, builds automatically.

Note: You can turn automatic building on and off by selecting Project > Build Automatically.

SDK will error out, because it has no knowledge of where the peripheral test or
memory test functions are. (They're in their own C Projects). We will now drag and
drop the relevant source files to hello_world_0 so that helloworld.c can access
them.

Figure X-Ref Target - Figure 5-3

Figure 5-3: Modified Version of helloworld.c File

http://www.xilinx.com

40 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 5: Software Development Kit

7. Drag and drop source files from memory_tests_0 and peripheral_tests_0 into
the src subfolder of the hello_world_0 folder. Figure 5-4 shows the source files that
the directory should contain.

Note: Do not move over the platform_config.h, platform.c, platform.h, or
lscript.ld files. These files are already part of hello_world_0.

Figure X-Ref Target - Figure 5-4

Figure 5-4: Source Files in hello_world_0

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 41
UG683 EDK 13.1

More on the Software Development Kit: Edit, Debug, and Release

As you drag and drop the files, the "hello_world_0" builds after each file. After you've
dropped the last file and the ELF file successfully builds, the following message
displays in the Console View:

Invoking: MicroBlaze Print Size

mb-size hello_world_0.elf |tee "hello_world_0.elf.size"

 text data bss dec hexfilename

 40138 512 5590 46240 b4a0hello_world_0.elf

Finished building: hello_world_0.elf.size

Note: If you don’t see this message, click on one of the source files you just moved.

Note the size: 46240 (decimal). Up until now, our applications have all run from block
RAM, which is memory on the FPGA. Recall from Chapter 3 and Chapter 4 that we
have 32K of instruction memory local to the MicroBlaze™ processor. Our application
has grown to 46K, meaning some of it will have to reside in external RAM. The
problem is that the RAM test is destructive: if part of the application is in external
RAM, it could crash. So next you’ll fix that problem before it occurs.

8. Open memorytest.c and scroll down to memorytest_main().

9. Position the cursor over &memory_ranges[i]. An informational window opens to
display information about memory_ranges. You can click in the window and scroll
up and down. Note that memory_ranges contains the starting address and size (in
decimal) of each memory to be tested.

10. Click on memory_ranges and then right-click and select Open Declaration to open
the memory_config_g.c file, in which memory_ranges is defined. Note that
whenever a C file opens for editing, the Outline window, if visible, shows the variables
and header files used with the C file. You can right-click any variable in the outline
view to view a call hierarchy that shows the calling path back to main().

11. To change where the external memory test starts, modify the data structure in
memory_config_g.c as follows:

{
"MCB_DDR3",
"axi_s6_ddrx",
0xc1000000, /*Change from 0xc0000000 to 0xc1000000*/
134217728,

},

12. Save and close the file. It will recompile without errors.

13. Open the hello_world_0.elf application. Confirm that it runs correctly. The
terminal window displays a message to indicate that both the memory test and the
peripheral test are working.

Working with the Debugger
Now that you have done some file manipulation in the C/C++ Perspective, let’s look at
some of the features of the Debugger.

The purpose of a debugger is to allow you to see what is happening to a program while it
is running. You can set breakpoints and watchpoints, step through program execution in a
variety of ways, view program variables, see the call stack, and view or edit the contents of
the memory in the system.

SDK provides full source-level debugging capabilities. If you've used other debuggers,
you will see that the SDK debugger has most, if not all, of the features that you are used to.

http://www.xilinx.com

42 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 5: Software Development Kit

Take a Test Drive! Working with the Debugger

To begin this test drive, make sure that you’ve completed “Take a Test Drive! Working with
Multiple Source Files and Projects,” page 39 and have a binary file called
hello_world_0.elf.

1. In the C/C++ Perspective, right-click on the executable file and select Debug As >
Launch on Hardware to download hello_world_0.elf to your target board. The
Debug Perspective automatically opens.

When the Debug Perspective opens, it should look similar to Figure 5-5. If some of the
views such as Disassembly and Memory are not visible, select Window > Show View
and select the view that you want to see. If the view doesn't show up in the window
that you intended, click and drag it into place.

As you can see, the MicroBlaze processor is currently sitting at the beginning of
main() with program execution suspended at line 0xc00001bc. You can correlate that
with the Disassembly view, which shows the assembly-level program execution also
suspended at 0xc00001bc. Finally, the helloworld.c window also shows execution
suspended at the first executable line of C code. Select the Registers view to confirm
that the program counter, RPC register, contains 0xc00001bc.

