

3 Amp SQ-MELF Schottky Barrier Rectifiers

Qualified per MIL-PRF-19500/620

Qualified Levels*: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This series of 3 amp Schottky rectifiers are compact in their square MELF packaging for high density mounting. The 1N5822US and 1N6864US are military qualified for high-reliability applications.

"B" SQ-MELF (D-5B) Package

Also available in:

B" Package (axial-leaded)

1N5820 – 1N5822, 1N6864

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered surface mount equivalents of 1N5820 1N5822 and 1N6864 numbers.
- Hermetically sealed.
- Metallurgically bonded.
- Double plug construction.
- *JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/620 for 1N6822US and 1N6864US only.
 (See <u>Part Nomenclature</u> for all available options.)
- RoHS compliant devices available (commercial grade only on the 1N6822US and 1N6864US).

APPLICATIONS / BENEFITS

- Small size for high density mounting (see package illustration).
- Non-sensitive to ESD per MIL-STD-750 method 1020.

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction Temperature	T_J	-65 to +125	°C
Storage Temperature	T _{STG}	-65 to +150	°C
Thermal Resistance Junction-to-End Cap	R _{OJEC}	10	°C/W
Surge Peak Forward Current @ T _A = +25 °C	I _{FSM}	80	Α
(Test pulse = 8.3 ms, half-sine wave.)			(pk)
Average Rectified Output Current @ T _{EC} = +55 °C (1)	Io	3	Α

NOTES: 1. See Figures 3 and 4 for derating curves and for effects of V_R on T_J. The maximum T_J depends on the voltage applied.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 Tel: (978) 620-2600

Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Voidless hermetically sealed hard glass.
- TERMINALS: Tin-lead plate with >3% lead. Solder dip is available upon request. RoHS compliant matte-tin is available on commercial levels (no JAN levels).
- MARKING: Body painted and alpha numeric.
- POLARITY: Cathode indicated by band.
- Tape & Reel option: Standard per EIA-481-1-A with 12 mm tape. Consult factory for quantities.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
Ст	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.				
f	frequency				
I _R	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.				
Io	Average Rectified Output Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.				
V _F	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.				
V _R	Reverse Voltage: The dc voltage applied in the reverse direction below the breakdown region.				
V_{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range.				

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted.

TYPE NUMBER	WORKING PEAK REVERSE VOLTAGE	MAXIMUM FORWARD VOLTAGE V _{FM1}	MAXIMUM FORWARD VOLTAGE V _{FM2}	MAXIMUM FORWARD VOLTAGE V _{FM3}	MAXIMUM REVERSE LEAKAGE CURRENT I _{RM} @ V _{RM}	
	V _{RWM}	$I_{FM} = 1.0 A$	$I_{FM} = 3.0 A$	I _{FM} = 9.4 A	T _J = +25 °C	T _J = +100 °C
	V (pk)	Volts	Volts	Volts	mA	mA
1N5820US	20	0.40	0.50	0.70	0.10 @ 20 V	12.5 @ 20 V
1N5821US	30	0.40	0.50	0.70	0.10 @ 30 V	12.5 @ 30 V
1N5822US	40	0.40	0.50	0.70	0.10 @ 40 V	12.5 @ 40 V
1N6864US	80	0.50	0.70	N/A	0.15 @ 80 V	18.0 @ 80 V

GRAPHS

FIGURE 1
Typical Reverse Leakage Current at Rated PIV (PULSED)

FIGURE 2
Typical Forward Voltage

GRAPHS (continued)

Temperature Current Derating For 1N5822US

Temperature Current Derating For 1N6864US

GRAPHS (continued)

 $\underline{Schottky\ V_F-I_F\ Characteristics\ (Typical\ 1N5822US)}$

Schottky V_F – I_F Characteristics (Typical 1N6864US)

GRAPHS (continued)

FIGURE 7
Thermal Resistance vs FR4 Pad Area Still Air with the PCB horizontal

PACKAGE DIMENSIONS

	INCH		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
BD	0.137	0.148	3.48	3.76	
ECT	0.019	0.028	0.48	0.71	
BL	0.200	0.225	5.08	5.72	
S	0.003 MIN.		0.08 MIN.		

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Dimensions are pre-solder dip.
- U-suffix parts are structurally identical to the US-suffix parts.
 In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.