Note: If the Registers window isn't showing, select Window > Show View > Registers.

2. Double-click in the margin of the helloworld.c window next to the line of code that
reads peripheraltest_main();. This sets a breakpoint at
peripheraltest_main().

To confirm the breakpoint, review the Breakpoints window.

Note: If the Breakpoints window is not showing, select Window > Show View > Breakpoints.

3. Select Run > Resume to resume running the program to the breakpoint.

Program execution stops at the line of code that includes
peripheraltest_main();. Disassembly and the debug window both show
program execution stopped at 0xc00001dc.

4. Select Run > Step Into to step into the peripheraltest_main() routine. Program
execution is suspended at location 0xc000060c. The call stack is now 2 deep.

Figure X-Ref Target - Figure 5-5

Figure 5-5: Debug Perspective

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 43
UG683 EDK 13.1

What’s Next?

5. Select Run > Resume again to run the program to conclusion. When the program
completes running, the Debug window shows that the program is suspended in a
routine called exit. This happens when you are running under control of the
debugger. Review your terminal output, which indicates that both
peripheraltest_main() and memorytest_main() have run.

6. Re-run your code several times. Experiment with single-stepping, examining memory,
breakpoints, modifying code, and adding print statements. Try adding and moving
views.

7. Close SDK.

What’s Next?
The goal of this chapter was to provide you a C project with multiple files to work with,
and enough exposure to the debugger to experiment and customize SDK to work the way
you do.

In the next chapter, you will create your own IP.

http://www.xilinx.com

44 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 5: Software Development Kit

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 45
UG683 EDK 13.1

Chapter 6

Creating Your Own Intellectual Property

Creating an embedded processor system using Xilinx® Platform Studio (XPS) is
straightforward because XPS automates most of the design creation. The Base System
Builder (BSB) wizard reduces the design effort to a series of selections.

Benefits of XPS and
BSB

You can use the BSB to create most of the embedded processor design. You can then further
customize your design in Project Navigator and XPS. Design customization can be as
simple as tweaking a few parameters on existing intellectual property (IP) cores (for
example, changing the baud rate for the AXI UARTLite), or as complex as designing
custom IP and integrating it into the existing design.

Benefits of CIP
Wizard

While you are the expert regarding the functionality of the required custom IP, you might
need additional information about bus protocols, the /pcores directory structure required
by XPS, or the creation of Bus Function Model simulation frameworks. This chapter
clarifies these important system distinctions and guides you through the process of
creating custom IP using the Create and Import Peripheral (CIP) wizard.

Using the CIP Wizard
The CIP wizard is designed to provide the same benefits as the BSB wizard. It creates the
framework of the design, including bus interface logic, and provides an HDL template so
that you can integrate your custom logic in an understandable manner. All files necessary
to include your custom peripheral core (pcore) into the embedded design are supplied by
the CIP wizard.

Creation of custom IP is one of the least understood aspects of XPS. Though the CIP wizard
steps you through the creation of your pcore framework, it is important to understand
what is happening and why. This chapter provides a basic explanation and guides you
through the initial process. It also includes completed pcore design for study and analysis.

http://www.xilinx.com

46 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

Overview of IP Creation
The XPS System Assembly View (shown in Figure 3-1, page 18) shows connections among
buses, AXI devices, processors, and IP. Any piece of IP you create must be compliant with
the system you design.

To ensure compliance, you must follow these steps:

1. Determine the interface required by your IP. The bus to which you attach your custom
peripheral must be identified. For example, you could select one of the following
interfaces:

• AXI4-Lite: Simpler, non-burst control register style interface. You should use
AXI4-Lite for most simple, register based peripherals that only require single beat
transfers.

• AXI4: Burst Capable, high-throughput memory mapped interface. AXI4 provides
high performance burst transfers, and you should use it when high speed access
to and from memory systems is required.

• Processor Local Bus (PLB) version 4.6. The PLBv46 provides a high-speed
interface between a PowerPC® processor and high-performance peripherals.

• Fast Simplex Link (FSL). The FSL is a point-to-point FIFO-like interface. It can be
used in designs using MicroBlaze™ processors, but generally is not used with
PowerPC processor-based systems.

2. Implement and verify your functionality. Remember that you can reuse common
functionality available in the EDK peripherals library.

3. Verify your standalone core. Isolating the core ensures easier debugging in the future.

4. Import the IP to EDK. Your peripheral must be copied to an EDK-appropriate
repository search path. The Microprocessor Peripheral Definition (MPD) and
Peripheral Analyze Order (PAO) files for the Platform Specification Format (PSF)
interface must be created, so that the other EDK tools can recognize your peripheral.

5. Add your peripheral to the processor system created in XPS.

Using the CIP Wizard for Creating Custom IP
The CIP wizard assists you with the steps required in creating, verifying, and
implementing your Custom IP.

A common design case is the need to connect your custom logic directly to an AXI
interconnect block. With the CIP wizard, you can make that connection even without
understanding AXI or AXI-Lite details. Both slave and master connections are available.

The CIP Wizard
Creates HDL
Templates and BFM
Simulation for your IP

The CIP wizard helps you implement and verify your design by walking you through IP
creation. It sets up a number of templates that you can populate with your proprietary logic.

Besides creating HDL templates, the CIP wizard can create a pcore verification project for
Bus Functional Model (BFM) verification. The templates and the BFM project creation are
helpful for jump-starting your IP development and ensuring that your IP complies with
the system you create. For details of BFM simulation, refer to Appendix A, “Intellectual
Property Bus Functional Model Simulation.”

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 47
UG683 EDK 13.1

Using the CIP Wizard

CIP Wizard Documentation
Before launching the CIP wizard, review the documentation specific to the bus interface
you intend to use. Reviewing this information can help eliminate much of the confusion
often associated with bus system interfaces. To review the XPS Help topics related to the
CIP wizard, select Help > Help Topics and navigate to Procedures for Embedded
Processor Design > Creating and Importing Peripherals.

Accessing IP
Datasheets

XPS provides data sheets related to the IP in your system. To access these data sheets, select
Help > View Start Up Page. In the Start Up page, select the Documentation tab, expand
IP Reference and Device Drivers Documentation, and click the Processor IP Catalog
link.

If you plan to create an AXI4 or AXI4-Lite slave peripheral, examine one of the appropriate
data sheets for your custom peripheral.

The sections discussing the IP Interconnect (IPIC) signal descriptions are useful in helping
identify the IPIF signals that interface to your custom logic.

Note: Normally the CIP wizard is launched from within XPS, as described in the next Test Drive, but
the CIP wizard can also run outside of XPS.

Take a Test Drive! Generating and Saving Templates

In this Test Drive, you’ll use the CIP wizard to create a template for a custom peripheral.
For simplicity, you’ll accept the default values for most steps, but you will review all the
possible selections you can make.

Caution! Unless you are an advanced user, before starting this Test Drive, make sure that you
have read through and completed the Test Drives in Chapter 4, “Working with Your
Embedded Platform” and Chapter 5, “Software Development Kit.”

1. Do the following to start the CIP Wizard and determine the location in which to store
the custom peripheral files:

a. Open Xilinx ISE® Project Navigator and load your project.

b. Select system.xmp and double-click the Manage Processor Design (XPS)
process (located under Design Utilities) to launch XPS.

c. In XPS, select Hardware > Create or Import Peripheral.

http://www.xilinx.com

48 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

After the Welcome page, the Peripheral Flow page opens. On this page, you can either
create a new peripheral or import an existing peripheral.

2. Select Create templates for a new peripheral. Before continuing through the wizard,
read through the text on this page.

Note: Each CIP wizard screen is full of useful information. You can also click More Info to view
the related XPS help topic.

3. On the Repository or Project page, specify where to store the custom peripheral files.

For this example, you will use this peripheral for a single embedded project.

4. Select To an XPS project.

Because you launched the CIP wizard from within XPS, the directory location is
automatically filled in.

Note: If the custom pcore will be used for multiple embedded projects, you can save the file in
an EDK repository.

Figure X-Ref Target - Figure 6-1

Figure 6-1: Peripheral Flow Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 49
UG683 EDK 13.1

Using the CIP Wizard

5. Use the Name and Version page to indicate the name and version of your peripheral.
For this example design, use the name blink.

A version number is supplied automatically. You can also add a description of your
project.

Figure X-Ref Target - Figure 6-2

Figure 6-2: Name and Version Page

http://www.xilinx.com

50 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

6. On the Bus Interface page, select the interconnection or bus type that connects your
peripheral to your embedded design. For this example, select AXI4-Lite.

Note: You can access related data sheets from the Bus Interface page.
Figure X-Ref Target - Figure 6-3

Figure 6-3: Bus Interface Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 51
UG683 EDK 13.1

Using the CIP Wizard

7. On the IPIF (IP Interface) Services page, indicate the IPIF services for your peripheral.

The CIP wizard automatically creates the following:

• Slave connections to the AXI device

• Necessary bus protocol logic

• Signal sets used to attach your custom HDL code

In addition to this base set of capability, you can add optional services.

Click More Info. You can read details on each of these services to help you determine
whether the features are necessary for your IP.

Figure X-Ref Target - Figure 6-4

Figure 6-4: IP Interface Services Page

http://www.xilinx.com

52 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

Because User Logic Software Register was selected in the IPIF Services page, the User
Software Accessible Registers page opens.

8. Leave the default value of 1 selected.
X-Ref Target - Figure 6-5

Figure 6-5: Software Accessible Registers

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 53
UG683 EDK 13.1

Using the CIP Wizard

9. On the IP Interconnect (IPIC) page, review the set of IPIC signals that the CIP wizard
offers for your custom peripheral. If you don’t understand what these signals do,
review the appropriate specification. The signals selected should be adequate to
connect most custom peripherals.

Figure X-Ref Target - Figure 6-6

Figure 6-6: IP Interconnect Page

http://www.xilinx.com

54 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

On the Peripheral Simulation Support page, you can elect to have the CIP generate a BFM
simulation platform for your project.

A BFM simulation requires the following:

• A license for the AXI BFM Simulation model.

• A supported simulator: ISim, ModelSim-SE/PE, or IES

If you think you might want to run a BFM simulation on this IP example, generate the
BFM platform now.

Note: AXI BFM simulation must be licensed. An AXI BFM license is not included with the ISE
Design Suite installation.

The CIP wizard creates two HDL files that implement your pcore framework:

• The blink.vhd file, which contains the AXI interface logic. Assuming your
peripheral contains ports to the outside world, you must modify this file to add
the appropriate port names. This file is well documented and tells you exactly
where to add the port information.
If you are a Verilog designer, don’t panic, but realize that you must write the port
names using HDL syntax. For this example, you can find the source code in an
upcoming Test Drive and use that source as a template for future pcore creation.

• The user_logic.vhd file, which is the template file where you add the custom
RTL that defines your peripheral. Although you can always create additional
source files, the simple design example you are using requires only the
user_logic.vhd file.

Figure X-Ref Target - Figure 6-7

Figure 6-7: Peripheral Simulation Support Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 55
UG683 EDK 13.1

Using the CIP Wizard

The Peripheral Implementation Support page lists three options for creating optional
files for hardware and software implementation.

Verilog Support • The CIP wizard can create the user_logic template in Verilog instead of VHDL.
To create the template in Verilog, select the Generate stub ‘user_logic’ template
in Verilog instead of VHDL check box.

• If you intend to implement your pcore design to completion (for timing analysis
or timing simulation), click the Generate ISE and XST project files to help you
implement the peripheral using XST flow check box. The CIP wizard creates the
necessary ISE project files. However, if your peripheral is low-speed or very
simple, this step is not necessary.

• If your peripheral requires more complex software drivers, click the Generate
template driver files to help you implement software interface check box. The
CIP wizard creates the necessary driver structure and some prototype drivers
based on the services selected.

For this example design, leave all three boxes unchecked. The final screen displays a
summary of the CIP wizard output, including the files created and their locations.

Figure X-Ref Target - Figure 6-8

Figure 6-8: Peripheral Implementation Support Page

http://www.xilinx.com

56 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

10. Review this information and click Finish. You can observe the file creation status in the
Console window.

Important Summary
Information

What Just Happened?

Precisely what did the CIP wizard do? Let’s stop for a moment and examine some concepts
and the resulting output.

EDK uses AXI slave and burst peripherals to implement common functionality among
various processor peripherals. The AXI slave and burst peripherals can act as bus masters
or bus slaves.

Note: Support for AXI burst peripherals will be available in a later release.

In the Bus Interface and IPIF Services Panel, the CIP wizard asked you to define the target
bus and what services the IP needs. The purpose was to determine the AXI slave and burst
peripheral elements your IP requires.

AXI Slave and Burst
Peripherals

The AXI slave and burst peripherals are verified, optimized, and highly parameterizable
interfaces. They also give you a set of simplified bus protocols. Your custom RTL interfaces
to the IPIC signals, which are much easier to work with when compared to directly
operating on the AXI or FSL protocols. Using the AXI slave and burst peripherals with
parameterization that suits your needs greatly reduces your design and test effort.

Figure X-Ref Target - Figure 6-9

Figure 6-9: Create and Import Peripheral Wizard Summary Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 57
UG683 EDK 13.1

Example Design Description

Figure 6-6 illustrates the relationship between the bus, a simple AXI slave peripheral, IPIC,
and your user logic.

The following figure shows the directory structure and the key files that the CIP wizard
created. These file reside in the /pcores subdirectory of your project directory..

Information about the files generated by the CIP wizard:

· The wizard created two HDL template files: blink.vhd and user_logic.vhd. These
files are located in the hdl/vhdl folder.

· The user_logic file connects to the AXI device using the AXI slave core configured
in blink.vhd.

• The user_logic.vhd file is equivalent to the “Custom Functionality” block.

• The blink.vhd file is equivalent to the “AXI slave” block.

· Your custom logic interfaces using the IPIC signals.

To complete your design, you must add your proprietary logic to the two files.

Example Design Description
You can use the CIP wizard to create a fully functional peripheral, assuming that reading
and writing registers provides adequate functionality. You can choose to create a simple
peripheral this way. However, having an actual, functioning example that you can modify
is much more valuable, so now you’ll define a simple AXI peripheral.

You’ll open and modify the source code files for this peripheral in the next Test Drive.
These files are located in the /pcores directory on your system.

The custom peripheral blinks the four LEDs on the evaluation board.

Figure X-Ref Target - Figure 6-10

Figure 6-10: Directory Structure Generated by the CIP Wizard

http://www.xilinx.com

58 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

Modifying the Template Files
In this section, you’ll modify the template files, review the files, and then add the Pcore to
your project.

Take a Test Drive! Modifying the CIP Wizard Template Files

In the next Test Drive, you will modify the code generated by the CIP wizard to implement
the new blink peripheral.

The peripheral is very simple. A single control register is used to enable or disable a
counter. This counter divides down the bus clock and blinks the LEDs in a binary pattern.

1. In XPS, select File > Open.

2. Navigate to the pcores\blink_v1_00_a\hdl\vhdl directory and locate the
blink.vhd file and the user_logic.vhd file.

Note: You might have to change the Files of type drop-down list to view and open these files.

3. Open the blink.vhd file.

In the next two steps, you’ll add the external port names in two places in this file:

• The top level entity port declaration (step 4)

• The port map for the instantiation of the user_logic (step 5)

4. Scroll down to approximately line 132. In the code segment shown here, the user port
LEDs are displayed in the appropriate location. Add the LEDs port declaration for the
top-level entity in your file as shown here.

5. Scroll down to approximately line 295. In the code segment shown here, the user port
LEDs are displayed in the appropriate location. Add the LEDs port declaration into the
user_logic port mapping in your file as shown here.

6. Save and close the file.

Where user information is required in the two template files (<ip core name>.vhd
and user_logic.vhd), comments within the file indicate the type and placement of
required information.

In most cases, adding user ports to the top-level entity and then mapping these ports
in the user_logic instantiation are the only changes required for <ip core
name>.vhd.

Figure X-Ref Target - Figure 6-11

Figure 6-11: Add User Ports

Figure X-Ref Target - Figure 6-12AdLED

Figure 6-12: Add Port Mapping

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 59
UG683 EDK 13.1

Modifying the Template Files

7. In XPS, select File > Open and navigate to the pcores\blink_v1_00_a\hdl\vhdl
directory.

8. Open and examine the user_logic.vhd file.

9. Scroll down to approximately line 100. In the code segment shown here, the user port
LEDs are displayed in the appropriate location. Add the LEDs port declaration.

10. Scroll down to approximately line 130, and add this signal declaration.

11. Scroll down to approximately line 212 and add the following code. This code
implements the counter logic, and connects the register bit to control counter
operation.

X-Ref Target - Figure 6-13

Figure 6-13: Adding the LEDs Port Declaration

X-Ref Target - Figure 6-14

Figure 6-14: Adding the Signal Declaration

X-Ref Target - Figure 6-15

Figure 6-15: Adding the Counter Logic

http://www.xilinx.com

60 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

Reviewing the File Contents
Assuming you are familiar with VHDL, the code that makes up blink is easy to
understand.

The user_logic.vhd file is similar to the top-level blink.vhd file, in that the template
contains many comments and instructs you where to add custom RTL. If you have never
used the CIP wizard before, take a few minutes to study the comments, the list of interface
signals, and locations where you are instructed to add your RTL.

It is essential that you do not modify the auto-generated generics and ports. Add your
custom generics and ports only where instructed.

At approximately line 100, notice that the user port LEDs (3 downto 0) were added. This
output vector drives the four LEDs on the evaluation board. Anytime you add signals
specific to your design, you must add these ports in this location. You also need to add
these ports in the top-level file and map them through to user_logic.

Most of the code after the architecture declaration is custom code.

After declaring the internal signal count, the VHDL code that blinks the LEDs starts at line
212.

The CIP wizard created a single user register that is connected to the counter and used to
control the counter. Writing a one to the least significant bit will enable the counter, and
writing a zero will stop the counter.

All the code described here is simple and can be modified if you want to experiment later.
However, the interface signals in lines 208-210 are required to have very explicit behavior.
Incorrect logic driving these signals will cause the custom pcore to interfere with proper
bus operation, and could result in unexpected behavior during debug.

IP2Bus_Data is read by the processor during a read operation. For this simple peripheral,
the data last written to the peripheral control register can also be read back.

The final signal, IP2Bus_WrAck, is also critical. IP2Bus_WrAck is a write acknowledge
that must be returned by the custom logic. IP2Bus_WrAck must be driven high only for a
single cycle, but can be delayed if your custom logic needs to add wait states to the
response. For this example, no wait states are necessary. Connecting IP2Bus_WrAck
directly to slv_write_ack provides a simple, zero wait state response. The logic for the
read acknowledge signal is identical. The peripheral can add wait states if necessary.

The IP2Bus_Error is driven with a constant logic zero, implying that no error condition is
returned. If your custom peripheral could potentially time out based on having to wait for
other external logic, you can connect logic to drive IP2Bus_Error to terminate the bus
transfer.

Take a Test Drive! Adding the Pcore to Your Project

To add the blink pcore to your project, you’ll first update the MPD file and add the pcore.
Then, you’ll export the design and generate a new bitstream and test the pcore in
hardware.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 61
UG683 EDK 13.1

Modifying the Template Files

Adding the Pcore to Your Project

When you modified blink.vhd and user_logic.vhd, you added new ports to the
template design. Any time you modify the design files in a manner that modifies the ports
or parameters, the MPD file must be updated to reflect these changes.

1. Open the MPD file for the blink pcore from the pcores\blink_v1_00_a\data
directory.

2. Under the comment ##Ports, add this line:

PORT LEDs = "", DIR = O, VEC = [3:0]

3. Save the file.

4. In XPS, select Project > Rescan User Repositories to force XPS to recognize the
changes made to the blink pcore.

Note: Xilinx recommends that you rescan the IP repositories any time you make a change to a
custom peripheral.

Your custom pcore is now ready to add to the embedded design.

For more information about PSF files, refer to the Platform Specification Format Reference
Manual. A link to this document is available in Appendix B, “Additional Resources.”

You can see your custom peripheral listed in the IP Catalog under Project Local
pcores/USER.

Before adding blink to your design, you must make one change to the existing design.
The four LEDs on the evaluation board are currently connected to GPIO outputs. Now
that blink is driving these LEDs, the LEDs_4Bit pcore must be removed from the
design.

5. In the System Assembly View, right-click LEDs_4Bits and select Delete Instance.
The Delete IP Instance dialog box appears:

6. Accept the default setting. You’ll add the external ports back into the design manually.

7. Locate the blink pcore in the IP Catalog, right-click the pcore, and select Add IP.

The IP core configuration dialog box opens automatically.

8. Accept all defaults and click OK to close the dialog box.

The Instantiate and Connect IP window opens.

9. Accept the defaults and click OK.

Figure X-Ref Target - Figure 6-16

Figure 6-16: Delete IP Instance Dialog Box

http://www.xilinx.com

62 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

XPS adds the IP to the System Assembly View. You can see it in the Bus Interfaces tab.

The blink core is now added to the embedded system. However, you must make the
external connections between blink and the LEDs on the evaluation board.

10. Click the Ports tab, expand blink_0, and select Make External for LEDs from the
drop-down menu in the Net column.

A default name of blink_0_LEDs_pin was assigned as the External Ports name. You
can view this name by expanding the Name column.

11. To change the assigned net and pin names, click in the Name and Net columns,
respectively. Alternatively, you can manually edit the MHS file. For now, don’t change
the assigned names.

12. Click the Addresses tab and verify that the address range for blink_0 is 0x7C600000
- 0x7C60FFFF.

If it seems strange for a simple peripheral to be assigned a 64Kbyte address space,
don’t worry. A wider address space requires decoding of fewer address lines. In an
FPGA, a decoder with many inputs is implemented as a cascade of lookup tables.

The deeper the cascade, the slower the operating frequency. By assigning wide
peripheral address ranges, the resulting FPGA implementation will run faster.

The final step is to update the UCF constraints file to assign the LED outputs to the
proper FPGA pins.

13. Select the Project tab and double-click the system.ucf file to open it in the XPS main
window.

14. Look for LEDs_4Bits_TRI_O. These pin assignments were left in the UCF even
though you earlier deleted the GPIO pcore. It is important to note that removing a
pcore does not automatically trigger an update to the UCF file.

15. Replace LEDs_4Bits_TRI_O with blink_0_LEDs_pin in all four locations and save
the UCF file.

Congratulations, you have created and added a custom pcore!

Figure X-Ref Target - Figure 6-17

Figure 6-17: Connecting Your New IP in the Bus Interfaces Tab

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 63
UG683 EDK 13.1

Modifying the Template Files

Exporting the Design and Generating a New Bitstream

The next steps are to export the hardware design and generate a new bitstream and then
test this new pcore in hardware.

Because the blink peripheral has added new top level I/O ports to the design, in order to
export your design, you’ll need to go back to ISE and re-run the Generate New Top Level
HDL process as you did in “Take a Test Drive! Generating the Bitstream,” page 27.

1. In ISE, right-click the Export Hardware Design to SDK with Bitstream process and
select Process Properties.

2. Verify that the Launch SDK after Export check box is checked. If it is unchecked, click
to check it.

3. Run the Export Hardware Design to SDK with Bitstream process.

4. When SDK launches, create a new workspace. The new hardware platform will be
imported automatically.

SDK opens to the C/C++ Perspective with a table showing all the IP in your design.
Confirm that blink_0 is listed in the Address Map section of the system.xml file.

5. Create a new Hello World software project and BSP by selecting File > New >Xilinx C
Project.

6. Download the bitstream to the board by selecting Xilinx Tools > Program FPGA.

7. Run the Hello World project to confirm that the new hardware design runs correctly.

8. Select Xilinx Tools > XMD Console to open an XMD console.

We will verify the correct behavior of the blink IP by directly writing and reading the
control register.

9. At the XMD prompt, type mwr 0x7c600000 0x1.

The LEDs on the board begin to blink.

10. At the XMD prompt, type mrd 0x7c600000, and confirm that you read back the
value 0x00000001.

11. At the XMD prompt, type mwr 0x7c600000 0x0. The LEDs stop blinking.

What Just Happened?

You used the CIP wizard to create custom IP. While there are many steps required to
complete the task, you should now be familiar enough with the steps that you should be
able to use the CIP wizard efficiently in the future.

http://www.xilinx.com

64 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Chapter 6: Creating Your Own Intellectual Property

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 65
UG683 EDK 13.1

Appendix A

Custom DSP Designs

You can use System Generator to create a custom DSP design and export it to EDK as a
pcore.

For information about this, refer to the System Generator for DSP User Guide (UG 640):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/sysgen_user.
pdf

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/sysgen_user.pdf

66 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Appendix A: Custom DSP Designs

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 67
UG683 EDK 13.1

Appendix B

Additional Resources

Xilinx Resources
• ISE® Design Suite: Installation and Licensing Guide (UG798):

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/iil.pdf

• ISE Design Suite 13: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/irn.pdf

• Xilinx® Documentation:
http://www.xilinx.com/support/documentation

• Xilinx Global Glossary:
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

• Xilinx Support: http://www.xilinx.com/support.htm

EDK Documentation
The following documents are available in your EDK install directory, in
install_directory\doc\usenglish. You can also access the entire documentation
set online at: http://www.xilinx.com/ise/embedded/edk_docs.htm.

• Embedded System Tools Reference Manual (UG111):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/est_rm.pdf

• Platform Specification Format Reference Manual (UG642):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/psf_rm.pdf

• MicroBlaze™ Processor User Guide (UG081):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/
mb_ref_guide.pdf

• SDK Help

• XPS Help

EDK Additional Resources
• Xilinx Platform Studio and EDK website:

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

• Xilinx Platform Studio and EDK Document website:
http://www.xilinx.com/ise/embedded/edk_docs.htm

• Xilinx XPS/EDK Supported IP website:
http://www.xilinx.com/ise/embedded/edk_ip.htm

• Xilinx EDK Example website:
http://www.xilinx.com/ise/embedded/edk_examples.htm

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/irn.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/iil.pdf
http://www.xilinx.com/support/documentation
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=entopic=glossary.pdf
http://www.xilinx.com/support.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/mb_ref_guide.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.1&topic=sw+manuals&sub=index.html
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.1&topic=sw+manuals&sub=index.html
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_ip.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.1&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.1&topic=sw+manuals&sub=est_rm.pdf

68 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 13.1

Appendix B: Additional Resources

• Xilinx Tutorial website:
http://www.xilinx.com/support/documentation/dt_edk_edk13-1_tutorials.htm

• Xilinx Data Sheets:
http://www.xilinx.com/support/documentation/data_sheets.htm

• Xilinx Problem Solvers:
http://www.xilinx.com/support/troubleshoot/psolvers.htm

• Xilinx ISE Manuals:
http://www.xilinx.com/support/software_manuals.htm

• Additional Xilinx Documentation:
http://www.xilinx.com/support/library.htm

• GNU Manuals:
http://www.gnu.org/manual

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.1&topic=edk+tutorials
http://www.xilinx.com/support/documentation/data_sheets.htm
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/library.htm
http://www.gnu.org/manual

	EDK Concepts, Tools, and Techniques
	Revision History
	Chapter 1
Introduction
	About This Guide
	Take a Test Drive!
	Additional Documentation

	How EDK Simplifies Embedded Processor Design
	The Integrated Design Suite, Embedded Edition
	The Embedded Development Kit (EDK)

	How the EDK Tools Expedite the Design Process
	What You Need to Set Up Before Starting
	Installation Requirements: What You Need to Run EDK Tools
	Hardware Requirements for this Guide

	Chapter 2
Creating a New Project
	The Base System Builder
	Why Use the BSB?
	What You Can Do in the BSB Wizard
	The BSB Wizard and the ISE Design Suite
	Take a Test Drive! Creating a New Embedded Project

	A Note on the BSB and Custom Boards
	What’s Next?

	Chapter 3
Using Xilinx Platform Studio
	What is XPS?
	The XPS Software
	Project Information Area
	Take a Test Drive! Reviewing the Project Information Area

	System Assembly View
	Take a Test Drive! Exploring the System Assembly View

	Console Window
	Start Up Page
	Design Rule Check

	XPS Tools
	Platgen
	Simgen
	Create and Import Peripheral Wizard

	XPS Directory Structure
	Directory View

	What’s Next?

	Chapter 4
Working with Your Embedded Platform
	What’s in a Hardware Platform?
	Hardware Platform Development in Xilinx Platform Studio
	Take a Test Drive! Examining the MHS File

	The Hardware Platform in System Assembly View
	Converting the Hardware Platform to a Bitstream
	Take a Test Drive! Generating the Bitstream

	Exporting Your Hardware Platform
	Take a Test Drive! Exporting Your Hardware Platform to SDK

	What’s Next?

	Chapter 5
Software Development Kit
	About SDK
	Take a Test Drive! Creating a Software Project
	What Just Happened?
	Take a Test Drive! Debugging in SDK

	More on the Software Development Kit: Edit, Debug, and Release
	SDK Drivers
	SDK Windows

	Take a Test Drive! Editing Software
	Changing Your Workspace
	Creating New Xilinx C Projects
	Take a Test Drive! Working with Multiple Source Files and Projects

	Working with the Debugger
	Take a Test Drive! Working with the Debugger

	What’s Next?

	Chapter 6
Creating Your Own Intellectual Property
	Using the CIP Wizard
	Overview of IP Creation
	Using the CIP Wizard for Creating Custom IP
	CIP Wizard Documentation
	Take a Test Drive! Generating and Saving Templates

	Example Design Description
	Modifying the Template Files
	Take a Test Drive! Modifying the CIP Wizard Template Files
	Reviewing the File Contents
	Take a Test Drive! Adding the Pcore to Your Project

	Appendix A
Custom DSP Designs
	Appendix B
Additional Resources
	Xilinx Resources
	EDK Documentation
	EDK Additional Resources

